model_reward_parameters = rl_cfg.setdefault("model_reward_parameters", {})
gamma: Optional[float] = None
- best_trial_params: Optional[Dict[str, Any]] = None
- if self.hyperopt:
- best_trial_params = self.load_best_trial_params(pair)
if model_params and isinstance(model_params.get("gamma"), (int, float)):
gamma = float(model_params.get("gamma"))
- elif best_trial_params and isinstance(
- best_trial_params.get("gamma"), (int, float)
- ):
- gamma = float(best_trial_params.get("gamma"))
- elif hasattr(self.model, "gamma") and isinstance(
- self.model.gamma, (int, float)
+ elif self.hyperopt:
+ best_trial_params = self.load_best_trial_params(pair)
+ if best_trial_params and isinstance(
+ best_trial_params.get("gamma"), (int, float)
+ ):
+ gamma = float(best_trial_params.get("gamma"))
+
+ if (
+ gamma is None
+ and hasattr(self.model, "gamma")
+ and isinstance(self.model.gamma, (int, float))
):
gamma = float(self.model.gamma)
- else:
+
+ if gamma is None:
model_params_gamma = self.get_model_params().get("gamma")
if isinstance(model_params_gamma, (int, float)):
gamma = float(model_params_gamma)