### Configuration tunables
-| Path | Default | Type / Range | Description |
-|------|---------|-------------|-------------|
-| _Protections_ | | | |
-| estimated_trade_duration_candles | 48 | int >= 1 | Heuristic for StoplossGuard tuning. |
-| _Exit pricing_ | | | |
-| exit_pricing.trade_price_target | `moving_average` | enum {`moving_average`,`interpolation`,`weighted_interpolation`} | Trade NATR computation method. |
-| exit_pricing.thresholds_calibration.decline_quantile | 0.90 | float (0,1) | PNL decline quantile threshold. |
-| _Reversal confirmation_ | | | |
-| reversal_confirmation.lookback_period | 0 | int >= 0 | Prior confirming candles; 0 = none. |
-| reversal_confirmation.decay_ratio | 0.5 | float (0,1] | Geometric per-step relaxation factor. |
-| _Regressor model_ | | | |
-| freqai.regressor | `xgboost` | enum {`xgboost`,`lightgbm`} | Machine learning regressor algorithm. |
-| _Extrema smoothing_ | | | |
-| freqai.extrema_smoothing | `gaussian` | enum {`gaussian`,`kaiser`,`triang`,`smm`,`sma`} | Extrema smoothing kernel (smm=simple moving median, sma=simple moving average). |
-| freqai.extrema_smoothing_window | 5 | int >= 1 | Window size for extrema smoothing. |
-| freqai.extrema_smoothing_beta | 8.0 | float > 0 | Kaiser kernel shape parameter. |
-| _Feature parameters_ | | | |
-| freqai.feature_parameters.label_period_candles | 24 | int >= 1 | Zigzag NATR horizon. |
-| freqai.feature_parameters.label_natr_ratio | 9.0 | float > 0 | Zigzag NATR ratio. |
-| freqai.feature_parameters.min_label_natr_ratio | 9.0 | float > 0 | Minimum NATR ratio bound used by label HPO. |
-| freqai.feature_parameters.max_label_natr_ratio | 12.0 | float > 0 | Maximum NATR ratio bound used by label HPO. |
-| freqai.feature_parameters.label_frequency_candles | 12 | int >= 2 | Reversals labeling frequency. |
-| freqai.feature_parameters.label_metric | `euclidean` | string (supported: `euclidean`,`minkowski`,`cityblock`,`chebyshev`,`mahalanobis`,`seuclidean`,`jensenshannon`,`sqeuclidean`,...) | Metric used in distance calculations to ideal point. |
-| freqai.feature_parameters.label_weights | [0.5,0.5] | list[float] | Per-objective weights used in distance calculations to ideal point. |
-| freqai.feature_parameters.label_p_order | `None` | float | p-order used by Minkowski / power-mean calculations (optional). |
-| freqai.feature_parameters.label_medoid_metric | `euclidean` | string | Metric used with `medoid`. |
-| freqai.feature_parameters.label_kmeans_metric | `euclidean` | string | Metric used for k-means clustering. |
-| freqai.feature_parameters.label_kmeans_selection | `min` | enum {`min`,`medoid`} | Strategy to select trial in the best kmeans cluster. |
-| freqai.feature_parameters.label_kmedoids_metric | `euclidean` | string | Metric used for k-medoids clustering. |
-| freqai.feature_parameters.label_kmedoids_selection | `min` | enum {`min`,`medoid`} | Strategy to select trial in the best k-medoids cluster. |
-| freqai.feature_parameters.label_knn_metric | `minkowski` | string | Distance metric for KNN. |
-| freqai.feature_parameters.label_knn_p_order | `None` | float | p-order for KNN Minkowski metric distance. (optional) |
-| freqai.feature_parameters.label_knn_n_neighbors | 5 | int >= 1 | Number of neighbors for KNN. |
-| _Prediction thresholds_ | | | |
-| freqai.prediction_thresholds_smoothing | `mean` | enum {`mean`,`isodata`,`li`,`minimum`,`otsu`,`triangle`,`yen`,`soft_extremum`} | Thresholding method for prediction thresholds smoothing. |
-| freqai.prediction_thresholds_alpha | 12.0 | float > 0 | Alpha for `soft_extremum`. |
-| freqai.outlier_threshold | 0.999 | float (0,1) | Quantile threshold for predictions outlier filtering. |
-| _Optuna / HPO_ | | | |
-| freqai.optuna_hyperopt.enabled | true | bool | Enables HPO. |
-| freqai.optuna_hyperopt.n_jobs | CPU threads / 4 | int >= 1 | Parallel HPO workers. |
-| freqai.optuna_hyperopt.storage | `file` | enum {`file`,`sqlite`} | HPO storage backend. |
-| freqai.optuna_hyperopt.continuous | false | bool | Continuous HPO. |
-| freqai.optuna_hyperopt.warm_start | false | bool | Warm start HPO with previous best value(s). |
-| freqai.optuna_hyperopt.n_startup_trials | 15 | int >= 0 | HPO startup trials. |
-| freqai.optuna_hyperopt.n_trials | 50 | int >= 1 | Maximum HPO trials. |
-| freqai.optuna_hyperopt.timeout | 7200 | int >= 0 | HPO wall-clock timeout in seconds. |
-| freqai.optuna_hyperopt.label_candles_step | 1 | int >= 1 | Step for Zigzag NATR horizon search space. |
-| freqai.optuna_hyperopt.train_candles_step | 10 | int >= 1 | Step for training sets size search space. |
-| freqai.optuna_hyperopt.expansion_ratio | 0.4 | float [0,1] | HPO search space expansion ratio. |
-| freqai.optuna_hyperopt.seed | 1 | int >= 0 | HPO RNG seed. |
+| Path | Default | Type / Range | Description |
+|------|------------------|-------------|---------------------------------------------------------------------------------|
+| _Protections_ | | | |
+| estimated_trade_duration_candles | 48 | int >= 1 | Heuristic for StoplossGuard tuning. |
+| _Exit pricing_ | | | |
+| exit_pricing.trade_price_target | `moving_average` | enum {`moving_average`,`interpolation`,`weighted_interpolation`} | Trade NATR computation method. |
+| exit_pricing.thresholds_calibration.decline_quantile | 0.90 | float (0,1) | PNL decline quantile threshold. |
+| _Reversal confirmation_ | | | |
+| reversal_confirmation.lookback_period | 0 | int >= 0 | Prior confirming candles; 0 = none. |
+| reversal_confirmation.decay_ratio | 0.5 | float (0,1] | Geometric per-step relaxation factor. |
+| _Regressor model_ | | | |
+| freqai.regressor | `xgboost` | enum {`xgboost`,`lightgbm`} | Machine learning regressor algorithm. |
+| _Extrema smoothing_ | | | |
+| freqai.extrema_smoothing | `gaussian` | enum {`gaussian`,`kaiser`,`triang`,`smm`,`sma`} | Extrema smoothing kernel (smm=simple moving median, sma=simple moving average). |
+| freqai.extrema_smoothing_window | 5 | int >= 1 | Window size for extrema smoothing. |
+| freqai.extrema_smoothing_beta | 8.0 | float > 0 | Kaiser kernel shape parameter. |
+| _Feature parameters_ | | | |
+| freqai.feature_parameters.label_period_candles | 24 | int >= 1 | Zigzag NATR horizon. |
+| freqai.feature_parameters.label_natr_ratio | 9.0 | float > 0 | Zigzag NATR ratio. |
+| freqai.feature_parameters.min_label_natr_ratio | 9.0 | float > 0 | Minimum NATR ratio bound used by label HPO. |
+| freqai.feature_parameters.max_label_natr_ratio | 12.0 | float > 0 | Maximum NATR ratio bound used by label HPO. |
+| freqai.feature_parameters.label_frequency_candles | 12 | int >= 2 | Reversals labeling frequency. |
+| freqai.feature_parameters.label_metric | `euclidean` | string (supported: `euclidean`,`minkowski`,`cityblock`,`chebyshev`,`mahalanobis`,`seuclidean`,`jensenshannon`,`sqeuclidean`,...) | Metric used in distance calculations to ideal point. |
+| freqai.feature_parameters.label_weights | [0.5,0.5] | list[float] | Per-objective weights used in distance calculations to ideal point. |
+| freqai.feature_parameters.label_p_order | `None` | float | p-order used by Minkowski / power-mean calculations (optional). |
+| freqai.feature_parameters.label_medoid_metric | `euclidean` | string | Metric used with `medoid`. |
+| freqai.feature_parameters.label_kmeans_metric | `euclidean` | string | Metric used for k-means clustering. |
+| freqai.feature_parameters.label_kmeans_selection | `min` | enum {`min`,`medoid`} | Strategy to select trial in the best kmeans cluster. |
+| freqai.feature_parameters.label_kmedoids_metric | `euclidean` | string | Metric used for k-medoids clustering. |
+| freqai.feature_parameters.label_kmedoids_selection | `min` | enum {`min`,`medoid`} | Strategy to select trial in the best k-medoids cluster. |
+| freqai.feature_parameters.label_knn_metric | `minkowski` | string | Distance metric for KNN. |
+| freqai.feature_parameters.label_knn_p_order | `None` | float | p-order for KNN Minkowski metric distance. (optional) |
+| freqai.feature_parameters.label_knn_n_neighbors | 5 | int >= 1 | Number of neighbors for KNN. |
+| _Prediction thresholds_ | | | |
+| freqai.prediction_thresholds_smoothing | `mean` | enum {`mean`,`isodata`,`li`,`minimum`,`otsu`,`triangle`,`yen`,`soft_extremum`} | Thresholding method for prediction thresholds smoothing. |
+| freqai.prediction_thresholds_alpha | 12.0 | float > 0 | Alpha for `soft_extremum`. |
+| freqai.outlier_threshold | 0.999 | float (0,1) | Quantile threshold for predictions outlier filtering. |
+| _Optuna / HPO_ | | | |
+| freqai.optuna_hyperopt.enabled | true | bool | Enables HPO. |
+| freqai.optuna_hyperopt.n_jobs | CPU threads / 4 | int >= 1 | Parallel HPO workers. |
+| freqai.optuna_hyperopt.storage | `file` | enum {`file`,`sqlite`} | HPO storage backend. |
+| freqai.optuna_hyperopt.continuous | false | bool | Continuous HPO. |
+| freqai.optuna_hyperopt.warm_start | false | bool | Warm start HPO with previous best value(s). |
+| freqai.optuna_hyperopt.n_startup_trials | 15 | int >= 0 | HPO startup trials. |
+| freqai.optuna_hyperopt.n_trials | 50 | int >= 1 | Maximum HPO trials. |
+| freqai.optuna_hyperopt.timeout | 7200 | int >= 0 | HPO wall-clock timeout in seconds. |
+| freqai.optuna_hyperopt.label_candles_step | 1 | int >= 1 | Step for Zigzag NATR horizon search space. |
+| freqai.optuna_hyperopt.train_candles_step | 10 | int >= 1 | Step for training sets size search space. |
+| freqai.optuna_hyperopt.space_reduction | false | bool | Enable/disable HPO search space reduction based on previous best parameters. |
+| freqai.optuna_hyperopt.expansion_ratio | 0.4 | float [0,1] | HPO search space expansion ratio. |
+| freqai.optuna_hyperopt.seed | 1 | int >= 0 | HPO RNG seed. |
## ReforceXY
## Note
> Do not expect any support of any kind on the Internet. Nevertheless, PRs implementing documentation, bug fixes, cleanups or sensible features will be discussed and might get merged.
-