Commit | Line | Data |
---|---|---|
2ba45a60 DM |
1 | /* |
2 | * AAC decoder | |
3 | * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) | |
4 | * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) | |
5 | * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com> | |
6 | * | |
7 | * AAC LATM decoder | |
8 | * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz> | |
9 | * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net> | |
10 | * | |
11 | * This file is part of FFmpeg. | |
12 | * | |
13 | * FFmpeg is free software; you can redistribute it and/or | |
14 | * modify it under the terms of the GNU Lesser General Public | |
15 | * License as published by the Free Software Foundation; either | |
16 | * version 2.1 of the License, or (at your option) any later version. | |
17 | * | |
18 | * FFmpeg is distributed in the hope that it will be useful, | |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * Lesser General Public License for more details. | |
22 | * | |
23 | * You should have received a copy of the GNU Lesser General Public | |
24 | * License along with FFmpeg; if not, write to the Free Software | |
25 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
26 | */ | |
27 | ||
28 | /** | |
29 | * @file | |
30 | * AAC decoder | |
31 | * @author Oded Shimon ( ods15 ods15 dyndns org ) | |
32 | * @author Maxim Gavrilov ( maxim.gavrilov gmail com ) | |
33 | */ | |
34 | ||
35 | /* | |
36 | * supported tools | |
37 | * | |
38 | * Support? Name | |
39 | * N (code in SoC repo) gain control | |
40 | * Y block switching | |
41 | * Y window shapes - standard | |
42 | * N window shapes - Low Delay | |
43 | * Y filterbank - standard | |
44 | * N (code in SoC repo) filterbank - Scalable Sample Rate | |
45 | * Y Temporal Noise Shaping | |
46 | * Y Long Term Prediction | |
47 | * Y intensity stereo | |
48 | * Y channel coupling | |
49 | * Y frequency domain prediction | |
50 | * Y Perceptual Noise Substitution | |
51 | * Y Mid/Side stereo | |
52 | * N Scalable Inverse AAC Quantization | |
53 | * N Frequency Selective Switch | |
54 | * N upsampling filter | |
55 | * Y quantization & coding - AAC | |
56 | * N quantization & coding - TwinVQ | |
57 | * N quantization & coding - BSAC | |
58 | * N AAC Error Resilience tools | |
59 | * N Error Resilience payload syntax | |
60 | * N Error Protection tool | |
61 | * N CELP | |
62 | * N Silence Compression | |
63 | * N HVXC | |
64 | * N HVXC 4kbits/s VR | |
65 | * N Structured Audio tools | |
66 | * N Structured Audio Sample Bank Format | |
67 | * N MIDI | |
68 | * N Harmonic and Individual Lines plus Noise | |
69 | * N Text-To-Speech Interface | |
70 | * Y Spectral Band Replication | |
71 | * Y (not in this code) Layer-1 | |
72 | * Y (not in this code) Layer-2 | |
73 | * Y (not in this code) Layer-3 | |
74 | * N SinuSoidal Coding (Transient, Sinusoid, Noise) | |
75 | * Y Parametric Stereo | |
76 | * N Direct Stream Transfer | |
77 | * Y Enhanced AAC Low Delay (ER AAC ELD) | |
78 | * | |
79 | * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. | |
80 | * - HE AAC v2 comprises LC AAC with Spectral Band Replication and | |
81 | Parametric Stereo. | |
82 | */ | |
83 | ||
84 | #include "libavutil/float_dsp.h" | |
85 | #include "libavutil/opt.h" | |
86 | #include "avcodec.h" | |
87 | #include "internal.h" | |
88 | #include "get_bits.h" | |
89 | #include "fft.h" | |
90 | #include "fmtconvert.h" | |
91 | #include "lpc.h" | |
92 | #include "kbdwin.h" | |
93 | #include "sinewin.h" | |
94 | ||
95 | #include "aac.h" | |
96 | #include "aactab.h" | |
97 | #include "aacdectab.h" | |
98 | #include "cbrt_tablegen.h" | |
99 | #include "sbr.h" | |
100 | #include "aacsbr.h" | |
101 | #include "mpeg4audio.h" | |
102 | #include "aacadtsdec.h" | |
103 | #include "libavutil/intfloat.h" | |
104 | ||
105 | #include <assert.h> | |
106 | #include <errno.h> | |
107 | #include <math.h> | |
108 | #include <stdint.h> | |
109 | #include <string.h> | |
110 | ||
111 | #if ARCH_ARM | |
112 | # include "arm/aac.h" | |
113 | #elif ARCH_MIPS | |
114 | # include "mips/aacdec_mips.h" | |
115 | #endif | |
116 | ||
117 | static VLC vlc_scalefactors; | |
118 | static VLC vlc_spectral[11]; | |
119 | ||
120 | static int output_configure(AACContext *ac, | |
121 | uint8_t layout_map[MAX_ELEM_ID*4][3], int tags, | |
122 | enum OCStatus oc_type, int get_new_frame); | |
123 | ||
124 | #define overread_err "Input buffer exhausted before END element found\n" | |
125 | ||
126 | static int count_channels(uint8_t (*layout)[3], int tags) | |
127 | { | |
128 | int i, sum = 0; | |
129 | for (i = 0; i < tags; i++) { | |
130 | int syn_ele = layout[i][0]; | |
131 | int pos = layout[i][2]; | |
132 | sum += (1 + (syn_ele == TYPE_CPE)) * | |
133 | (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC); | |
134 | } | |
135 | return sum; | |
136 | } | |
137 | ||
138 | /** | |
139 | * Check for the channel element in the current channel position configuration. | |
140 | * If it exists, make sure the appropriate element is allocated and map the | |
141 | * channel order to match the internal FFmpeg channel layout. | |
142 | * | |
143 | * @param che_pos current channel position configuration | |
144 | * @param type channel element type | |
145 | * @param id channel element id | |
146 | * @param channels count of the number of channels in the configuration | |
147 | * | |
148 | * @return Returns error status. 0 - OK, !0 - error | |
149 | */ | |
150 | static av_cold int che_configure(AACContext *ac, | |
151 | enum ChannelPosition che_pos, | |
152 | int type, int id, int *channels) | |
153 | { | |
154 | if (*channels >= MAX_CHANNELS) | |
155 | return AVERROR_INVALIDDATA; | |
156 | if (che_pos) { | |
157 | if (!ac->che[type][id]) { | |
158 | if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement)))) | |
159 | return AVERROR(ENOMEM); | |
160 | ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr); | |
161 | } | |
162 | if (type != TYPE_CCE) { | |
163 | if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) { | |
164 | av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n"); | |
165 | return AVERROR_INVALIDDATA; | |
166 | } | |
167 | ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0]; | |
168 | if (type == TYPE_CPE || | |
169 | (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) { | |
170 | ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1]; | |
171 | } | |
172 | } | |
173 | } else { | |
174 | if (ac->che[type][id]) | |
175 | ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr); | |
176 | av_freep(&ac->che[type][id]); | |
177 | } | |
178 | return 0; | |
179 | } | |
180 | ||
181 | static int frame_configure_elements(AVCodecContext *avctx) | |
182 | { | |
183 | AACContext *ac = avctx->priv_data; | |
184 | int type, id, ch, ret; | |
185 | ||
186 | /* set channel pointers to internal buffers by default */ | |
187 | for (type = 0; type < 4; type++) { | |
188 | for (id = 0; id < MAX_ELEM_ID; id++) { | |
189 | ChannelElement *che = ac->che[type][id]; | |
190 | if (che) { | |
191 | che->ch[0].ret = che->ch[0].ret_buf; | |
192 | che->ch[1].ret = che->ch[1].ret_buf; | |
193 | } | |
194 | } | |
195 | } | |
196 | ||
197 | /* get output buffer */ | |
198 | av_frame_unref(ac->frame); | |
199 | if (!avctx->channels) | |
200 | return 1; | |
201 | ||
202 | ac->frame->nb_samples = 2048; | |
203 | if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0) | |
204 | return ret; | |
205 | ||
206 | /* map output channel pointers to AVFrame data */ | |
207 | for (ch = 0; ch < avctx->channels; ch++) { | |
208 | if (ac->output_element[ch]) | |
209 | ac->output_element[ch]->ret = (float *)ac->frame->extended_data[ch]; | |
210 | } | |
211 | ||
212 | return 0; | |
213 | } | |
214 | ||
215 | struct elem_to_channel { | |
216 | uint64_t av_position; | |
217 | uint8_t syn_ele; | |
218 | uint8_t elem_id; | |
219 | uint8_t aac_position; | |
220 | }; | |
221 | ||
222 | static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], | |
223 | uint8_t (*layout_map)[3], int offset, uint64_t left, | |
224 | uint64_t right, int pos) | |
225 | { | |
226 | if (layout_map[offset][0] == TYPE_CPE) { | |
227 | e2c_vec[offset] = (struct elem_to_channel) { | |
228 | .av_position = left | right, | |
229 | .syn_ele = TYPE_CPE, | |
230 | .elem_id = layout_map[offset][1], | |
231 | .aac_position = pos | |
232 | }; | |
233 | return 1; | |
234 | } else { | |
235 | e2c_vec[offset] = (struct elem_to_channel) { | |
236 | .av_position = left, | |
237 | .syn_ele = TYPE_SCE, | |
238 | .elem_id = layout_map[offset][1], | |
239 | .aac_position = pos | |
240 | }; | |
241 | e2c_vec[offset + 1] = (struct elem_to_channel) { | |
242 | .av_position = right, | |
243 | .syn_ele = TYPE_SCE, | |
244 | .elem_id = layout_map[offset + 1][1], | |
245 | .aac_position = pos | |
246 | }; | |
247 | return 2; | |
248 | } | |
249 | } | |
250 | ||
251 | static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, | |
252 | int *current) | |
253 | { | |
254 | int num_pos_channels = 0; | |
255 | int first_cpe = 0; | |
256 | int sce_parity = 0; | |
257 | int i; | |
258 | for (i = *current; i < tags; i++) { | |
259 | if (layout_map[i][2] != pos) | |
260 | break; | |
261 | if (layout_map[i][0] == TYPE_CPE) { | |
262 | if (sce_parity) { | |
263 | if (pos == AAC_CHANNEL_FRONT && !first_cpe) { | |
264 | sce_parity = 0; | |
265 | } else { | |
266 | return -1; | |
267 | } | |
268 | } | |
269 | num_pos_channels += 2; | |
270 | first_cpe = 1; | |
271 | } else { | |
272 | num_pos_channels++; | |
273 | sce_parity ^= 1; | |
274 | } | |
275 | } | |
276 | if (sce_parity && | |
277 | ((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE)) | |
278 | return -1; | |
279 | *current = i; | |
280 | return num_pos_channels; | |
281 | } | |
282 | ||
283 | static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) | |
284 | { | |
285 | int i, n, total_non_cc_elements; | |
286 | struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } }; | |
287 | int num_front_channels, num_side_channels, num_back_channels; | |
288 | uint64_t layout; | |
289 | ||
290 | if (FF_ARRAY_ELEMS(e2c_vec) < tags) | |
291 | return 0; | |
292 | ||
293 | i = 0; | |
294 | num_front_channels = | |
295 | count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i); | |
296 | if (num_front_channels < 0) | |
297 | return 0; | |
298 | num_side_channels = | |
299 | count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i); | |
300 | if (num_side_channels < 0) | |
301 | return 0; | |
302 | num_back_channels = | |
303 | count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i); | |
304 | if (num_back_channels < 0) | |
305 | return 0; | |
306 | ||
307 | i = 0; | |
308 | if (num_front_channels & 1) { | |
309 | e2c_vec[i] = (struct elem_to_channel) { | |
310 | .av_position = AV_CH_FRONT_CENTER, | |
311 | .syn_ele = TYPE_SCE, | |
312 | .elem_id = layout_map[i][1], | |
313 | .aac_position = AAC_CHANNEL_FRONT | |
314 | }; | |
315 | i++; | |
316 | num_front_channels--; | |
317 | } | |
318 | if (num_front_channels >= 4) { | |
319 | i += assign_pair(e2c_vec, layout_map, i, | |
320 | AV_CH_FRONT_LEFT_OF_CENTER, | |
321 | AV_CH_FRONT_RIGHT_OF_CENTER, | |
322 | AAC_CHANNEL_FRONT); | |
323 | num_front_channels -= 2; | |
324 | } | |
325 | if (num_front_channels >= 2) { | |
326 | i += assign_pair(e2c_vec, layout_map, i, | |
327 | AV_CH_FRONT_LEFT, | |
328 | AV_CH_FRONT_RIGHT, | |
329 | AAC_CHANNEL_FRONT); | |
330 | num_front_channels -= 2; | |
331 | } | |
332 | while (num_front_channels >= 2) { | |
333 | i += assign_pair(e2c_vec, layout_map, i, | |
334 | UINT64_MAX, | |
335 | UINT64_MAX, | |
336 | AAC_CHANNEL_FRONT); | |
337 | num_front_channels -= 2; | |
338 | } | |
339 | ||
340 | if (num_side_channels >= 2) { | |
341 | i += assign_pair(e2c_vec, layout_map, i, | |
342 | AV_CH_SIDE_LEFT, | |
343 | AV_CH_SIDE_RIGHT, | |
344 | AAC_CHANNEL_FRONT); | |
345 | num_side_channels -= 2; | |
346 | } | |
347 | while (num_side_channels >= 2) { | |
348 | i += assign_pair(e2c_vec, layout_map, i, | |
349 | UINT64_MAX, | |
350 | UINT64_MAX, | |
351 | AAC_CHANNEL_SIDE); | |
352 | num_side_channels -= 2; | |
353 | } | |
354 | ||
355 | while (num_back_channels >= 4) { | |
356 | i += assign_pair(e2c_vec, layout_map, i, | |
357 | UINT64_MAX, | |
358 | UINT64_MAX, | |
359 | AAC_CHANNEL_BACK); | |
360 | num_back_channels -= 2; | |
361 | } | |
362 | if (num_back_channels >= 2) { | |
363 | i += assign_pair(e2c_vec, layout_map, i, | |
364 | AV_CH_BACK_LEFT, | |
365 | AV_CH_BACK_RIGHT, | |
366 | AAC_CHANNEL_BACK); | |
367 | num_back_channels -= 2; | |
368 | } | |
369 | if (num_back_channels) { | |
370 | e2c_vec[i] = (struct elem_to_channel) { | |
371 | .av_position = AV_CH_BACK_CENTER, | |
372 | .syn_ele = TYPE_SCE, | |
373 | .elem_id = layout_map[i][1], | |
374 | .aac_position = AAC_CHANNEL_BACK | |
375 | }; | |
376 | i++; | |
377 | num_back_channels--; | |
378 | } | |
379 | ||
380 | if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { | |
381 | e2c_vec[i] = (struct elem_to_channel) { | |
382 | .av_position = AV_CH_LOW_FREQUENCY, | |
383 | .syn_ele = TYPE_LFE, | |
384 | .elem_id = layout_map[i][1], | |
385 | .aac_position = AAC_CHANNEL_LFE | |
386 | }; | |
387 | i++; | |
388 | } | |
389 | while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { | |
390 | e2c_vec[i] = (struct elem_to_channel) { | |
391 | .av_position = UINT64_MAX, | |
392 | .syn_ele = TYPE_LFE, | |
393 | .elem_id = layout_map[i][1], | |
394 | .aac_position = AAC_CHANNEL_LFE | |
395 | }; | |
396 | i++; | |
397 | } | |
398 | ||
399 | // Must choose a stable sort | |
400 | total_non_cc_elements = n = i; | |
401 | do { | |
402 | int next_n = 0; | |
403 | for (i = 1; i < n; i++) | |
404 | if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) { | |
405 | FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]); | |
406 | next_n = i; | |
407 | } | |
408 | n = next_n; | |
409 | } while (n > 0); | |
410 | ||
411 | layout = 0; | |
412 | for (i = 0; i < total_non_cc_elements; i++) { | |
413 | layout_map[i][0] = e2c_vec[i].syn_ele; | |
414 | layout_map[i][1] = e2c_vec[i].elem_id; | |
415 | layout_map[i][2] = e2c_vec[i].aac_position; | |
416 | if (e2c_vec[i].av_position != UINT64_MAX) { | |
417 | layout |= e2c_vec[i].av_position; | |
418 | } | |
419 | } | |
420 | ||
421 | return layout; | |
422 | } | |
423 | ||
424 | /** | |
425 | * Save current output configuration if and only if it has been locked. | |
426 | */ | |
427 | static void push_output_configuration(AACContext *ac) { | |
428 | if (ac->oc[1].status == OC_LOCKED) { | |
429 | ac->oc[0] = ac->oc[1]; | |
430 | } | |
431 | ac->oc[1].status = OC_NONE; | |
432 | } | |
433 | ||
434 | /** | |
435 | * Restore the previous output configuration if and only if the current | |
436 | * configuration is unlocked. | |
437 | */ | |
438 | static void pop_output_configuration(AACContext *ac) { | |
439 | if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) { | |
440 | ac->oc[1] = ac->oc[0]; | |
441 | ac->avctx->channels = ac->oc[1].channels; | |
442 | ac->avctx->channel_layout = ac->oc[1].channel_layout; | |
443 | output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, | |
444 | ac->oc[1].status, 0); | |
445 | } | |
446 | } | |
447 | ||
448 | /** | |
449 | * Configure output channel order based on the current program | |
450 | * configuration element. | |
451 | * | |
452 | * @return Returns error status. 0 - OK, !0 - error | |
453 | */ | |
454 | static int output_configure(AACContext *ac, | |
455 | uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags, | |
456 | enum OCStatus oc_type, int get_new_frame) | |
457 | { | |
458 | AVCodecContext *avctx = ac->avctx; | |
459 | int i, channels = 0, ret; | |
460 | uint64_t layout = 0; | |
461 | ||
462 | if (ac->oc[1].layout_map != layout_map) { | |
463 | memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0])); | |
464 | ac->oc[1].layout_map_tags = tags; | |
465 | } | |
466 | ||
467 | // Try to sniff a reasonable channel order, otherwise output the | |
468 | // channels in the order the PCE declared them. | |
469 | if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE) | |
470 | layout = sniff_channel_order(layout_map, tags); | |
471 | for (i = 0; i < tags; i++) { | |
472 | int type = layout_map[i][0]; | |
473 | int id = layout_map[i][1]; | |
474 | int position = layout_map[i][2]; | |
475 | // Allocate or free elements depending on if they are in the | |
476 | // current program configuration. | |
477 | ret = che_configure(ac, position, type, id, &channels); | |
478 | if (ret < 0) | |
479 | return ret; | |
480 | } | |
481 | if (ac->oc[1].m4ac.ps == 1 && channels == 2) { | |
482 | if (layout == AV_CH_FRONT_CENTER) { | |
483 | layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT; | |
484 | } else { | |
485 | layout = 0; | |
486 | } | |
487 | } | |
488 | ||
489 | memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); | |
490 | if (layout) avctx->channel_layout = layout; | |
491 | ac->oc[1].channel_layout = layout; | |
492 | avctx->channels = ac->oc[1].channels = channels; | |
493 | ac->oc[1].status = oc_type; | |
494 | ||
495 | if (get_new_frame) { | |
496 | if ((ret = frame_configure_elements(ac->avctx)) < 0) | |
497 | return ret; | |
498 | } | |
499 | ||
500 | return 0; | |
501 | } | |
502 | ||
503 | static void flush(AVCodecContext *avctx) | |
504 | { | |
505 | AACContext *ac= avctx->priv_data; | |
506 | int type, i, j; | |
507 | ||
508 | for (type = 3; type >= 0; type--) { | |
509 | for (i = 0; i < MAX_ELEM_ID; i++) { | |
510 | ChannelElement *che = ac->che[type][i]; | |
511 | if (che) { | |
512 | for (j = 0; j <= 1; j++) { | |
513 | memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved)); | |
514 | } | |
515 | } | |
516 | } | |
517 | } | |
518 | } | |
519 | ||
520 | /** | |
521 | * Set up channel positions based on a default channel configuration | |
522 | * as specified in table 1.17. | |
523 | * | |
524 | * @return Returns error status. 0 - OK, !0 - error | |
525 | */ | |
526 | static int set_default_channel_config(AVCodecContext *avctx, | |
527 | uint8_t (*layout_map)[3], | |
528 | int *tags, | |
529 | int channel_config) | |
530 | { | |
531 | if (channel_config < 1 || channel_config > 7) { | |
532 | av_log(avctx, AV_LOG_ERROR, | |
533 | "invalid default channel configuration (%d)\n", | |
534 | channel_config); | |
535 | return AVERROR_INVALIDDATA; | |
536 | } | |
537 | *tags = tags_per_config[channel_config]; | |
538 | memcpy(layout_map, aac_channel_layout_map[channel_config - 1], | |
539 | *tags * sizeof(*layout_map)); | |
540 | ||
541 | /* | |
542 | * AAC specification has 7.1(wide) as a default layout for 8-channel streams. | |
543 | * However, at least Nero AAC encoder encodes 7.1 streams using the default | |
544 | * channel config 7, mapping the side channels of the original audio stream | |
545 | * to the second AAC_CHANNEL_FRONT pair in the AAC stream. Similarly, e.g. FAAD | |
546 | * decodes the second AAC_CHANNEL_FRONT pair as side channels, therefore decoding | |
547 | * the incorrect streams as if they were correct (and as the encoder intended). | |
548 | * | |
549 | * As actual intended 7.1(wide) streams are very rare, default to assuming a | |
550 | * 7.1 layout was intended. | |
551 | */ | |
552 | if (channel_config == 7 && avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) { | |
553 | av_log(avctx, AV_LOG_INFO, "Assuming an incorrectly encoded 7.1 channel layout" | |
554 | " instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode" | |
555 | " according to the specification instead.\n", FF_COMPLIANCE_STRICT); | |
556 | layout_map[2][2] = AAC_CHANNEL_SIDE; | |
557 | } | |
558 | ||
559 | return 0; | |
560 | } | |
561 | ||
562 | static ChannelElement *get_che(AACContext *ac, int type, int elem_id) | |
563 | { | |
564 | /* For PCE based channel configurations map the channels solely based | |
565 | * on tags. */ | |
566 | if (!ac->oc[1].m4ac.chan_config) { | |
567 | return ac->tag_che_map[type][elem_id]; | |
568 | } | |
569 | // Allow single CPE stereo files to be signalled with mono configuration. | |
570 | if (!ac->tags_mapped && type == TYPE_CPE && | |
571 | ac->oc[1].m4ac.chan_config == 1) { | |
572 | uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
573 | int layout_map_tags; | |
574 | push_output_configuration(ac); | |
575 | ||
576 | av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n"); | |
577 | ||
578 | if (set_default_channel_config(ac->avctx, layout_map, | |
579 | &layout_map_tags, 2) < 0) | |
580 | return NULL; | |
581 | if (output_configure(ac, layout_map, layout_map_tags, | |
582 | OC_TRIAL_FRAME, 1) < 0) | |
583 | return NULL; | |
584 | ||
585 | ac->oc[1].m4ac.chan_config = 2; | |
586 | ac->oc[1].m4ac.ps = 0; | |
587 | } | |
588 | // And vice-versa | |
589 | if (!ac->tags_mapped && type == TYPE_SCE && | |
590 | ac->oc[1].m4ac.chan_config == 2) { | |
591 | uint8_t layout_map[MAX_ELEM_ID * 4][3]; | |
592 | int layout_map_tags; | |
593 | push_output_configuration(ac); | |
594 | ||
595 | av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n"); | |
596 | ||
597 | if (set_default_channel_config(ac->avctx, layout_map, | |
598 | &layout_map_tags, 1) < 0) | |
599 | return NULL; | |
600 | if (output_configure(ac, layout_map, layout_map_tags, | |
601 | OC_TRIAL_FRAME, 1) < 0) | |
602 | return NULL; | |
603 | ||
604 | ac->oc[1].m4ac.chan_config = 1; | |
605 | if (ac->oc[1].m4ac.sbr) | |
606 | ac->oc[1].m4ac.ps = -1; | |
607 | } | |
608 | /* For indexed channel configurations map the channels solely based | |
609 | * on position. */ | |
610 | switch (ac->oc[1].m4ac.chan_config) { | |
611 | case 7: | |
612 | if (ac->tags_mapped == 3 && type == TYPE_CPE) { | |
613 | ac->tags_mapped++; | |
614 | return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; | |
615 | } | |
616 | case 6: | |
617 | /* Some streams incorrectly code 5.1 audio as | |
618 | * SCE[0] CPE[0] CPE[1] SCE[1] | |
619 | * instead of | |
620 | * SCE[0] CPE[0] CPE[1] LFE[0]. | |
621 | * If we seem to have encountered such a stream, transfer | |
622 | * the LFE[0] element to the SCE[1]'s mapping */ | |
623 | if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { | |
f6fa7814 DM |
624 | if (!ac->warned_remapping_once && (type != TYPE_LFE || elem_id != 0)) { |
625 | av_log(ac->avctx, AV_LOG_WARNING, | |
626 | "This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n", | |
627 | type == TYPE_SCE ? "SCE" : "LFE", elem_id); | |
628 | ac->warned_remapping_once++; | |
629 | } | |
2ba45a60 DM |
630 | ac->tags_mapped++; |
631 | return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; | |
632 | } | |
633 | case 5: | |
634 | if (ac->tags_mapped == 2 && type == TYPE_CPE) { | |
635 | ac->tags_mapped++; | |
636 | return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; | |
637 | } | |
638 | case 4: | |
f6fa7814 DM |
639 | /* Some streams incorrectly code 4.0 audio as |
640 | * SCE[0] CPE[0] LFE[0] | |
641 | * instead of | |
642 | * SCE[0] CPE[0] SCE[1]. | |
643 | * If we seem to have encountered such a stream, transfer | |
644 | * the SCE[1] element to the LFE[0]'s mapping */ | |
645 | if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { | |
646 | if (!ac->warned_remapping_once && (type != TYPE_SCE || elem_id != 1)) { | |
647 | av_log(ac->avctx, AV_LOG_WARNING, | |
648 | "This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n", | |
649 | type == TYPE_SCE ? "SCE" : "LFE", elem_id); | |
650 | ac->warned_remapping_once++; | |
651 | } | |
652 | ac->tags_mapped++; | |
653 | return ac->tag_che_map[type][elem_id] = ac->che[TYPE_SCE][1]; | |
654 | } | |
2ba45a60 DM |
655 | if (ac->tags_mapped == 2 && |
656 | ac->oc[1].m4ac.chan_config == 4 && | |
657 | type == TYPE_SCE) { | |
658 | ac->tags_mapped++; | |
659 | return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; | |
660 | } | |
661 | case 3: | |
662 | case 2: | |
663 | if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && | |
664 | type == TYPE_CPE) { | |
665 | ac->tags_mapped++; | |
666 | return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; | |
667 | } else if (ac->oc[1].m4ac.chan_config == 2) { | |
668 | return NULL; | |
669 | } | |
670 | case 1: | |
671 | if (!ac->tags_mapped && type == TYPE_SCE) { | |
672 | ac->tags_mapped++; | |
673 | return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; | |
674 | } | |
675 | default: | |
676 | return NULL; | |
677 | } | |
678 | } | |
679 | ||
680 | /** | |
681 | * Decode an array of 4 bit element IDs, optionally interleaved with a | |
682 | * stereo/mono switching bit. | |
683 | * | |
684 | * @param type speaker type/position for these channels | |
685 | */ | |
686 | static void decode_channel_map(uint8_t layout_map[][3], | |
687 | enum ChannelPosition type, | |
688 | GetBitContext *gb, int n) | |
689 | { | |
690 | while (n--) { | |
691 | enum RawDataBlockType syn_ele; | |
692 | switch (type) { | |
693 | case AAC_CHANNEL_FRONT: | |
694 | case AAC_CHANNEL_BACK: | |
695 | case AAC_CHANNEL_SIDE: | |
696 | syn_ele = get_bits1(gb); | |
697 | break; | |
698 | case AAC_CHANNEL_CC: | |
699 | skip_bits1(gb); | |
700 | syn_ele = TYPE_CCE; | |
701 | break; | |
702 | case AAC_CHANNEL_LFE: | |
703 | syn_ele = TYPE_LFE; | |
704 | break; | |
705 | default: | |
f6fa7814 | 706 | // AAC_CHANNEL_OFF has no channel map |
2ba45a60 DM |
707 | av_assert0(0); |
708 | } | |
709 | layout_map[0][0] = syn_ele; | |
710 | layout_map[0][1] = get_bits(gb, 4); | |
711 | layout_map[0][2] = type; | |
712 | layout_map++; | |
713 | } | |
714 | } | |
715 | ||
716 | /** | |
717 | * Decode program configuration element; reference: table 4.2. | |
718 | * | |
719 | * @return Returns error status. 0 - OK, !0 - error | |
720 | */ | |
721 | static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, | |
722 | uint8_t (*layout_map)[3], | |
723 | GetBitContext *gb) | |
724 | { | |
725 | int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc; | |
726 | int sampling_index; | |
727 | int comment_len; | |
728 | int tags; | |
729 | ||
730 | skip_bits(gb, 2); // object_type | |
731 | ||
732 | sampling_index = get_bits(gb, 4); | |
733 | if (m4ac->sampling_index != sampling_index) | |
734 | av_log(avctx, AV_LOG_WARNING, | |
735 | "Sample rate index in program config element does not " | |
736 | "match the sample rate index configured by the container.\n"); | |
737 | ||
738 | num_front = get_bits(gb, 4); | |
739 | num_side = get_bits(gb, 4); | |
740 | num_back = get_bits(gb, 4); | |
741 | num_lfe = get_bits(gb, 2); | |
742 | num_assoc_data = get_bits(gb, 3); | |
743 | num_cc = get_bits(gb, 4); | |
744 | ||
745 | if (get_bits1(gb)) | |
746 | skip_bits(gb, 4); // mono_mixdown_tag | |
747 | if (get_bits1(gb)) | |
748 | skip_bits(gb, 4); // stereo_mixdown_tag | |
749 | ||
750 | if (get_bits1(gb)) | |
751 | skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround | |
752 | ||
753 | if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) { | |
754 | av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); | |
755 | return -1; | |
756 | } | |
757 | decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front); | |
758 | tags = num_front; | |
759 | decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side); | |
760 | tags += num_side; | |
761 | decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back); | |
762 | tags += num_back; | |
763 | decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe); | |
764 | tags += num_lfe; | |
765 | ||
766 | skip_bits_long(gb, 4 * num_assoc_data); | |
767 | ||
768 | decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc); | |
769 | tags += num_cc; | |
770 | ||
771 | align_get_bits(gb); | |
772 | ||
773 | /* comment field, first byte is length */ | |
774 | comment_len = get_bits(gb, 8) * 8; | |
775 | if (get_bits_left(gb) < comment_len) { | |
776 | av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); | |
777 | return AVERROR_INVALIDDATA; | |
778 | } | |
779 | skip_bits_long(gb, comment_len); | |
780 | return tags; | |
781 | } | |
782 | ||
783 | /** | |
784 | * Decode GA "General Audio" specific configuration; reference: table 4.1. | |
785 | * | |
786 | * @param ac pointer to AACContext, may be null | |
787 | * @param avctx pointer to AVCCodecContext, used for logging | |
788 | * | |
789 | * @return Returns error status. 0 - OK, !0 - error | |
790 | */ | |
791 | static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, | |
792 | GetBitContext *gb, | |
793 | MPEG4AudioConfig *m4ac, | |
794 | int channel_config) | |
795 | { | |
796 | int extension_flag, ret, ep_config, res_flags; | |
797 | uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
798 | int tags = 0; | |
799 | ||
800 | if (get_bits1(gb)) { // frameLengthFlag | |
801 | avpriv_request_sample(avctx, "960/120 MDCT window"); | |
802 | return AVERROR_PATCHWELCOME; | |
803 | } | |
804 | ||
805 | if (get_bits1(gb)) // dependsOnCoreCoder | |
806 | skip_bits(gb, 14); // coreCoderDelay | |
807 | extension_flag = get_bits1(gb); | |
808 | ||
809 | if (m4ac->object_type == AOT_AAC_SCALABLE || | |
810 | m4ac->object_type == AOT_ER_AAC_SCALABLE) | |
811 | skip_bits(gb, 3); // layerNr | |
812 | ||
813 | if (channel_config == 0) { | |
814 | skip_bits(gb, 4); // element_instance_tag | |
815 | tags = decode_pce(avctx, m4ac, layout_map, gb); | |
816 | if (tags < 0) | |
817 | return tags; | |
818 | } else { | |
819 | if ((ret = set_default_channel_config(avctx, layout_map, | |
820 | &tags, channel_config))) | |
821 | return ret; | |
822 | } | |
823 | ||
824 | if (count_channels(layout_map, tags) > 1) { | |
825 | m4ac->ps = 0; | |
826 | } else if (m4ac->sbr == 1 && m4ac->ps == -1) | |
827 | m4ac->ps = 1; | |
828 | ||
829 | if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) | |
830 | return ret; | |
831 | ||
832 | if (extension_flag) { | |
833 | switch (m4ac->object_type) { | |
834 | case AOT_ER_BSAC: | |
835 | skip_bits(gb, 5); // numOfSubFrame | |
836 | skip_bits(gb, 11); // layer_length | |
837 | break; | |
838 | case AOT_ER_AAC_LC: | |
839 | case AOT_ER_AAC_LTP: | |
840 | case AOT_ER_AAC_SCALABLE: | |
841 | case AOT_ER_AAC_LD: | |
842 | res_flags = get_bits(gb, 3); | |
843 | if (res_flags) { | |
844 | avpriv_report_missing_feature(avctx, | |
845 | "AAC data resilience (flags %x)", | |
846 | res_flags); | |
847 | return AVERROR_PATCHWELCOME; | |
848 | } | |
849 | break; | |
850 | } | |
851 | skip_bits1(gb); // extensionFlag3 (TBD in version 3) | |
852 | } | |
853 | switch (m4ac->object_type) { | |
854 | case AOT_ER_AAC_LC: | |
855 | case AOT_ER_AAC_LTP: | |
856 | case AOT_ER_AAC_SCALABLE: | |
857 | case AOT_ER_AAC_LD: | |
858 | ep_config = get_bits(gb, 2); | |
859 | if (ep_config) { | |
860 | avpriv_report_missing_feature(avctx, | |
861 | "epConfig %d", ep_config); | |
862 | return AVERROR_PATCHWELCOME; | |
863 | } | |
864 | } | |
865 | return 0; | |
866 | } | |
867 | ||
868 | static int decode_eld_specific_config(AACContext *ac, AVCodecContext *avctx, | |
869 | GetBitContext *gb, | |
870 | MPEG4AudioConfig *m4ac, | |
871 | int channel_config) | |
872 | { | |
873 | int ret, ep_config, res_flags; | |
874 | uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
875 | int tags = 0; | |
876 | const int ELDEXT_TERM = 0; | |
877 | ||
878 | m4ac->ps = 0; | |
879 | m4ac->sbr = 0; | |
880 | ||
881 | if (get_bits1(gb)) { // frameLengthFlag | |
882 | avpriv_request_sample(avctx, "960/120 MDCT window"); | |
883 | return AVERROR_PATCHWELCOME; | |
884 | } | |
885 | ||
886 | res_flags = get_bits(gb, 3); | |
887 | if (res_flags) { | |
888 | avpriv_report_missing_feature(avctx, | |
889 | "AAC data resilience (flags %x)", | |
890 | res_flags); | |
891 | return AVERROR_PATCHWELCOME; | |
892 | } | |
893 | ||
894 | if (get_bits1(gb)) { // ldSbrPresentFlag | |
895 | avpriv_report_missing_feature(avctx, | |
896 | "Low Delay SBR"); | |
897 | return AVERROR_PATCHWELCOME; | |
898 | } | |
899 | ||
900 | while (get_bits(gb, 4) != ELDEXT_TERM) { | |
901 | int len = get_bits(gb, 4); | |
902 | if (len == 15) | |
903 | len += get_bits(gb, 8); | |
904 | if (len == 15 + 255) | |
905 | len += get_bits(gb, 16); | |
906 | if (get_bits_left(gb) < len * 8 + 4) { | |
907 | av_log(ac->avctx, AV_LOG_ERROR, overread_err); | |
908 | return AVERROR_INVALIDDATA; | |
909 | } | |
910 | skip_bits_long(gb, 8 * len); | |
911 | } | |
912 | ||
913 | if ((ret = set_default_channel_config(avctx, layout_map, | |
914 | &tags, channel_config))) | |
915 | return ret; | |
916 | ||
917 | if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) | |
918 | return ret; | |
919 | ||
920 | ep_config = get_bits(gb, 2); | |
921 | if (ep_config) { | |
922 | avpriv_report_missing_feature(avctx, | |
923 | "epConfig %d", ep_config); | |
924 | return AVERROR_PATCHWELCOME; | |
925 | } | |
926 | return 0; | |
927 | } | |
928 | ||
929 | /** | |
930 | * Decode audio specific configuration; reference: table 1.13. | |
931 | * | |
932 | * @param ac pointer to AACContext, may be null | |
933 | * @param avctx pointer to AVCCodecContext, used for logging | |
934 | * @param m4ac pointer to MPEG4AudioConfig, used for parsing | |
935 | * @param data pointer to buffer holding an audio specific config | |
936 | * @param bit_size size of audio specific config or data in bits | |
937 | * @param sync_extension look for an appended sync extension | |
938 | * | |
939 | * @return Returns error status or number of consumed bits. <0 - error | |
940 | */ | |
941 | static int decode_audio_specific_config(AACContext *ac, | |
942 | AVCodecContext *avctx, | |
943 | MPEG4AudioConfig *m4ac, | |
944 | const uint8_t *data, int bit_size, | |
945 | int sync_extension) | |
946 | { | |
947 | GetBitContext gb; | |
948 | int i, ret; | |
949 | ||
950 | av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3); | |
951 | for (i = 0; i < bit_size >> 3; i++) | |
952 | av_dlog(avctx, "%02x ", data[i]); | |
953 | av_dlog(avctx, "\n"); | |
954 | ||
955 | if ((ret = init_get_bits(&gb, data, bit_size)) < 0) | |
956 | return ret; | |
957 | ||
958 | if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, | |
959 | sync_extension)) < 0) | |
960 | return AVERROR_INVALIDDATA; | |
961 | if (m4ac->sampling_index > 12) { | |
962 | av_log(avctx, AV_LOG_ERROR, | |
963 | "invalid sampling rate index %d\n", | |
964 | m4ac->sampling_index); | |
965 | return AVERROR_INVALIDDATA; | |
966 | } | |
967 | if (m4ac->object_type == AOT_ER_AAC_LD && | |
968 | (m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) { | |
969 | av_log(avctx, AV_LOG_ERROR, | |
970 | "invalid low delay sampling rate index %d\n", | |
971 | m4ac->sampling_index); | |
972 | return AVERROR_INVALIDDATA; | |
973 | } | |
974 | ||
975 | skip_bits_long(&gb, i); | |
976 | ||
977 | switch (m4ac->object_type) { | |
978 | case AOT_AAC_MAIN: | |
979 | case AOT_AAC_LC: | |
980 | case AOT_AAC_LTP: | |
981 | case AOT_ER_AAC_LC: | |
982 | case AOT_ER_AAC_LD: | |
983 | if ((ret = decode_ga_specific_config(ac, avctx, &gb, | |
984 | m4ac, m4ac->chan_config)) < 0) | |
985 | return ret; | |
986 | break; | |
987 | case AOT_ER_AAC_ELD: | |
988 | if ((ret = decode_eld_specific_config(ac, avctx, &gb, | |
989 | m4ac, m4ac->chan_config)) < 0) | |
990 | return ret; | |
991 | break; | |
992 | default: | |
993 | avpriv_report_missing_feature(avctx, | |
994 | "Audio object type %s%d", | |
995 | m4ac->sbr == 1 ? "SBR+" : "", | |
996 | m4ac->object_type); | |
997 | return AVERROR(ENOSYS); | |
998 | } | |
999 | ||
1000 | av_dlog(avctx, | |
1001 | "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", | |
1002 | m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, | |
1003 | m4ac->sample_rate, m4ac->sbr, | |
1004 | m4ac->ps); | |
1005 | ||
1006 | return get_bits_count(&gb); | |
1007 | } | |
1008 | ||
1009 | /** | |
1010 | * linear congruential pseudorandom number generator | |
1011 | * | |
1012 | * @param previous_val pointer to the current state of the generator | |
1013 | * | |
1014 | * @return Returns a 32-bit pseudorandom integer | |
1015 | */ | |
1016 | static av_always_inline int lcg_random(unsigned previous_val) | |
1017 | { | |
1018 | union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; | |
1019 | return v.s; | |
1020 | } | |
1021 | ||
1022 | static av_always_inline void reset_predict_state(PredictorState *ps) | |
1023 | { | |
1024 | ps->r0 = 0.0f; | |
1025 | ps->r1 = 0.0f; | |
1026 | ps->cor0 = 0.0f; | |
1027 | ps->cor1 = 0.0f; | |
1028 | ps->var0 = 1.0f; | |
1029 | ps->var1 = 1.0f; | |
1030 | } | |
1031 | ||
1032 | static void reset_all_predictors(PredictorState *ps) | |
1033 | { | |
1034 | int i; | |
1035 | for (i = 0; i < MAX_PREDICTORS; i++) | |
1036 | reset_predict_state(&ps[i]); | |
1037 | } | |
1038 | ||
1039 | static int sample_rate_idx (int rate) | |
1040 | { | |
1041 | if (92017 <= rate) return 0; | |
1042 | else if (75132 <= rate) return 1; | |
1043 | else if (55426 <= rate) return 2; | |
1044 | else if (46009 <= rate) return 3; | |
1045 | else if (37566 <= rate) return 4; | |
1046 | else if (27713 <= rate) return 5; | |
1047 | else if (23004 <= rate) return 6; | |
1048 | else if (18783 <= rate) return 7; | |
1049 | else if (13856 <= rate) return 8; | |
1050 | else if (11502 <= rate) return 9; | |
1051 | else if (9391 <= rate) return 10; | |
1052 | else return 11; | |
1053 | } | |
1054 | ||
1055 | static void reset_predictor_group(PredictorState *ps, int group_num) | |
1056 | { | |
1057 | int i; | |
1058 | for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) | |
1059 | reset_predict_state(&ps[i]); | |
1060 | } | |
1061 | ||
1062 | #define AAC_INIT_VLC_STATIC(num, size) \ | |
1063 | INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \ | |
1064 | ff_aac_spectral_bits[num], sizeof(ff_aac_spectral_bits[num][0]), \ | |
1065 | sizeof(ff_aac_spectral_bits[num][0]), \ | |
1066 | ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), \ | |
1067 | sizeof(ff_aac_spectral_codes[num][0]), \ | |
1068 | size); | |
1069 | ||
1070 | static void aacdec_init(AACContext *ac); | |
1071 | ||
1072 | static av_cold int aac_decode_init(AVCodecContext *avctx) | |
1073 | { | |
1074 | AACContext *ac = avctx->priv_data; | |
1075 | int ret; | |
1076 | ||
1077 | ac->avctx = avctx; | |
1078 | ac->oc[1].m4ac.sample_rate = avctx->sample_rate; | |
1079 | ||
1080 | aacdec_init(ac); | |
1081 | ||
1082 | avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; | |
1083 | ||
1084 | if (avctx->extradata_size > 0) { | |
1085 | if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, | |
1086 | avctx->extradata, | |
1087 | avctx->extradata_size * 8, | |
1088 | 1)) < 0) | |
1089 | return ret; | |
1090 | } else { | |
1091 | int sr, i; | |
1092 | uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
1093 | int layout_map_tags; | |
1094 | ||
1095 | sr = sample_rate_idx(avctx->sample_rate); | |
1096 | ac->oc[1].m4ac.sampling_index = sr; | |
1097 | ac->oc[1].m4ac.channels = avctx->channels; | |
1098 | ac->oc[1].m4ac.sbr = -1; | |
1099 | ac->oc[1].m4ac.ps = -1; | |
1100 | ||
1101 | for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++) | |
1102 | if (ff_mpeg4audio_channels[i] == avctx->channels) | |
1103 | break; | |
1104 | if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) { | |
1105 | i = 0; | |
1106 | } | |
1107 | ac->oc[1].m4ac.chan_config = i; | |
1108 | ||
1109 | if (ac->oc[1].m4ac.chan_config) { | |
1110 | int ret = set_default_channel_config(avctx, layout_map, | |
1111 | &layout_map_tags, ac->oc[1].m4ac.chan_config); | |
1112 | if (!ret) | |
1113 | output_configure(ac, layout_map, layout_map_tags, | |
1114 | OC_GLOBAL_HDR, 0); | |
1115 | else if (avctx->err_recognition & AV_EF_EXPLODE) | |
1116 | return AVERROR_INVALIDDATA; | |
1117 | } | |
1118 | } | |
1119 | ||
1120 | if (avctx->channels > MAX_CHANNELS) { | |
1121 | av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); | |
1122 | return AVERROR_INVALIDDATA; | |
1123 | } | |
1124 | ||
1125 | AAC_INIT_VLC_STATIC( 0, 304); | |
1126 | AAC_INIT_VLC_STATIC( 1, 270); | |
1127 | AAC_INIT_VLC_STATIC( 2, 550); | |
1128 | AAC_INIT_VLC_STATIC( 3, 300); | |
1129 | AAC_INIT_VLC_STATIC( 4, 328); | |
1130 | AAC_INIT_VLC_STATIC( 5, 294); | |
1131 | AAC_INIT_VLC_STATIC( 6, 306); | |
1132 | AAC_INIT_VLC_STATIC( 7, 268); | |
1133 | AAC_INIT_VLC_STATIC( 8, 510); | |
1134 | AAC_INIT_VLC_STATIC( 9, 366); | |
1135 | AAC_INIT_VLC_STATIC(10, 462); | |
1136 | ||
1137 | ff_aac_sbr_init(); | |
1138 | ||
1139 | ff_fmt_convert_init(&ac->fmt_conv, avctx); | |
f6fa7814 DM |
1140 | ac->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT); |
1141 | if (!ac->fdsp) { | |
1142 | return AVERROR(ENOMEM); | |
1143 | } | |
2ba45a60 DM |
1144 | |
1145 | ac->random_state = 0x1f2e3d4c; | |
1146 | ||
1147 | ff_aac_tableinit(); | |
1148 | ||
1149 | INIT_VLC_STATIC(&vlc_scalefactors, 7, | |
1150 | FF_ARRAY_ELEMS(ff_aac_scalefactor_code), | |
1151 | ff_aac_scalefactor_bits, | |
1152 | sizeof(ff_aac_scalefactor_bits[0]), | |
1153 | sizeof(ff_aac_scalefactor_bits[0]), | |
1154 | ff_aac_scalefactor_code, | |
1155 | sizeof(ff_aac_scalefactor_code[0]), | |
1156 | sizeof(ff_aac_scalefactor_code[0]), | |
1157 | 352); | |
1158 | ||
1159 | ff_mdct_init(&ac->mdct, 11, 1, 1.0 / (32768.0 * 1024.0)); | |
1160 | ff_mdct_init(&ac->mdct_ld, 10, 1, 1.0 / (32768.0 * 512.0)); | |
1161 | ff_mdct_init(&ac->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0)); | |
1162 | ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0 * 32768.0); | |
1163 | // window initialization | |
1164 | ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024); | |
1165 | ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128); | |
1166 | ff_init_ff_sine_windows(10); | |
1167 | ff_init_ff_sine_windows( 9); | |
1168 | ff_init_ff_sine_windows( 7); | |
1169 | ||
1170 | cbrt_tableinit(); | |
1171 | ||
1172 | return 0; | |
1173 | } | |
1174 | ||
1175 | /** | |
1176 | * Skip data_stream_element; reference: table 4.10. | |
1177 | */ | |
1178 | static int skip_data_stream_element(AACContext *ac, GetBitContext *gb) | |
1179 | { | |
1180 | int byte_align = get_bits1(gb); | |
1181 | int count = get_bits(gb, 8); | |
1182 | if (count == 255) | |
1183 | count += get_bits(gb, 8); | |
1184 | if (byte_align) | |
1185 | align_get_bits(gb); | |
1186 | ||
1187 | if (get_bits_left(gb) < 8 * count) { | |
1188 | av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err); | |
1189 | return AVERROR_INVALIDDATA; | |
1190 | } | |
1191 | skip_bits_long(gb, 8 * count); | |
1192 | return 0; | |
1193 | } | |
1194 | ||
1195 | static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, | |
1196 | GetBitContext *gb) | |
1197 | { | |
1198 | int sfb; | |
1199 | if (get_bits1(gb)) { | |
1200 | ics->predictor_reset_group = get_bits(gb, 5); | |
1201 | if (ics->predictor_reset_group == 0 || | |
1202 | ics->predictor_reset_group > 30) { | |
1203 | av_log(ac->avctx, AV_LOG_ERROR, | |
1204 | "Invalid Predictor Reset Group.\n"); | |
1205 | return AVERROR_INVALIDDATA; | |
1206 | } | |
1207 | } | |
1208 | for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) { | |
1209 | ics->prediction_used[sfb] = get_bits1(gb); | |
1210 | } | |
1211 | return 0; | |
1212 | } | |
1213 | ||
1214 | /** | |
1215 | * Decode Long Term Prediction data; reference: table 4.xx. | |
1216 | */ | |
1217 | static void decode_ltp(LongTermPrediction *ltp, | |
1218 | GetBitContext *gb, uint8_t max_sfb) | |
1219 | { | |
1220 | int sfb; | |
1221 | ||
1222 | ltp->lag = get_bits(gb, 11); | |
1223 | ltp->coef = ltp_coef[get_bits(gb, 3)]; | |
1224 | for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++) | |
1225 | ltp->used[sfb] = get_bits1(gb); | |
1226 | } | |
1227 | ||
1228 | /** | |
1229 | * Decode Individual Channel Stream info; reference: table 4.6. | |
1230 | */ | |
1231 | static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, | |
1232 | GetBitContext *gb) | |
1233 | { | |
1234 | int aot = ac->oc[1].m4ac.object_type; | |
1235 | if (aot != AOT_ER_AAC_ELD) { | |
1236 | if (get_bits1(gb)) { | |
1237 | av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n"); | |
1238 | return AVERROR_INVALIDDATA; | |
1239 | } | |
1240 | ics->window_sequence[1] = ics->window_sequence[0]; | |
1241 | ics->window_sequence[0] = get_bits(gb, 2); | |
1242 | if (aot == AOT_ER_AAC_LD && | |
1243 | ics->window_sequence[0] != ONLY_LONG_SEQUENCE) { | |
1244 | av_log(ac->avctx, AV_LOG_ERROR, | |
1245 | "AAC LD is only defined for ONLY_LONG_SEQUENCE but " | |
1246 | "window sequence %d found.\n", ics->window_sequence[0]); | |
1247 | ics->window_sequence[0] = ONLY_LONG_SEQUENCE; | |
1248 | return AVERROR_INVALIDDATA; | |
1249 | } | |
1250 | ics->use_kb_window[1] = ics->use_kb_window[0]; | |
1251 | ics->use_kb_window[0] = get_bits1(gb); | |
1252 | } | |
1253 | ics->num_window_groups = 1; | |
1254 | ics->group_len[0] = 1; | |
1255 | if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
1256 | int i; | |
1257 | ics->max_sfb = get_bits(gb, 4); | |
1258 | for (i = 0; i < 7; i++) { | |
1259 | if (get_bits1(gb)) { | |
1260 | ics->group_len[ics->num_window_groups - 1]++; | |
1261 | } else { | |
1262 | ics->num_window_groups++; | |
1263 | ics->group_len[ics->num_window_groups - 1] = 1; | |
1264 | } | |
1265 | } | |
1266 | ics->num_windows = 8; | |
1267 | ics->swb_offset = ff_swb_offset_128[ac->oc[1].m4ac.sampling_index]; | |
1268 | ics->num_swb = ff_aac_num_swb_128[ac->oc[1].m4ac.sampling_index]; | |
1269 | ics->tns_max_bands = ff_tns_max_bands_128[ac->oc[1].m4ac.sampling_index]; | |
1270 | ics->predictor_present = 0; | |
1271 | } else { | |
1272 | ics->max_sfb = get_bits(gb, 6); | |
1273 | ics->num_windows = 1; | |
1274 | if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) { | |
1275 | ics->swb_offset = ff_swb_offset_512[ac->oc[1].m4ac.sampling_index]; | |
1276 | ics->num_swb = ff_aac_num_swb_512[ac->oc[1].m4ac.sampling_index]; | |
1277 | ics->tns_max_bands = ff_tns_max_bands_512[ac->oc[1].m4ac.sampling_index]; | |
1278 | if (!ics->num_swb || !ics->swb_offset) | |
1279 | return AVERROR_BUG; | |
1280 | } else { | |
1281 | ics->swb_offset = ff_swb_offset_1024[ac->oc[1].m4ac.sampling_index]; | |
1282 | ics->num_swb = ff_aac_num_swb_1024[ac->oc[1].m4ac.sampling_index]; | |
1283 | ics->tns_max_bands = ff_tns_max_bands_1024[ac->oc[1].m4ac.sampling_index]; | |
1284 | } | |
1285 | if (aot != AOT_ER_AAC_ELD) { | |
1286 | ics->predictor_present = get_bits1(gb); | |
1287 | ics->predictor_reset_group = 0; | |
1288 | } | |
1289 | if (ics->predictor_present) { | |
1290 | if (aot == AOT_AAC_MAIN) { | |
1291 | if (decode_prediction(ac, ics, gb)) { | |
1292 | goto fail; | |
1293 | } | |
1294 | } else if (aot == AOT_AAC_LC || | |
1295 | aot == AOT_ER_AAC_LC) { | |
1296 | av_log(ac->avctx, AV_LOG_ERROR, | |
1297 | "Prediction is not allowed in AAC-LC.\n"); | |
1298 | goto fail; | |
1299 | } else { | |
1300 | if (aot == AOT_ER_AAC_LD) { | |
1301 | av_log(ac->avctx, AV_LOG_ERROR, | |
1302 | "LTP in ER AAC LD not yet implemented.\n"); | |
1303 | return AVERROR_PATCHWELCOME; | |
1304 | } | |
1305 | if ((ics->ltp.present = get_bits(gb, 1))) | |
1306 | decode_ltp(&ics->ltp, gb, ics->max_sfb); | |
1307 | } | |
1308 | } | |
1309 | } | |
1310 | ||
1311 | if (ics->max_sfb > ics->num_swb) { | |
1312 | av_log(ac->avctx, AV_LOG_ERROR, | |
1313 | "Number of scalefactor bands in group (%d) " | |
1314 | "exceeds limit (%d).\n", | |
1315 | ics->max_sfb, ics->num_swb); | |
1316 | goto fail; | |
1317 | } | |
1318 | ||
1319 | return 0; | |
1320 | fail: | |
1321 | ics->max_sfb = 0; | |
1322 | return AVERROR_INVALIDDATA; | |
1323 | } | |
1324 | ||
1325 | /** | |
1326 | * Decode band types (section_data payload); reference: table 4.46. | |
1327 | * | |
1328 | * @param band_type array of the used band type | |
1329 | * @param band_type_run_end array of the last scalefactor band of a band type run | |
1330 | * | |
1331 | * @return Returns error status. 0 - OK, !0 - error | |
1332 | */ | |
1333 | static int decode_band_types(AACContext *ac, enum BandType band_type[120], | |
1334 | int band_type_run_end[120], GetBitContext *gb, | |
1335 | IndividualChannelStream *ics) | |
1336 | { | |
1337 | int g, idx = 0; | |
1338 | const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; | |
1339 | for (g = 0; g < ics->num_window_groups; g++) { | |
1340 | int k = 0; | |
1341 | while (k < ics->max_sfb) { | |
1342 | uint8_t sect_end = k; | |
1343 | int sect_len_incr; | |
1344 | int sect_band_type = get_bits(gb, 4); | |
1345 | if (sect_band_type == 12) { | |
1346 | av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); | |
1347 | return AVERROR_INVALIDDATA; | |
1348 | } | |
1349 | do { | |
1350 | sect_len_incr = get_bits(gb, bits); | |
1351 | sect_end += sect_len_incr; | |
1352 | if (get_bits_left(gb) < 0) { | |
1353 | av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err); | |
1354 | return AVERROR_INVALIDDATA; | |
1355 | } | |
1356 | if (sect_end > ics->max_sfb) { | |
1357 | av_log(ac->avctx, AV_LOG_ERROR, | |
1358 | "Number of bands (%d) exceeds limit (%d).\n", | |
1359 | sect_end, ics->max_sfb); | |
1360 | return AVERROR_INVALIDDATA; | |
1361 | } | |
1362 | } while (sect_len_incr == (1 << bits) - 1); | |
1363 | for (; k < sect_end; k++) { | |
1364 | band_type [idx] = sect_band_type; | |
1365 | band_type_run_end[idx++] = sect_end; | |
1366 | } | |
1367 | } | |
1368 | } | |
1369 | return 0; | |
1370 | } | |
1371 | ||
1372 | /** | |
1373 | * Decode scalefactors; reference: table 4.47. | |
1374 | * | |
1375 | * @param global_gain first scalefactor value as scalefactors are differentially coded | |
1376 | * @param band_type array of the used band type | |
1377 | * @param band_type_run_end array of the last scalefactor band of a band type run | |
1378 | * @param sf array of scalefactors or intensity stereo positions | |
1379 | * | |
1380 | * @return Returns error status. 0 - OK, !0 - error | |
1381 | */ | |
1382 | static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb, | |
1383 | unsigned int global_gain, | |
1384 | IndividualChannelStream *ics, | |
1385 | enum BandType band_type[120], | |
1386 | int band_type_run_end[120]) | |
1387 | { | |
1388 | int g, i, idx = 0; | |
1389 | int offset[3] = { global_gain, global_gain - 90, 0 }; | |
1390 | int clipped_offset; | |
1391 | int noise_flag = 1; | |
1392 | for (g = 0; g < ics->num_window_groups; g++) { | |
1393 | for (i = 0; i < ics->max_sfb;) { | |
1394 | int run_end = band_type_run_end[idx]; | |
1395 | if (band_type[idx] == ZERO_BT) { | |
1396 | for (; i < run_end; i++, idx++) | |
1397 | sf[idx] = 0.0; | |
1398 | } else if ((band_type[idx] == INTENSITY_BT) || | |
1399 | (band_type[idx] == INTENSITY_BT2)) { | |
1400 | for (; i < run_end; i++, idx++) { | |
1401 | offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; | |
1402 | clipped_offset = av_clip(offset[2], -155, 100); | |
1403 | if (offset[2] != clipped_offset) { | |
1404 | avpriv_request_sample(ac->avctx, | |
1405 | "If you heard an audible artifact, there may be a bug in the decoder. " | |
1406 | "Clipped intensity stereo position (%d -> %d)", | |
1407 | offset[2], clipped_offset); | |
1408 | } | |
1409 | sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO]; | |
1410 | } | |
1411 | } else if (band_type[idx] == NOISE_BT) { | |
1412 | for (; i < run_end; i++, idx++) { | |
1413 | if (noise_flag-- > 0) | |
1414 | offset[1] += get_bits(gb, 9) - 256; | |
1415 | else | |
1416 | offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; | |
1417 | clipped_offset = av_clip(offset[1], -100, 155); | |
1418 | if (offset[1] != clipped_offset) { | |
1419 | avpriv_request_sample(ac->avctx, | |
1420 | "If you heard an audible artifact, there may be a bug in the decoder. " | |
1421 | "Clipped noise gain (%d -> %d)", | |
1422 | offset[1], clipped_offset); | |
1423 | } | |
1424 | sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO]; | |
1425 | } | |
1426 | } else { | |
1427 | for (; i < run_end; i++, idx++) { | |
1428 | offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; | |
1429 | if (offset[0] > 255U) { | |
1430 | av_log(ac->avctx, AV_LOG_ERROR, | |
1431 | "Scalefactor (%d) out of range.\n", offset[0]); | |
1432 | return AVERROR_INVALIDDATA; | |
1433 | } | |
1434 | sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO]; | |
1435 | } | |
1436 | } | |
1437 | } | |
1438 | } | |
1439 | return 0; | |
1440 | } | |
1441 | ||
1442 | /** | |
1443 | * Decode pulse data; reference: table 4.7. | |
1444 | */ | |
1445 | static int decode_pulses(Pulse *pulse, GetBitContext *gb, | |
1446 | const uint16_t *swb_offset, int num_swb) | |
1447 | { | |
1448 | int i, pulse_swb; | |
1449 | pulse->num_pulse = get_bits(gb, 2) + 1; | |
1450 | pulse_swb = get_bits(gb, 6); | |
1451 | if (pulse_swb >= num_swb) | |
1452 | return -1; | |
1453 | pulse->pos[0] = swb_offset[pulse_swb]; | |
1454 | pulse->pos[0] += get_bits(gb, 5); | |
1455 | if (pulse->pos[0] >= swb_offset[num_swb]) | |
1456 | return -1; | |
1457 | pulse->amp[0] = get_bits(gb, 4); | |
1458 | for (i = 1; i < pulse->num_pulse; i++) { | |
1459 | pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; | |
1460 | if (pulse->pos[i] >= swb_offset[num_swb]) | |
1461 | return -1; | |
1462 | pulse->amp[i] = get_bits(gb, 4); | |
1463 | } | |
1464 | return 0; | |
1465 | } | |
1466 | ||
1467 | /** | |
1468 | * Decode Temporal Noise Shaping data; reference: table 4.48. | |
1469 | * | |
1470 | * @return Returns error status. 0 - OK, !0 - error | |
1471 | */ | |
1472 | static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, | |
1473 | GetBitContext *gb, const IndividualChannelStream *ics) | |
1474 | { | |
1475 | int w, filt, i, coef_len, coef_res, coef_compress; | |
1476 | const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; | |
1477 | const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; | |
1478 | for (w = 0; w < ics->num_windows; w++) { | |
1479 | if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { | |
1480 | coef_res = get_bits1(gb); | |
1481 | ||
1482 | for (filt = 0; filt < tns->n_filt[w]; filt++) { | |
1483 | int tmp2_idx; | |
1484 | tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); | |
1485 | ||
1486 | if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) { | |
1487 | av_log(ac->avctx, AV_LOG_ERROR, | |
1488 | "TNS filter order %d is greater than maximum %d.\n", | |
1489 | tns->order[w][filt], tns_max_order); | |
1490 | tns->order[w][filt] = 0; | |
1491 | return AVERROR_INVALIDDATA; | |
1492 | } | |
1493 | if (tns->order[w][filt]) { | |
1494 | tns->direction[w][filt] = get_bits1(gb); | |
1495 | coef_compress = get_bits1(gb); | |
1496 | coef_len = coef_res + 3 - coef_compress; | |
1497 | tmp2_idx = 2 * coef_compress + coef_res; | |
1498 | ||
1499 | for (i = 0; i < tns->order[w][filt]; i++) | |
1500 | tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; | |
1501 | } | |
1502 | } | |
1503 | } | |
1504 | } | |
1505 | return 0; | |
1506 | } | |
1507 | ||
1508 | /** | |
1509 | * Decode Mid/Side data; reference: table 4.54. | |
1510 | * | |
1511 | * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; | |
1512 | * [1] mask is decoded from bitstream; [2] mask is all 1s; | |
1513 | * [3] reserved for scalable AAC | |
1514 | */ | |
1515 | static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, | |
1516 | int ms_present) | |
1517 | { | |
1518 | int idx; | |
f6fa7814 | 1519 | int max_idx = cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; |
2ba45a60 | 1520 | if (ms_present == 1) { |
f6fa7814 | 1521 | for (idx = 0; idx < max_idx; idx++) |
2ba45a60 DM |
1522 | cpe->ms_mask[idx] = get_bits1(gb); |
1523 | } else if (ms_present == 2) { | |
f6fa7814 | 1524 | memset(cpe->ms_mask, 1, max_idx * sizeof(cpe->ms_mask[0])); |
2ba45a60 DM |
1525 | } |
1526 | } | |
1527 | ||
1528 | #ifndef VMUL2 | |
1529 | static inline float *VMUL2(float *dst, const float *v, unsigned idx, | |
1530 | const float *scale) | |
1531 | { | |
1532 | float s = *scale; | |
1533 | *dst++ = v[idx & 15] * s; | |
1534 | *dst++ = v[idx>>4 & 15] * s; | |
1535 | return dst; | |
1536 | } | |
1537 | #endif | |
1538 | ||
1539 | #ifndef VMUL4 | |
1540 | static inline float *VMUL4(float *dst, const float *v, unsigned idx, | |
1541 | const float *scale) | |
1542 | { | |
1543 | float s = *scale; | |
1544 | *dst++ = v[idx & 3] * s; | |
1545 | *dst++ = v[idx>>2 & 3] * s; | |
1546 | *dst++ = v[idx>>4 & 3] * s; | |
1547 | *dst++ = v[idx>>6 & 3] * s; | |
1548 | return dst; | |
1549 | } | |
1550 | #endif | |
1551 | ||
1552 | #ifndef VMUL2S | |
1553 | static inline float *VMUL2S(float *dst, const float *v, unsigned idx, | |
1554 | unsigned sign, const float *scale) | |
1555 | { | |
1556 | union av_intfloat32 s0, s1; | |
1557 | ||
1558 | s0.f = s1.f = *scale; | |
1559 | s0.i ^= sign >> 1 << 31; | |
1560 | s1.i ^= sign << 31; | |
1561 | ||
1562 | *dst++ = v[idx & 15] * s0.f; | |
1563 | *dst++ = v[idx>>4 & 15] * s1.f; | |
1564 | ||
1565 | return dst; | |
1566 | } | |
1567 | #endif | |
1568 | ||
1569 | #ifndef VMUL4S | |
1570 | static inline float *VMUL4S(float *dst, const float *v, unsigned idx, | |
1571 | unsigned sign, const float *scale) | |
1572 | { | |
1573 | unsigned nz = idx >> 12; | |
1574 | union av_intfloat32 s = { .f = *scale }; | |
1575 | union av_intfloat32 t; | |
1576 | ||
1577 | t.i = s.i ^ (sign & 1U<<31); | |
1578 | *dst++ = v[idx & 3] * t.f; | |
1579 | ||
1580 | sign <<= nz & 1; nz >>= 1; | |
1581 | t.i = s.i ^ (sign & 1U<<31); | |
1582 | *dst++ = v[idx>>2 & 3] * t.f; | |
1583 | ||
1584 | sign <<= nz & 1; nz >>= 1; | |
1585 | t.i = s.i ^ (sign & 1U<<31); | |
1586 | *dst++ = v[idx>>4 & 3] * t.f; | |
1587 | ||
1588 | sign <<= nz & 1; | |
1589 | t.i = s.i ^ (sign & 1U<<31); | |
1590 | *dst++ = v[idx>>6 & 3] * t.f; | |
1591 | ||
1592 | return dst; | |
1593 | } | |
1594 | #endif | |
1595 | ||
1596 | /** | |
1597 | * Decode spectral data; reference: table 4.50. | |
1598 | * Dequantize and scale spectral data; reference: 4.6.3.3. | |
1599 | * | |
1600 | * @param coef array of dequantized, scaled spectral data | |
1601 | * @param sf array of scalefactors or intensity stereo positions | |
1602 | * @param pulse_present set if pulses are present | |
1603 | * @param pulse pointer to pulse data struct | |
1604 | * @param band_type array of the used band type | |
1605 | * | |
1606 | * @return Returns error status. 0 - OK, !0 - error | |
1607 | */ | |
1608 | static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024], | |
1609 | GetBitContext *gb, const float sf[120], | |
1610 | int pulse_present, const Pulse *pulse, | |
1611 | const IndividualChannelStream *ics, | |
1612 | enum BandType band_type[120]) | |
1613 | { | |
1614 | int i, k, g, idx = 0; | |
1615 | const int c = 1024 / ics->num_windows; | |
1616 | const uint16_t *offsets = ics->swb_offset; | |
1617 | float *coef_base = coef; | |
1618 | ||
1619 | for (g = 0; g < ics->num_windows; g++) | |
1620 | memset(coef + g * 128 + offsets[ics->max_sfb], 0, | |
1621 | sizeof(float) * (c - offsets[ics->max_sfb])); | |
1622 | ||
1623 | for (g = 0; g < ics->num_window_groups; g++) { | |
1624 | unsigned g_len = ics->group_len[g]; | |
1625 | ||
1626 | for (i = 0; i < ics->max_sfb; i++, idx++) { | |
1627 | const unsigned cbt_m1 = band_type[idx] - 1; | |
1628 | float *cfo = coef + offsets[i]; | |
1629 | int off_len = offsets[i + 1] - offsets[i]; | |
1630 | int group; | |
1631 | ||
1632 | if (cbt_m1 >= INTENSITY_BT2 - 1) { | |
1633 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1634 | memset(cfo, 0, off_len * sizeof(float)); | |
1635 | } | |
1636 | } else if (cbt_m1 == NOISE_BT - 1) { | |
1637 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1638 | float scale; | |
1639 | float band_energy; | |
1640 | ||
1641 | for (k = 0; k < off_len; k++) { | |
1642 | ac->random_state = lcg_random(ac->random_state); | |
1643 | cfo[k] = ac->random_state; | |
1644 | } | |
1645 | ||
f6fa7814 | 1646 | band_energy = ac->fdsp->scalarproduct_float(cfo, cfo, off_len); |
2ba45a60 | 1647 | scale = sf[idx] / sqrtf(band_energy); |
f6fa7814 | 1648 | ac->fdsp->vector_fmul_scalar(cfo, cfo, scale, off_len); |
2ba45a60 DM |
1649 | } |
1650 | } else { | |
1651 | const float *vq = ff_aac_codebook_vector_vals[cbt_m1]; | |
1652 | const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1]; | |
1653 | VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table; | |
1654 | OPEN_READER(re, gb); | |
1655 | ||
1656 | switch (cbt_m1 >> 1) { | |
1657 | case 0: | |
1658 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1659 | float *cf = cfo; | |
1660 | int len = off_len; | |
1661 | ||
1662 | do { | |
1663 | int code; | |
1664 | unsigned cb_idx; | |
1665 | ||
1666 | UPDATE_CACHE(re, gb); | |
1667 | GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
1668 | cb_idx = cb_vector_idx[code]; | |
1669 | cf = VMUL4(cf, vq, cb_idx, sf + idx); | |
1670 | } while (len -= 4); | |
1671 | } | |
1672 | break; | |
1673 | ||
1674 | case 1: | |
1675 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1676 | float *cf = cfo; | |
1677 | int len = off_len; | |
1678 | ||
1679 | do { | |
1680 | int code; | |
1681 | unsigned nnz; | |
1682 | unsigned cb_idx; | |
1683 | uint32_t bits; | |
1684 | ||
1685 | UPDATE_CACHE(re, gb); | |
1686 | GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
1687 | cb_idx = cb_vector_idx[code]; | |
1688 | nnz = cb_idx >> 8 & 15; | |
1689 | bits = nnz ? GET_CACHE(re, gb) : 0; | |
1690 | LAST_SKIP_BITS(re, gb, nnz); | |
1691 | cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx); | |
1692 | } while (len -= 4); | |
1693 | } | |
1694 | break; | |
1695 | ||
1696 | case 2: | |
1697 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1698 | float *cf = cfo; | |
1699 | int len = off_len; | |
1700 | ||
1701 | do { | |
1702 | int code; | |
1703 | unsigned cb_idx; | |
1704 | ||
1705 | UPDATE_CACHE(re, gb); | |
1706 | GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
1707 | cb_idx = cb_vector_idx[code]; | |
1708 | cf = VMUL2(cf, vq, cb_idx, sf + idx); | |
1709 | } while (len -= 2); | |
1710 | } | |
1711 | break; | |
1712 | ||
1713 | case 3: | |
1714 | case 4: | |
1715 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1716 | float *cf = cfo; | |
1717 | int len = off_len; | |
1718 | ||
1719 | do { | |
1720 | int code; | |
1721 | unsigned nnz; | |
1722 | unsigned cb_idx; | |
1723 | unsigned sign; | |
1724 | ||
1725 | UPDATE_CACHE(re, gb); | |
1726 | GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
1727 | cb_idx = cb_vector_idx[code]; | |
1728 | nnz = cb_idx >> 8 & 15; | |
1729 | sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0; | |
1730 | LAST_SKIP_BITS(re, gb, nnz); | |
1731 | cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx); | |
1732 | } while (len -= 2); | |
1733 | } | |
1734 | break; | |
1735 | ||
1736 | default: | |
1737 | for (group = 0; group < g_len; group++, cfo+=128) { | |
1738 | float *cf = cfo; | |
1739 | uint32_t *icf = (uint32_t *) cf; | |
1740 | int len = off_len; | |
1741 | ||
1742 | do { | |
1743 | int code; | |
1744 | unsigned nzt, nnz; | |
1745 | unsigned cb_idx; | |
1746 | uint32_t bits; | |
1747 | int j; | |
1748 | ||
1749 | UPDATE_CACHE(re, gb); | |
1750 | GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
1751 | ||
1752 | if (!code) { | |
1753 | *icf++ = 0; | |
1754 | *icf++ = 0; | |
1755 | continue; | |
1756 | } | |
1757 | ||
1758 | cb_idx = cb_vector_idx[code]; | |
1759 | nnz = cb_idx >> 12; | |
1760 | nzt = cb_idx >> 8; | |
1761 | bits = SHOW_UBITS(re, gb, nnz) << (32-nnz); | |
1762 | LAST_SKIP_BITS(re, gb, nnz); | |
1763 | ||
1764 | for (j = 0; j < 2; j++) { | |
1765 | if (nzt & 1<<j) { | |
1766 | uint32_t b; | |
1767 | int n; | |
1768 | /* The total length of escape_sequence must be < 22 bits according | |
1769 | to the specification (i.e. max is 111111110xxxxxxxxxxxx). */ | |
1770 | UPDATE_CACHE(re, gb); | |
1771 | b = GET_CACHE(re, gb); | |
1772 | b = 31 - av_log2(~b); | |
1773 | ||
1774 | if (b > 8) { | |
1775 | av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n"); | |
1776 | return AVERROR_INVALIDDATA; | |
1777 | } | |
1778 | ||
1779 | SKIP_BITS(re, gb, b + 1); | |
1780 | b += 4; | |
1781 | n = (1 << b) + SHOW_UBITS(re, gb, b); | |
1782 | LAST_SKIP_BITS(re, gb, b); | |
1783 | *icf++ = cbrt_tab[n] | (bits & 1U<<31); | |
1784 | bits <<= 1; | |
1785 | } else { | |
1786 | unsigned v = ((const uint32_t*)vq)[cb_idx & 15]; | |
1787 | *icf++ = (bits & 1U<<31) | v; | |
1788 | bits <<= !!v; | |
1789 | } | |
1790 | cb_idx >>= 4; | |
1791 | } | |
1792 | } while (len -= 2); | |
1793 | ||
f6fa7814 | 1794 | ac->fdsp->vector_fmul_scalar(cfo, cfo, sf[idx], off_len); |
2ba45a60 DM |
1795 | } |
1796 | } | |
1797 | ||
1798 | CLOSE_READER(re, gb); | |
1799 | } | |
1800 | } | |
1801 | coef += g_len << 7; | |
1802 | } | |
1803 | ||
1804 | if (pulse_present) { | |
1805 | idx = 0; | |
1806 | for (i = 0; i < pulse->num_pulse; i++) { | |
1807 | float co = coef_base[ pulse->pos[i] ]; | |
1808 | while (offsets[idx + 1] <= pulse->pos[i]) | |
1809 | idx++; | |
1810 | if (band_type[idx] != NOISE_BT && sf[idx]) { | |
1811 | float ico = -pulse->amp[i]; | |
1812 | if (co) { | |
1813 | co /= sf[idx]; | |
1814 | ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico); | |
1815 | } | |
1816 | coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; | |
1817 | } | |
1818 | } | |
1819 | } | |
1820 | return 0; | |
1821 | } | |
1822 | ||
1823 | static av_always_inline float flt16_round(float pf) | |
1824 | { | |
1825 | union av_intfloat32 tmp; | |
1826 | tmp.f = pf; | |
1827 | tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; | |
1828 | return tmp.f; | |
1829 | } | |
1830 | ||
1831 | static av_always_inline float flt16_even(float pf) | |
1832 | { | |
1833 | union av_intfloat32 tmp; | |
1834 | tmp.f = pf; | |
1835 | tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U; | |
1836 | return tmp.f; | |
1837 | } | |
1838 | ||
1839 | static av_always_inline float flt16_trunc(float pf) | |
1840 | { | |
1841 | union av_intfloat32 pun; | |
1842 | pun.f = pf; | |
1843 | pun.i &= 0xFFFF0000U; | |
1844 | return pun.f; | |
1845 | } | |
1846 | ||
1847 | static av_always_inline void predict(PredictorState *ps, float *coef, | |
1848 | int output_enable) | |
1849 | { | |
1850 | const float a = 0.953125; // 61.0 / 64 | |
1851 | const float alpha = 0.90625; // 29.0 / 32 | |
1852 | float e0, e1; | |
1853 | float pv; | |
1854 | float k1, k2; | |
1855 | float r0 = ps->r0, r1 = ps->r1; | |
1856 | float cor0 = ps->cor0, cor1 = ps->cor1; | |
1857 | float var0 = ps->var0, var1 = ps->var1; | |
1858 | ||
1859 | k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0; | |
1860 | k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0; | |
1861 | ||
1862 | pv = flt16_round(k1 * r0 + k2 * r1); | |
1863 | if (output_enable) | |
1864 | *coef += pv; | |
1865 | ||
1866 | e0 = *coef; | |
1867 | e1 = e0 - k1 * r0; | |
1868 | ||
1869 | ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1); | |
1870 | ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1)); | |
1871 | ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0); | |
1872 | ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0)); | |
1873 | ||
1874 | ps->r1 = flt16_trunc(a * (r0 - k1 * e0)); | |
1875 | ps->r0 = flt16_trunc(a * e0); | |
1876 | } | |
1877 | ||
1878 | /** | |
1879 | * Apply AAC-Main style frequency domain prediction. | |
1880 | */ | |
1881 | static void apply_prediction(AACContext *ac, SingleChannelElement *sce) | |
1882 | { | |
1883 | int sfb, k; | |
1884 | ||
1885 | if (!sce->ics.predictor_initialized) { | |
1886 | reset_all_predictors(sce->predictor_state); | |
1887 | sce->ics.predictor_initialized = 1; | |
1888 | } | |
1889 | ||
1890 | if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { | |
1891 | for (sfb = 0; | |
1892 | sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; | |
1893 | sfb++) { | |
1894 | for (k = sce->ics.swb_offset[sfb]; | |
1895 | k < sce->ics.swb_offset[sfb + 1]; | |
1896 | k++) { | |
1897 | predict(&sce->predictor_state[k], &sce->coeffs[k], | |
1898 | sce->ics.predictor_present && | |
1899 | sce->ics.prediction_used[sfb]); | |
1900 | } | |
1901 | } | |
1902 | if (sce->ics.predictor_reset_group) | |
1903 | reset_predictor_group(sce->predictor_state, | |
1904 | sce->ics.predictor_reset_group); | |
1905 | } else | |
1906 | reset_all_predictors(sce->predictor_state); | |
1907 | } | |
1908 | ||
1909 | /** | |
1910 | * Decode an individual_channel_stream payload; reference: table 4.44. | |
1911 | * | |
1912 | * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. | |
1913 | * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) | |
1914 | * | |
1915 | * @return Returns error status. 0 - OK, !0 - error | |
1916 | */ | |
1917 | static int decode_ics(AACContext *ac, SingleChannelElement *sce, | |
1918 | GetBitContext *gb, int common_window, int scale_flag) | |
1919 | { | |
1920 | Pulse pulse; | |
1921 | TemporalNoiseShaping *tns = &sce->tns; | |
1922 | IndividualChannelStream *ics = &sce->ics; | |
1923 | float *out = sce->coeffs; | |
1924 | int global_gain, eld_syntax, er_syntax, pulse_present = 0; | |
1925 | int ret; | |
1926 | ||
1927 | eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; | |
1928 | er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC || | |
1929 | ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP || | |
1930 | ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD || | |
1931 | ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; | |
1932 | ||
1933 | /* This assignment is to silence a GCC warning about the variable being used | |
1934 | * uninitialized when in fact it always is. | |
1935 | */ | |
1936 | pulse.num_pulse = 0; | |
1937 | ||
1938 | global_gain = get_bits(gb, 8); | |
1939 | ||
1940 | if (!common_window && !scale_flag) { | |
1941 | if (decode_ics_info(ac, ics, gb) < 0) | |
1942 | return AVERROR_INVALIDDATA; | |
1943 | } | |
1944 | ||
1945 | if ((ret = decode_band_types(ac, sce->band_type, | |
1946 | sce->band_type_run_end, gb, ics)) < 0) | |
1947 | return ret; | |
1948 | if ((ret = decode_scalefactors(ac, sce->sf, gb, global_gain, ics, | |
1949 | sce->band_type, sce->band_type_run_end)) < 0) | |
1950 | return ret; | |
1951 | ||
1952 | pulse_present = 0; | |
1953 | if (!scale_flag) { | |
1954 | if (!eld_syntax && (pulse_present = get_bits1(gb))) { | |
1955 | if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
1956 | av_log(ac->avctx, AV_LOG_ERROR, | |
1957 | "Pulse tool not allowed in eight short sequence.\n"); | |
1958 | return AVERROR_INVALIDDATA; | |
1959 | } | |
1960 | if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { | |
1961 | av_log(ac->avctx, AV_LOG_ERROR, | |
1962 | "Pulse data corrupt or invalid.\n"); | |
1963 | return AVERROR_INVALIDDATA; | |
1964 | } | |
1965 | } | |
1966 | tns->present = get_bits1(gb); | |
1967 | if (tns->present && !er_syntax) | |
1968 | if (decode_tns(ac, tns, gb, ics) < 0) | |
1969 | return AVERROR_INVALIDDATA; | |
1970 | if (!eld_syntax && get_bits1(gb)) { | |
1971 | avpriv_request_sample(ac->avctx, "SSR"); | |
1972 | return AVERROR_PATCHWELCOME; | |
1973 | } | |
1974 | // I see no textual basis in the spec for this occurring after SSR gain | |
1975 | // control, but this is what both reference and real implmentations do | |
1976 | if (tns->present && er_syntax) | |
1977 | if (decode_tns(ac, tns, gb, ics) < 0) | |
1978 | return AVERROR_INVALIDDATA; | |
1979 | } | |
1980 | ||
1981 | if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, | |
1982 | &pulse, ics, sce->band_type) < 0) | |
1983 | return AVERROR_INVALIDDATA; | |
1984 | ||
1985 | if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window) | |
1986 | apply_prediction(ac, sce); | |
1987 | ||
1988 | return 0; | |
1989 | } | |
1990 | ||
1991 | /** | |
1992 | * Mid/Side stereo decoding; reference: 4.6.8.1.3. | |
1993 | */ | |
1994 | static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe) | |
1995 | { | |
1996 | const IndividualChannelStream *ics = &cpe->ch[0].ics; | |
1997 | float *ch0 = cpe->ch[0].coeffs; | |
1998 | float *ch1 = cpe->ch[1].coeffs; | |
1999 | int g, i, group, idx = 0; | |
2000 | const uint16_t *offsets = ics->swb_offset; | |
2001 | for (g = 0; g < ics->num_window_groups; g++) { | |
2002 | for (i = 0; i < ics->max_sfb; i++, idx++) { | |
2003 | if (cpe->ms_mask[idx] && | |
2004 | cpe->ch[0].band_type[idx] < NOISE_BT && | |
2005 | cpe->ch[1].band_type[idx] < NOISE_BT) { | |
2006 | for (group = 0; group < ics->group_len[g]; group++) { | |
f6fa7814 | 2007 | ac->fdsp->butterflies_float(ch0 + group * 128 + offsets[i], |
2ba45a60 DM |
2008 | ch1 + group * 128 + offsets[i], |
2009 | offsets[i+1] - offsets[i]); | |
2010 | } | |
2011 | } | |
2012 | } | |
2013 | ch0 += ics->group_len[g] * 128; | |
2014 | ch1 += ics->group_len[g] * 128; | |
2015 | } | |
2016 | } | |
2017 | ||
2018 | /** | |
2019 | * intensity stereo decoding; reference: 4.6.8.2.3 | |
2020 | * | |
2021 | * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; | |
2022 | * [1] mask is decoded from bitstream; [2] mask is all 1s; | |
2023 | * [3] reserved for scalable AAC | |
2024 | */ | |
2025 | static void apply_intensity_stereo(AACContext *ac, | |
2026 | ChannelElement *cpe, int ms_present) | |
2027 | { | |
2028 | const IndividualChannelStream *ics = &cpe->ch[1].ics; | |
2029 | SingleChannelElement *sce1 = &cpe->ch[1]; | |
2030 | float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; | |
2031 | const uint16_t *offsets = ics->swb_offset; | |
2032 | int g, group, i, idx = 0; | |
2033 | int c; | |
2034 | float scale; | |
2035 | for (g = 0; g < ics->num_window_groups; g++) { | |
2036 | for (i = 0; i < ics->max_sfb;) { | |
2037 | if (sce1->band_type[idx] == INTENSITY_BT || | |
2038 | sce1->band_type[idx] == INTENSITY_BT2) { | |
2039 | const int bt_run_end = sce1->band_type_run_end[idx]; | |
2040 | for (; i < bt_run_end; i++, idx++) { | |
2041 | c = -1 + 2 * (sce1->band_type[idx] - 14); | |
2042 | if (ms_present) | |
2043 | c *= 1 - 2 * cpe->ms_mask[idx]; | |
2044 | scale = c * sce1->sf[idx]; | |
2045 | for (group = 0; group < ics->group_len[g]; group++) | |
f6fa7814 | 2046 | ac->fdsp->vector_fmul_scalar(coef1 + group * 128 + offsets[i], |
2ba45a60 DM |
2047 | coef0 + group * 128 + offsets[i], |
2048 | scale, | |
2049 | offsets[i + 1] - offsets[i]); | |
2050 | } | |
2051 | } else { | |
2052 | int bt_run_end = sce1->band_type_run_end[idx]; | |
2053 | idx += bt_run_end - i; | |
2054 | i = bt_run_end; | |
2055 | } | |
2056 | } | |
2057 | coef0 += ics->group_len[g] * 128; | |
2058 | coef1 += ics->group_len[g] * 128; | |
2059 | } | |
2060 | } | |
2061 | ||
2062 | /** | |
2063 | * Decode a channel_pair_element; reference: table 4.4. | |
2064 | * | |
2065 | * @return Returns error status. 0 - OK, !0 - error | |
2066 | */ | |
2067 | static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe) | |
2068 | { | |
2069 | int i, ret, common_window, ms_present = 0; | |
2070 | int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; | |
2071 | ||
2072 | common_window = eld_syntax || get_bits1(gb); | |
2073 | if (common_window) { | |
2074 | if (decode_ics_info(ac, &cpe->ch[0].ics, gb)) | |
2075 | return AVERROR_INVALIDDATA; | |
2076 | i = cpe->ch[1].ics.use_kb_window[0]; | |
2077 | cpe->ch[1].ics = cpe->ch[0].ics; | |
2078 | cpe->ch[1].ics.use_kb_window[1] = i; | |
2079 | if (cpe->ch[1].ics.predictor_present && | |
2080 | (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN)) | |
2081 | if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1))) | |
2082 | decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb); | |
2083 | ms_present = get_bits(gb, 2); | |
2084 | if (ms_present == 3) { | |
2085 | av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); | |
2086 | return AVERROR_INVALIDDATA; | |
2087 | } else if (ms_present) | |
2088 | decode_mid_side_stereo(cpe, gb, ms_present); | |
2089 | } | |
2090 | if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) | |
2091 | return ret; | |
2092 | if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) | |
2093 | return ret; | |
2094 | ||
2095 | if (common_window) { | |
2096 | if (ms_present) | |
2097 | apply_mid_side_stereo(ac, cpe); | |
2098 | if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { | |
2099 | apply_prediction(ac, &cpe->ch[0]); | |
2100 | apply_prediction(ac, &cpe->ch[1]); | |
2101 | } | |
2102 | } | |
2103 | ||
2104 | apply_intensity_stereo(ac, cpe, ms_present); | |
2105 | return 0; | |
2106 | } | |
2107 | ||
2108 | static const float cce_scale[] = { | |
2109 | 1.09050773266525765921, //2^(1/8) | |
2110 | 1.18920711500272106672, //2^(1/4) | |
2111 | M_SQRT2, | |
2112 | 2, | |
2113 | }; | |
2114 | ||
2115 | /** | |
2116 | * Decode coupling_channel_element; reference: table 4.8. | |
2117 | * | |
2118 | * @return Returns error status. 0 - OK, !0 - error | |
2119 | */ | |
2120 | static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che) | |
2121 | { | |
2122 | int num_gain = 0; | |
2123 | int c, g, sfb, ret; | |
2124 | int sign; | |
2125 | float scale; | |
2126 | SingleChannelElement *sce = &che->ch[0]; | |
2127 | ChannelCoupling *coup = &che->coup; | |
2128 | ||
2129 | coup->coupling_point = 2 * get_bits1(gb); | |
2130 | coup->num_coupled = get_bits(gb, 3); | |
2131 | for (c = 0; c <= coup->num_coupled; c++) { | |
2132 | num_gain++; | |
2133 | coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; | |
2134 | coup->id_select[c] = get_bits(gb, 4); | |
2135 | if (coup->type[c] == TYPE_CPE) { | |
2136 | coup->ch_select[c] = get_bits(gb, 2); | |
2137 | if (coup->ch_select[c] == 3) | |
2138 | num_gain++; | |
2139 | } else | |
2140 | coup->ch_select[c] = 2; | |
2141 | } | |
2142 | coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1); | |
2143 | ||
2144 | sign = get_bits(gb, 1); | |
2145 | scale = cce_scale[get_bits(gb, 2)]; | |
2146 | ||
2147 | if ((ret = decode_ics(ac, sce, gb, 0, 0))) | |
2148 | return ret; | |
2149 | ||
2150 | for (c = 0; c < num_gain; c++) { | |
2151 | int idx = 0; | |
2152 | int cge = 1; | |
2153 | int gain = 0; | |
2154 | float gain_cache = 1.0; | |
2155 | if (c) { | |
2156 | cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb); | |
2157 | gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; | |
2158 | gain_cache = powf(scale, -gain); | |
2159 | } | |
2160 | if (coup->coupling_point == AFTER_IMDCT) { | |
2161 | coup->gain[c][0] = gain_cache; | |
2162 | } else { | |
2163 | for (g = 0; g < sce->ics.num_window_groups; g++) { | |
2164 | for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { | |
2165 | if (sce->band_type[idx] != ZERO_BT) { | |
2166 | if (!cge) { | |
2167 | int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; | |
2168 | if (t) { | |
2169 | int s = 1; | |
2170 | t = gain += t; | |
2171 | if (sign) { | |
2172 | s -= 2 * (t & 0x1); | |
2173 | t >>= 1; | |
2174 | } | |
2175 | gain_cache = powf(scale, -t) * s; | |
2176 | } | |
2177 | } | |
2178 | coup->gain[c][idx] = gain_cache; | |
2179 | } | |
2180 | } | |
2181 | } | |
2182 | } | |
2183 | } | |
2184 | return 0; | |
2185 | } | |
2186 | ||
2187 | /** | |
2188 | * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. | |
2189 | * | |
2190 | * @return Returns number of bytes consumed. | |
2191 | */ | |
2192 | static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, | |
2193 | GetBitContext *gb) | |
2194 | { | |
2195 | int i; | |
2196 | int num_excl_chan = 0; | |
2197 | ||
2198 | do { | |
2199 | for (i = 0; i < 7; i++) | |
2200 | che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); | |
2201 | } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); | |
2202 | ||
2203 | return num_excl_chan / 7; | |
2204 | } | |
2205 | ||
2206 | /** | |
2207 | * Decode dynamic range information; reference: table 4.52. | |
2208 | * | |
2209 | * @return Returns number of bytes consumed. | |
2210 | */ | |
2211 | static int decode_dynamic_range(DynamicRangeControl *che_drc, | |
2212 | GetBitContext *gb) | |
2213 | { | |
2214 | int n = 1; | |
2215 | int drc_num_bands = 1; | |
2216 | int i; | |
2217 | ||
2218 | /* pce_tag_present? */ | |
2219 | if (get_bits1(gb)) { | |
2220 | che_drc->pce_instance_tag = get_bits(gb, 4); | |
2221 | skip_bits(gb, 4); // tag_reserved_bits | |
2222 | n++; | |
2223 | } | |
2224 | ||
2225 | /* excluded_chns_present? */ | |
2226 | if (get_bits1(gb)) { | |
2227 | n += decode_drc_channel_exclusions(che_drc, gb); | |
2228 | } | |
2229 | ||
2230 | /* drc_bands_present? */ | |
2231 | if (get_bits1(gb)) { | |
2232 | che_drc->band_incr = get_bits(gb, 4); | |
2233 | che_drc->interpolation_scheme = get_bits(gb, 4); | |
2234 | n++; | |
2235 | drc_num_bands += che_drc->band_incr; | |
2236 | for (i = 0; i < drc_num_bands; i++) { | |
2237 | che_drc->band_top[i] = get_bits(gb, 8); | |
2238 | n++; | |
2239 | } | |
2240 | } | |
2241 | ||
2242 | /* prog_ref_level_present? */ | |
2243 | if (get_bits1(gb)) { | |
2244 | che_drc->prog_ref_level = get_bits(gb, 7); | |
2245 | skip_bits1(gb); // prog_ref_level_reserved_bits | |
2246 | n++; | |
2247 | } | |
2248 | ||
2249 | for (i = 0; i < drc_num_bands; i++) { | |
2250 | che_drc->dyn_rng_sgn[i] = get_bits1(gb); | |
2251 | che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); | |
2252 | n++; | |
2253 | } | |
2254 | ||
2255 | return n; | |
2256 | } | |
2257 | ||
2258 | static int decode_fill(AACContext *ac, GetBitContext *gb, int len) { | |
2259 | uint8_t buf[256]; | |
2260 | int i, major, minor; | |
2261 | ||
2262 | if (len < 13+7*8) | |
2263 | goto unknown; | |
2264 | ||
2265 | get_bits(gb, 13); len -= 13; | |
2266 | ||
2267 | for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8) | |
2268 | buf[i] = get_bits(gb, 8); | |
2269 | ||
2270 | buf[i] = 0; | |
2271 | if (ac->avctx->debug & FF_DEBUG_PICT_INFO) | |
2272 | av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf); | |
2273 | ||
2274 | if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){ | |
2275 | ac->avctx->internal->skip_samples = 1024; | |
2276 | } | |
2277 | ||
2278 | unknown: | |
2279 | skip_bits_long(gb, len); | |
2280 | ||
2281 | return 0; | |
2282 | } | |
2283 | ||
2284 | /** | |
2285 | * Decode extension data (incomplete); reference: table 4.51. | |
2286 | * | |
2287 | * @param cnt length of TYPE_FIL syntactic element in bytes | |
2288 | * | |
2289 | * @return Returns number of bytes consumed | |
2290 | */ | |
2291 | static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, | |
2292 | ChannelElement *che, enum RawDataBlockType elem_type) | |
2293 | { | |
2294 | int crc_flag = 0; | |
2295 | int res = cnt; | |
f6fa7814 DM |
2296 | int type = get_bits(gb, 4); |
2297 | ||
2298 | if (ac->avctx->debug & FF_DEBUG_STARTCODE) | |
2299 | av_log(ac->avctx, AV_LOG_DEBUG, "extension type: %d len:%d\n", type, cnt); | |
2300 | ||
2301 | switch (type) { // extension type | |
2ba45a60 DM |
2302 | case EXT_SBR_DATA_CRC: |
2303 | crc_flag++; | |
2304 | case EXT_SBR_DATA: | |
2305 | if (!che) { | |
2306 | av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n"); | |
2307 | return res; | |
2308 | } else if (!ac->oc[1].m4ac.sbr) { | |
2309 | av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n"); | |
2310 | skip_bits_long(gb, 8 * cnt - 4); | |
2311 | return res; | |
2312 | } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) { | |
2313 | av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n"); | |
2314 | skip_bits_long(gb, 8 * cnt - 4); | |
2315 | return res; | |
2316 | } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) { | |
2317 | ac->oc[1].m4ac.sbr = 1; | |
2318 | ac->oc[1].m4ac.ps = 1; | |
2319 | ac->avctx->profile = FF_PROFILE_AAC_HE_V2; | |
2320 | output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, | |
2321 | ac->oc[1].status, 1); | |
2322 | } else { | |
2323 | ac->oc[1].m4ac.sbr = 1; | |
2324 | ac->avctx->profile = FF_PROFILE_AAC_HE; | |
2325 | } | |
2326 | res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type); | |
2327 | break; | |
2328 | case EXT_DYNAMIC_RANGE: | |
2329 | res = decode_dynamic_range(&ac->che_drc, gb); | |
2330 | break; | |
2331 | case EXT_FILL: | |
2332 | decode_fill(ac, gb, 8 * cnt - 4); | |
2333 | break; | |
2334 | case EXT_FILL_DATA: | |
2335 | case EXT_DATA_ELEMENT: | |
2336 | default: | |
2337 | skip_bits_long(gb, 8 * cnt - 4); | |
2338 | break; | |
2339 | }; | |
2340 | return res; | |
2341 | } | |
2342 | ||
2343 | /** | |
2344 | * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3. | |
2345 | * | |
2346 | * @param decode 1 if tool is used normally, 0 if tool is used in LTP. | |
2347 | * @param coef spectral coefficients | |
2348 | */ | |
2349 | static void apply_tns(float coef[1024], TemporalNoiseShaping *tns, | |
2350 | IndividualChannelStream *ics, int decode) | |
2351 | { | |
2352 | const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); | |
2353 | int w, filt, m, i; | |
2354 | int bottom, top, order, start, end, size, inc; | |
2355 | float lpc[TNS_MAX_ORDER]; | |
2356 | float tmp[TNS_MAX_ORDER+1]; | |
2357 | ||
2358 | for (w = 0; w < ics->num_windows; w++) { | |
2359 | bottom = ics->num_swb; | |
2360 | for (filt = 0; filt < tns->n_filt[w]; filt++) { | |
2361 | top = bottom; | |
2362 | bottom = FFMAX(0, top - tns->length[w][filt]); | |
2363 | order = tns->order[w][filt]; | |
2364 | if (order == 0) | |
2365 | continue; | |
2366 | ||
2367 | // tns_decode_coef | |
2368 | compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); | |
2369 | ||
2370 | start = ics->swb_offset[FFMIN(bottom, mmm)]; | |
2371 | end = ics->swb_offset[FFMIN( top, mmm)]; | |
2372 | if ((size = end - start) <= 0) | |
2373 | continue; | |
2374 | if (tns->direction[w][filt]) { | |
2375 | inc = -1; | |
2376 | start = end - 1; | |
2377 | } else { | |
2378 | inc = 1; | |
2379 | } | |
2380 | start += w * 128; | |
2381 | ||
2382 | if (decode) { | |
2383 | // ar filter | |
2384 | for (m = 0; m < size; m++, start += inc) | |
2385 | for (i = 1; i <= FFMIN(m, order); i++) | |
2386 | coef[start] -= coef[start - i * inc] * lpc[i - 1]; | |
2387 | } else { | |
2388 | // ma filter | |
2389 | for (m = 0; m < size; m++, start += inc) { | |
2390 | tmp[0] = coef[start]; | |
2391 | for (i = 1; i <= FFMIN(m, order); i++) | |
2392 | coef[start] += tmp[i] * lpc[i - 1]; | |
2393 | for (i = order; i > 0; i--) | |
2394 | tmp[i] = tmp[i - 1]; | |
2395 | } | |
2396 | } | |
2397 | } | |
2398 | } | |
2399 | } | |
2400 | ||
2401 | /** | |
2402 | * Apply windowing and MDCT to obtain the spectral | |
2403 | * coefficient from the predicted sample by LTP. | |
2404 | */ | |
2405 | static void windowing_and_mdct_ltp(AACContext *ac, float *out, | |
2406 | float *in, IndividualChannelStream *ics) | |
2407 | { | |
2408 | const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
2409 | const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; | |
2410 | const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
2411 | const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; | |
2412 | ||
2413 | if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) { | |
f6fa7814 | 2414 | ac->fdsp->vector_fmul(in, in, lwindow_prev, 1024); |
2ba45a60 DM |
2415 | } else { |
2416 | memset(in, 0, 448 * sizeof(float)); | |
f6fa7814 | 2417 | ac->fdsp->vector_fmul(in + 448, in + 448, swindow_prev, 128); |
2ba45a60 DM |
2418 | } |
2419 | if (ics->window_sequence[0] != LONG_START_SEQUENCE) { | |
f6fa7814 | 2420 | ac->fdsp->vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024); |
2ba45a60 | 2421 | } else { |
f6fa7814 | 2422 | ac->fdsp->vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128); |
2ba45a60 DM |
2423 | memset(in + 1024 + 576, 0, 448 * sizeof(float)); |
2424 | } | |
2425 | ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in); | |
2426 | } | |
2427 | ||
2428 | /** | |
2429 | * Apply the long term prediction | |
2430 | */ | |
2431 | static void apply_ltp(AACContext *ac, SingleChannelElement *sce) | |
2432 | { | |
2433 | const LongTermPrediction *ltp = &sce->ics.ltp; | |
2434 | const uint16_t *offsets = sce->ics.swb_offset; | |
2435 | int i, sfb; | |
2436 | ||
2437 | if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { | |
2438 | float *predTime = sce->ret; | |
2439 | float *predFreq = ac->buf_mdct; | |
2440 | int16_t num_samples = 2048; | |
2441 | ||
2442 | if (ltp->lag < 1024) | |
2443 | num_samples = ltp->lag + 1024; | |
2444 | for (i = 0; i < num_samples; i++) | |
2445 | predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef; | |
2446 | memset(&predTime[i], 0, (2048 - i) * sizeof(float)); | |
2447 | ||
2448 | ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics); | |
2449 | ||
2450 | if (sce->tns.present) | |
2451 | ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0); | |
2452 | ||
2453 | for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) | |
2454 | if (ltp->used[sfb]) | |
2455 | for (i = offsets[sfb]; i < offsets[sfb + 1]; i++) | |
2456 | sce->coeffs[i] += predFreq[i]; | |
2457 | } | |
2458 | } | |
2459 | ||
2460 | /** | |
2461 | * Update the LTP buffer for next frame | |
2462 | */ | |
2463 | static void update_ltp(AACContext *ac, SingleChannelElement *sce) | |
2464 | { | |
2465 | IndividualChannelStream *ics = &sce->ics; | |
2466 | float *saved = sce->saved; | |
2467 | float *saved_ltp = sce->coeffs; | |
2468 | const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
2469 | const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; | |
2470 | int i; | |
2471 | ||
2472 | if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
2473 | memcpy(saved_ltp, saved, 512 * sizeof(float)); | |
2474 | memset(saved_ltp + 576, 0, 448 * sizeof(float)); | |
f6fa7814 | 2475 | ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); |
2ba45a60 DM |
2476 | for (i = 0; i < 64; i++) |
2477 | saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i]; | |
2478 | } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { | |
2479 | memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float)); | |
2480 | memset(saved_ltp + 576, 0, 448 * sizeof(float)); | |
f6fa7814 | 2481 | ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); |
2ba45a60 DM |
2482 | for (i = 0; i < 64; i++) |
2483 | saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i]; | |
2484 | } else { // LONG_STOP or ONLY_LONG | |
f6fa7814 | 2485 | ac->fdsp->vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512); |
2ba45a60 DM |
2486 | for (i = 0; i < 512; i++) |
2487 | saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i]; | |
2488 | } | |
2489 | ||
2490 | memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state)); | |
2491 | memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state)); | |
2492 | memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state)); | |
2493 | } | |
2494 | ||
2495 | /** | |
2496 | * Conduct IMDCT and windowing. | |
2497 | */ | |
2498 | static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce) | |
2499 | { | |
2500 | IndividualChannelStream *ics = &sce->ics; | |
2501 | float *in = sce->coeffs; | |
2502 | float *out = sce->ret; | |
2503 | float *saved = sce->saved; | |
2504 | const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; | |
2505 | const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
2506 | const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; | |
2507 | float *buf = ac->buf_mdct; | |
2508 | float *temp = ac->temp; | |
2509 | int i; | |
2510 | ||
2511 | // imdct | |
2512 | if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
2513 | for (i = 0; i < 1024; i += 128) | |
2514 | ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i); | |
2515 | } else | |
2516 | ac->mdct.imdct_half(&ac->mdct, buf, in); | |
2517 | ||
2518 | /* window overlapping | |
2519 | * NOTE: To simplify the overlapping code, all 'meaningless' short to long | |
2520 | * and long to short transitions are considered to be short to short | |
2521 | * transitions. This leaves just two cases (long to long and short to short) | |
2522 | * with a little special sauce for EIGHT_SHORT_SEQUENCE. | |
2523 | */ | |
2524 | if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && | |
2525 | (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { | |
f6fa7814 | 2526 | ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 512); |
2ba45a60 DM |
2527 | } else { |
2528 | memcpy( out, saved, 448 * sizeof(float)); | |
2529 | ||
2530 | if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
f6fa7814 DM |
2531 | ac->fdsp->vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64); |
2532 | ac->fdsp->vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64); | |
2533 | ac->fdsp->vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64); | |
2534 | ac->fdsp->vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64); | |
2535 | ac->fdsp->vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64); | |
2ba45a60 DM |
2536 | memcpy( out + 448 + 4*128, temp, 64 * sizeof(float)); |
2537 | } else { | |
f6fa7814 | 2538 | ac->fdsp->vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64); |
2ba45a60 DM |
2539 | memcpy( out + 576, buf + 64, 448 * sizeof(float)); |
2540 | } | |
2541 | } | |
2542 | ||
2543 | // buffer update | |
2544 | if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
2545 | memcpy( saved, temp + 64, 64 * sizeof(float)); | |
f6fa7814 DM |
2546 | ac->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64); |
2547 | ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64); | |
2548 | ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64); | |
2ba45a60 DM |
2549 | memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
2550 | } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { | |
2551 | memcpy( saved, buf + 512, 448 * sizeof(float)); | |
2552 | memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); | |
2553 | } else { // LONG_STOP or ONLY_LONG | |
2554 | memcpy( saved, buf + 512, 512 * sizeof(float)); | |
2555 | } | |
2556 | } | |
2557 | ||
2558 | static void imdct_and_windowing_ld(AACContext *ac, SingleChannelElement *sce) | |
2559 | { | |
2560 | IndividualChannelStream *ics = &sce->ics; | |
2561 | float *in = sce->coeffs; | |
2562 | float *out = sce->ret; | |
2563 | float *saved = sce->saved; | |
2564 | float *buf = ac->buf_mdct; | |
2565 | ||
2566 | // imdct | |
2567 | ac->mdct.imdct_half(&ac->mdct_ld, buf, in); | |
2568 | ||
2569 | // window overlapping | |
2570 | if (ics->use_kb_window[1]) { | |
2571 | // AAC LD uses a low overlap sine window instead of a KBD window | |
2572 | memcpy(out, saved, 192 * sizeof(float)); | |
f6fa7814 | 2573 | ac->fdsp->vector_fmul_window(out + 192, saved + 192, buf, ff_sine_128, 64); |
2ba45a60 DM |
2574 | memcpy( out + 320, buf + 64, 192 * sizeof(float)); |
2575 | } else { | |
f6fa7814 | 2576 | ac->fdsp->vector_fmul_window(out, saved, buf, ff_sine_512, 256); |
2ba45a60 DM |
2577 | } |
2578 | ||
2579 | // buffer update | |
2580 | memcpy(saved, buf + 256, 256 * sizeof(float)); | |
2581 | } | |
2582 | ||
2583 | static void imdct_and_windowing_eld(AACContext *ac, SingleChannelElement *sce) | |
2584 | { | |
2585 | float *in = sce->coeffs; | |
2586 | float *out = sce->ret; | |
2587 | float *saved = sce->saved; | |
2588 | const float *const window = ff_aac_eld_window; | |
2589 | float *buf = ac->buf_mdct; | |
2590 | int i; | |
2591 | const int n = 512; | |
2592 | const int n2 = n >> 1; | |
2593 | const int n4 = n >> 2; | |
2594 | ||
2595 | // Inverse transform, mapped to the conventional IMDCT by | |
2596 | // Chivukula, R.K.; Reznik, Y.A.; Devarajan, V., | |
2597 | // "Efficient algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC filterbanks," | |
2598 | // International Conference on Audio, Language and Image Processing, ICALIP 2008. | |
2599 | // URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4590245&isnumber=4589950 | |
2600 | for (i = 0; i < n2; i+=2) { | |
2601 | float temp; | |
2602 | temp = in[i ]; in[i ] = -in[n - 1 - i]; in[n - 1 - i] = temp; | |
2603 | temp = -in[i + 1]; in[i + 1] = in[n - 2 - i]; in[n - 2 - i] = temp; | |
2604 | } | |
2605 | ac->mdct.imdct_half(&ac->mdct_ld, buf, in); | |
2606 | for (i = 0; i < n; i+=2) { | |
2607 | buf[i] = -buf[i]; | |
2608 | } | |
2609 | // Like with the regular IMDCT at this point we still have the middle half | |
2610 | // of a transform but with even symmetry on the left and odd symmetry on | |
2611 | // the right | |
2612 | ||
2613 | // window overlapping | |
2614 | // The spec says to use samples [0..511] but the reference decoder uses | |
2615 | // samples [128..639]. | |
2616 | for (i = n4; i < n2; i ++) { | |
2617 | out[i - n4] = buf[n2 - 1 - i] * window[i - n4] + | |
2618 | saved[ i + n2] * window[i + n - n4] + | |
2619 | -saved[ n + n2 - 1 - i] * window[i + 2*n - n4] + | |
2620 | -saved[2*n + n2 + i] * window[i + 3*n - n4]; | |
2621 | } | |
2622 | for (i = 0; i < n2; i ++) { | |
2623 | out[n4 + i] = buf[i] * window[i + n2 - n4] + | |
2624 | -saved[ n - 1 - i] * window[i + n2 + n - n4] + | |
2625 | -saved[ n + i] * window[i + n2 + 2*n - n4] + | |
2626 | saved[2*n + n - 1 - i] * window[i + n2 + 3*n - n4]; | |
2627 | } | |
2628 | for (i = 0; i < n4; i ++) { | |
2629 | out[n2 + n4 + i] = buf[ i + n2] * window[i + n - n4] + | |
2630 | -saved[ n2 - 1 - i] * window[i + 2*n - n4] + | |
2631 | -saved[ n + n2 + i] * window[i + 3*n - n4]; | |
2632 | } | |
2633 | ||
2634 | // buffer update | |
2635 | memmove(saved + n, saved, 2 * n * sizeof(float)); | |
2636 | memcpy( saved, buf, n * sizeof(float)); | |
2637 | } | |
2638 | ||
2639 | /** | |
2640 | * Apply dependent channel coupling (applied before IMDCT). | |
2641 | * | |
2642 | * @param index index into coupling gain array | |
2643 | */ | |
2644 | static void apply_dependent_coupling(AACContext *ac, | |
2645 | SingleChannelElement *target, | |
2646 | ChannelElement *cce, int index) | |
2647 | { | |
2648 | IndividualChannelStream *ics = &cce->ch[0].ics; | |
2649 | const uint16_t *offsets = ics->swb_offset; | |
2650 | float *dest = target->coeffs; | |
2651 | const float *src = cce->ch[0].coeffs; | |
2652 | int g, i, group, k, idx = 0; | |
2653 | if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { | |
2654 | av_log(ac->avctx, AV_LOG_ERROR, | |
2655 | "Dependent coupling is not supported together with LTP\n"); | |
2656 | return; | |
2657 | } | |
2658 | for (g = 0; g < ics->num_window_groups; g++) { | |
2659 | for (i = 0; i < ics->max_sfb; i++, idx++) { | |
2660 | if (cce->ch[0].band_type[idx] != ZERO_BT) { | |
2661 | const float gain = cce->coup.gain[index][idx]; | |
2662 | for (group = 0; group < ics->group_len[g]; group++) { | |
2663 | for (k = offsets[i]; k < offsets[i + 1]; k++) { | |
2664 | // FIXME: SIMDify | |
2665 | dest[group * 128 + k] += gain * src[group * 128 + k]; | |
2666 | } | |
2667 | } | |
2668 | } | |
2669 | } | |
2670 | dest += ics->group_len[g] * 128; | |
2671 | src += ics->group_len[g] * 128; | |
2672 | } | |
2673 | } | |
2674 | ||
2675 | /** | |
2676 | * Apply independent channel coupling (applied after IMDCT). | |
2677 | * | |
2678 | * @param index index into coupling gain array | |
2679 | */ | |
2680 | static void apply_independent_coupling(AACContext *ac, | |
2681 | SingleChannelElement *target, | |
2682 | ChannelElement *cce, int index) | |
2683 | { | |
2684 | int i; | |
2685 | const float gain = cce->coup.gain[index][0]; | |
2686 | const float *src = cce->ch[0].ret; | |
2687 | float *dest = target->ret; | |
2688 | const int len = 1024 << (ac->oc[1].m4ac.sbr == 1); | |
2689 | ||
2690 | for (i = 0; i < len; i++) | |
2691 | dest[i] += gain * src[i]; | |
2692 | } | |
2693 | ||
2694 | /** | |
2695 | * channel coupling transformation interface | |
2696 | * | |
2697 | * @param apply_coupling_method pointer to (in)dependent coupling function | |
2698 | */ | |
2699 | static void apply_channel_coupling(AACContext *ac, ChannelElement *cc, | |
2700 | enum RawDataBlockType type, int elem_id, | |
2701 | enum CouplingPoint coupling_point, | |
2702 | void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)) | |
2703 | { | |
2704 | int i, c; | |
2705 | ||
2706 | for (i = 0; i < MAX_ELEM_ID; i++) { | |
2707 | ChannelElement *cce = ac->che[TYPE_CCE][i]; | |
2708 | int index = 0; | |
2709 | ||
2710 | if (cce && cce->coup.coupling_point == coupling_point) { | |
2711 | ChannelCoupling *coup = &cce->coup; | |
2712 | ||
2713 | for (c = 0; c <= coup->num_coupled; c++) { | |
2714 | if (coup->type[c] == type && coup->id_select[c] == elem_id) { | |
2715 | if (coup->ch_select[c] != 1) { | |
2716 | apply_coupling_method(ac, &cc->ch[0], cce, index); | |
2717 | if (coup->ch_select[c] != 0) | |
2718 | index++; | |
2719 | } | |
2720 | if (coup->ch_select[c] != 2) | |
2721 | apply_coupling_method(ac, &cc->ch[1], cce, index++); | |
2722 | } else | |
2723 | index += 1 + (coup->ch_select[c] == 3); | |
2724 | } | |
2725 | } | |
2726 | } | |
2727 | } | |
2728 | ||
2729 | /** | |
2730 | * Convert spectral data to float samples, applying all supported tools as appropriate. | |
2731 | */ | |
2732 | static void spectral_to_sample(AACContext *ac) | |
2733 | { | |
2734 | int i, type; | |
2735 | void (*imdct_and_window)(AACContext *ac, SingleChannelElement *sce); | |
2736 | switch (ac->oc[1].m4ac.object_type) { | |
2737 | case AOT_ER_AAC_LD: | |
2738 | imdct_and_window = imdct_and_windowing_ld; | |
2739 | break; | |
2740 | case AOT_ER_AAC_ELD: | |
2741 | imdct_and_window = imdct_and_windowing_eld; | |
2742 | break; | |
2743 | default: | |
2744 | imdct_and_window = ac->imdct_and_windowing; | |
2745 | } | |
2746 | for (type = 3; type >= 0; type--) { | |
2747 | for (i = 0; i < MAX_ELEM_ID; i++) { | |
2748 | ChannelElement *che = ac->che[type][i]; | |
f6fa7814 | 2749 | if (che && che->present) { |
2ba45a60 DM |
2750 | if (type <= TYPE_CPE) |
2751 | apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling); | |
2752 | if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { | |
2753 | if (che->ch[0].ics.predictor_present) { | |
2754 | if (che->ch[0].ics.ltp.present) | |
2755 | ac->apply_ltp(ac, &che->ch[0]); | |
2756 | if (che->ch[1].ics.ltp.present && type == TYPE_CPE) | |
2757 | ac->apply_ltp(ac, &che->ch[1]); | |
2758 | } | |
2759 | } | |
2760 | if (che->ch[0].tns.present) | |
2761 | ac->apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); | |
2762 | if (che->ch[1].tns.present) | |
2763 | ac->apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); | |
2764 | if (type <= TYPE_CPE) | |
2765 | apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling); | |
2766 | if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) { | |
2767 | imdct_and_window(ac, &che->ch[0]); | |
2768 | if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) | |
2769 | ac->update_ltp(ac, &che->ch[0]); | |
2770 | if (type == TYPE_CPE) { | |
2771 | imdct_and_window(ac, &che->ch[1]); | |
2772 | if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) | |
2773 | ac->update_ltp(ac, &che->ch[1]); | |
2774 | } | |
2775 | if (ac->oc[1].m4ac.sbr > 0) { | |
2776 | ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret); | |
2777 | } | |
2778 | } | |
2779 | if (type <= TYPE_CCE) | |
2780 | apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling); | |
f6fa7814 DM |
2781 | che->present = 0; |
2782 | } else if (che) { | |
2783 | av_log(ac->avctx, AV_LOG_VERBOSE, "ChannelElement %d.%d missing \n", type, i); | |
2ba45a60 DM |
2784 | } |
2785 | } | |
2786 | } | |
2787 | } | |
2788 | ||
2789 | static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb) | |
2790 | { | |
2791 | int size; | |
2792 | AACADTSHeaderInfo hdr_info; | |
2793 | uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
2794 | int layout_map_tags, ret; | |
2795 | ||
2796 | size = avpriv_aac_parse_header(gb, &hdr_info); | |
2797 | if (size > 0) { | |
2798 | if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) { | |
2799 | // This is 2 for "VLB " audio in NSV files. | |
2800 | // See samples/nsv/vlb_audio. | |
2801 | avpriv_report_missing_feature(ac->avctx, | |
2802 | "More than one AAC RDB per ADTS frame"); | |
2803 | ac->warned_num_aac_frames = 1; | |
2804 | } | |
2805 | push_output_configuration(ac); | |
2806 | if (hdr_info.chan_config) { | |
2807 | ac->oc[1].m4ac.chan_config = hdr_info.chan_config; | |
2808 | if ((ret = set_default_channel_config(ac->avctx, | |
2809 | layout_map, | |
2810 | &layout_map_tags, | |
2811 | hdr_info.chan_config)) < 0) | |
2812 | return ret; | |
2813 | if ((ret = output_configure(ac, layout_map, layout_map_tags, | |
2814 | FFMAX(ac->oc[1].status, | |
2815 | OC_TRIAL_FRAME), 0)) < 0) | |
2816 | return ret; | |
2817 | } else { | |
2818 | ac->oc[1].m4ac.chan_config = 0; | |
2819 | /** | |
2820 | * dual mono frames in Japanese DTV can have chan_config 0 | |
2821 | * WITHOUT specifying PCE. | |
2822 | * thus, set dual mono as default. | |
2823 | */ | |
2824 | if (ac->dmono_mode && ac->oc[0].status == OC_NONE) { | |
2825 | layout_map_tags = 2; | |
2826 | layout_map[0][0] = layout_map[1][0] = TYPE_SCE; | |
2827 | layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; | |
2828 | layout_map[0][1] = 0; | |
2829 | layout_map[1][1] = 1; | |
2830 | if (output_configure(ac, layout_map, layout_map_tags, | |
2831 | OC_TRIAL_FRAME, 0)) | |
2832 | return -7; | |
2833 | } | |
2834 | } | |
2835 | ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate; | |
2836 | ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index; | |
2837 | ac->oc[1].m4ac.object_type = hdr_info.object_type; | |
2838 | if (ac->oc[0].status != OC_LOCKED || | |
2839 | ac->oc[0].m4ac.chan_config != hdr_info.chan_config || | |
2840 | ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) { | |
2841 | ac->oc[1].m4ac.sbr = -1; | |
2842 | ac->oc[1].m4ac.ps = -1; | |
2843 | } | |
2844 | if (!hdr_info.crc_absent) | |
2845 | skip_bits(gb, 16); | |
2846 | } | |
2847 | return size; | |
2848 | } | |
2849 | ||
2850 | static int aac_decode_er_frame(AVCodecContext *avctx, void *data, | |
2851 | int *got_frame_ptr, GetBitContext *gb) | |
2852 | { | |
2853 | AACContext *ac = avctx->priv_data; | |
2854 | ChannelElement *che; | |
2855 | int err, i; | |
2856 | int samples = 1024; | |
2857 | int chan_config = ac->oc[1].m4ac.chan_config; | |
2858 | int aot = ac->oc[1].m4ac.object_type; | |
2859 | ||
2860 | if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) | |
2861 | samples >>= 1; | |
2862 | ||
2863 | ac->frame = data; | |
2864 | ||
2865 | if ((err = frame_configure_elements(avctx)) < 0) | |
2866 | return err; | |
2867 | ||
2868 | // The FF_PROFILE_AAC_* defines are all object_type - 1 | |
2869 | // This may lead to an undefined profile being signaled | |
2870 | ac->avctx->profile = ac->oc[1].m4ac.object_type - 1; | |
2871 | ||
2872 | ac->tags_mapped = 0; | |
2873 | ||
2874 | if (chan_config < 0 || chan_config >= 8) { | |
2875 | avpriv_request_sample(avctx, "Unknown ER channel configuration %d", | |
2876 | ac->oc[1].m4ac.chan_config); | |
2877 | return AVERROR_INVALIDDATA; | |
2878 | } | |
2879 | for (i = 0; i < tags_per_config[chan_config]; i++) { | |
2880 | const int elem_type = aac_channel_layout_map[chan_config-1][i][0]; | |
2881 | const int elem_id = aac_channel_layout_map[chan_config-1][i][1]; | |
2882 | if (!(che=get_che(ac, elem_type, elem_id))) { | |
2883 | av_log(ac->avctx, AV_LOG_ERROR, | |
2884 | "channel element %d.%d is not allocated\n", | |
2885 | elem_type, elem_id); | |
2886 | return AVERROR_INVALIDDATA; | |
2887 | } | |
f6fa7814 | 2888 | che->present = 1; |
2ba45a60 DM |
2889 | if (aot != AOT_ER_AAC_ELD) |
2890 | skip_bits(gb, 4); | |
2891 | switch (elem_type) { | |
2892 | case TYPE_SCE: | |
2893 | err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
2894 | break; | |
2895 | case TYPE_CPE: | |
2896 | err = decode_cpe(ac, gb, che); | |
2897 | break; | |
2898 | case TYPE_LFE: | |
2899 | err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
2900 | break; | |
2901 | } | |
2902 | if (err < 0) | |
2903 | return err; | |
2904 | } | |
2905 | ||
2906 | spectral_to_sample(ac); | |
2907 | ||
2908 | ac->frame->nb_samples = samples; | |
2909 | ac->frame->sample_rate = avctx->sample_rate; | |
2910 | *got_frame_ptr = 1; | |
2911 | ||
2912 | skip_bits_long(gb, get_bits_left(gb)); | |
2913 | return 0; | |
2914 | } | |
2915 | ||
2916 | static int aac_decode_frame_int(AVCodecContext *avctx, void *data, | |
2917 | int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt) | |
2918 | { | |
2919 | AACContext *ac = avctx->priv_data; | |
2920 | ChannelElement *che = NULL, *che_prev = NULL; | |
2921 | enum RawDataBlockType elem_type, elem_type_prev = TYPE_END; | |
2922 | int err, elem_id; | |
2923 | int samples = 0, multiplier, audio_found = 0, pce_found = 0; | |
2924 | int is_dmono, sce_count = 0; | |
2925 | ||
2926 | ac->frame = data; | |
2927 | ||
2928 | if (show_bits(gb, 12) == 0xfff) { | |
2929 | if ((err = parse_adts_frame_header(ac, gb)) < 0) { | |
2930 | av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); | |
2931 | goto fail; | |
2932 | } | |
2933 | if (ac->oc[1].m4ac.sampling_index > 12) { | |
2934 | av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index); | |
2935 | err = AVERROR_INVALIDDATA; | |
2936 | goto fail; | |
2937 | } | |
2938 | } | |
2939 | ||
2940 | if ((err = frame_configure_elements(avctx)) < 0) | |
2941 | goto fail; | |
2942 | ||
2943 | // The FF_PROFILE_AAC_* defines are all object_type - 1 | |
2944 | // This may lead to an undefined profile being signaled | |
2945 | ac->avctx->profile = ac->oc[1].m4ac.object_type - 1; | |
2946 | ||
2947 | ac->tags_mapped = 0; | |
2948 | // parse | |
2949 | while ((elem_type = get_bits(gb, 3)) != TYPE_END) { | |
2950 | elem_id = get_bits(gb, 4); | |
2951 | ||
f6fa7814 DM |
2952 | if (avctx->debug & FF_DEBUG_STARTCODE) |
2953 | av_log(avctx, AV_LOG_DEBUG, "Elem type:%x id:%x\n", elem_type, elem_id); | |
2954 | ||
2ba45a60 DM |
2955 | if (elem_type < TYPE_DSE) { |
2956 | if (!(che=get_che(ac, elem_type, elem_id))) { | |
2957 | av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", | |
2958 | elem_type, elem_id); | |
2959 | err = AVERROR_INVALIDDATA; | |
2960 | goto fail; | |
2961 | } | |
2962 | samples = 1024; | |
f6fa7814 | 2963 | che->present = 1; |
2ba45a60 DM |
2964 | } |
2965 | ||
2966 | switch (elem_type) { | |
2967 | ||
2968 | case TYPE_SCE: | |
2969 | err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
2970 | audio_found = 1; | |
2971 | sce_count++; | |
2972 | break; | |
2973 | ||
2974 | case TYPE_CPE: | |
2975 | err = decode_cpe(ac, gb, che); | |
2976 | audio_found = 1; | |
2977 | break; | |
2978 | ||
2979 | case TYPE_CCE: | |
2980 | err = decode_cce(ac, gb, che); | |
2981 | break; | |
2982 | ||
2983 | case TYPE_LFE: | |
2984 | err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
2985 | audio_found = 1; | |
2986 | break; | |
2987 | ||
2988 | case TYPE_DSE: | |
2989 | err = skip_data_stream_element(ac, gb); | |
2990 | break; | |
2991 | ||
2992 | case TYPE_PCE: { | |
2993 | uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
2994 | int tags; | |
2995 | push_output_configuration(ac); | |
2996 | tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb); | |
2997 | if (tags < 0) { | |
2998 | err = tags; | |
2999 | break; | |
3000 | } | |
3001 | if (pce_found) { | |
3002 | av_log(avctx, AV_LOG_ERROR, | |
3003 | "Not evaluating a further program_config_element as this construct is dubious at best.\n"); | |
3004 | } else { | |
3005 | err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1); | |
3006 | if (!err) | |
3007 | ac->oc[1].m4ac.chan_config = 0; | |
3008 | pce_found = 1; | |
3009 | } | |
3010 | break; | |
3011 | } | |
3012 | ||
3013 | case TYPE_FIL: | |
3014 | if (elem_id == 15) | |
3015 | elem_id += get_bits(gb, 8) - 1; | |
3016 | if (get_bits_left(gb) < 8 * elem_id) { | |
3017 | av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err); | |
3018 | err = AVERROR_INVALIDDATA; | |
3019 | goto fail; | |
3020 | } | |
3021 | while (elem_id > 0) | |
3022 | elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev); | |
3023 | err = 0; /* FIXME */ | |
3024 | break; | |
3025 | ||
3026 | default: | |
3027 | err = AVERROR_BUG; /* should not happen, but keeps compiler happy */ | |
3028 | break; | |
3029 | } | |
3030 | ||
3031 | che_prev = che; | |
3032 | elem_type_prev = elem_type; | |
3033 | ||
3034 | if (err) | |
3035 | goto fail; | |
3036 | ||
3037 | if (get_bits_left(gb) < 3) { | |
3038 | av_log(avctx, AV_LOG_ERROR, overread_err); | |
3039 | err = AVERROR_INVALIDDATA; | |
3040 | goto fail; | |
3041 | } | |
3042 | } | |
3043 | ||
3044 | spectral_to_sample(ac); | |
3045 | ||
3046 | multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0; | |
3047 | samples <<= multiplier; | |
3048 | ||
3049 | if (ac->oc[1].status && audio_found) { | |
3050 | avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier; | |
3051 | avctx->frame_size = samples; | |
3052 | ac->oc[1].status = OC_LOCKED; | |
3053 | } | |
3054 | ||
3055 | if (multiplier) { | |
3056 | int side_size; | |
3057 | const uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size); | |
3058 | if (side && side_size>=4) | |
3059 | AV_WL32(side, 2*AV_RL32(side)); | |
3060 | } | |
3061 | ||
3062 | *got_frame_ptr = !!samples; | |
3063 | if (samples) { | |
3064 | ac->frame->nb_samples = samples; | |
3065 | ac->frame->sample_rate = avctx->sample_rate; | |
3066 | } else | |
3067 | av_frame_unref(ac->frame); | |
3068 | *got_frame_ptr = !!samples; | |
3069 | ||
3070 | /* for dual-mono audio (SCE + SCE) */ | |
3071 | is_dmono = ac->dmono_mode && sce_count == 2 && | |
3072 | ac->oc[1].channel_layout == (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT); | |
3073 | if (is_dmono) { | |
3074 | if (ac->dmono_mode == 1) | |
3075 | ((AVFrame *)data)->data[1] =((AVFrame *)data)->data[0]; | |
3076 | else if (ac->dmono_mode == 2) | |
3077 | ((AVFrame *)data)->data[0] =((AVFrame *)data)->data[1]; | |
3078 | } | |
3079 | ||
3080 | return 0; | |
3081 | fail: | |
3082 | pop_output_configuration(ac); | |
3083 | return err; | |
3084 | } | |
3085 | ||
3086 | static int aac_decode_frame(AVCodecContext *avctx, void *data, | |
3087 | int *got_frame_ptr, AVPacket *avpkt) | |
3088 | { | |
3089 | AACContext *ac = avctx->priv_data; | |
3090 | const uint8_t *buf = avpkt->data; | |
3091 | int buf_size = avpkt->size; | |
3092 | GetBitContext gb; | |
3093 | int buf_consumed; | |
3094 | int buf_offset; | |
3095 | int err; | |
3096 | int new_extradata_size; | |
3097 | const uint8_t *new_extradata = av_packet_get_side_data(avpkt, | |
3098 | AV_PKT_DATA_NEW_EXTRADATA, | |
3099 | &new_extradata_size); | |
3100 | int jp_dualmono_size; | |
3101 | const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt, | |
3102 | AV_PKT_DATA_JP_DUALMONO, | |
3103 | &jp_dualmono_size); | |
3104 | ||
3105 | if (new_extradata && 0) { | |
3106 | av_free(avctx->extradata); | |
3107 | avctx->extradata = av_mallocz(new_extradata_size + | |
3108 | FF_INPUT_BUFFER_PADDING_SIZE); | |
3109 | if (!avctx->extradata) | |
3110 | return AVERROR(ENOMEM); | |
3111 | avctx->extradata_size = new_extradata_size; | |
3112 | memcpy(avctx->extradata, new_extradata, new_extradata_size); | |
3113 | push_output_configuration(ac); | |
3114 | if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, | |
3115 | avctx->extradata, | |
3116 | avctx->extradata_size*8, 1) < 0) { | |
3117 | pop_output_configuration(ac); | |
3118 | return AVERROR_INVALIDDATA; | |
3119 | } | |
3120 | } | |
3121 | ||
3122 | ac->dmono_mode = 0; | |
3123 | if (jp_dualmono && jp_dualmono_size > 0) | |
3124 | ac->dmono_mode = 1 + *jp_dualmono; | |
3125 | if (ac->force_dmono_mode >= 0) | |
3126 | ac->dmono_mode = ac->force_dmono_mode; | |
3127 | ||
3128 | if (INT_MAX / 8 <= buf_size) | |
3129 | return AVERROR_INVALIDDATA; | |
3130 | ||
3131 | if ((err = init_get_bits(&gb, buf, buf_size * 8)) < 0) | |
3132 | return err; | |
3133 | ||
3134 | switch (ac->oc[1].m4ac.object_type) { | |
3135 | case AOT_ER_AAC_LC: | |
3136 | case AOT_ER_AAC_LTP: | |
3137 | case AOT_ER_AAC_LD: | |
3138 | case AOT_ER_AAC_ELD: | |
3139 | err = aac_decode_er_frame(avctx, data, got_frame_ptr, &gb); | |
3140 | break; | |
3141 | default: | |
3142 | err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb, avpkt); | |
3143 | } | |
3144 | if (err < 0) | |
3145 | return err; | |
3146 | ||
3147 | buf_consumed = (get_bits_count(&gb) + 7) >> 3; | |
3148 | for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++) | |
3149 | if (buf[buf_offset]) | |
3150 | break; | |
3151 | ||
3152 | return buf_size > buf_offset ? buf_consumed : buf_size; | |
3153 | } | |
3154 | ||
3155 | static av_cold int aac_decode_close(AVCodecContext *avctx) | |
3156 | { | |
3157 | AACContext *ac = avctx->priv_data; | |
3158 | int i, type; | |
3159 | ||
3160 | for (i = 0; i < MAX_ELEM_ID; i++) { | |
3161 | for (type = 0; type < 4; type++) { | |
3162 | if (ac->che[type][i]) | |
3163 | ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr); | |
3164 | av_freep(&ac->che[type][i]); | |
3165 | } | |
3166 | } | |
3167 | ||
3168 | ff_mdct_end(&ac->mdct); | |
3169 | ff_mdct_end(&ac->mdct_small); | |
3170 | ff_mdct_end(&ac->mdct_ld); | |
3171 | ff_mdct_end(&ac->mdct_ltp); | |
f6fa7814 | 3172 | av_freep(&ac->fdsp); |
2ba45a60 DM |
3173 | return 0; |
3174 | } | |
3175 | ||
3176 | ||
3177 | #define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word | |
3178 | ||
3179 | struct LATMContext { | |
3180 | AACContext aac_ctx; ///< containing AACContext | |
3181 | int initialized; ///< initialized after a valid extradata was seen | |
3182 | ||
3183 | // parser data | |
3184 | int audio_mux_version_A; ///< LATM syntax version | |
3185 | int frame_length_type; ///< 0/1 variable/fixed frame length | |
3186 | int frame_length; ///< frame length for fixed frame length | |
3187 | }; | |
3188 | ||
3189 | static inline uint32_t latm_get_value(GetBitContext *b) | |
3190 | { | |
3191 | int length = get_bits(b, 2); | |
3192 | ||
3193 | return get_bits_long(b, (length+1)*8); | |
3194 | } | |
3195 | ||
3196 | static int latm_decode_audio_specific_config(struct LATMContext *latmctx, | |
3197 | GetBitContext *gb, int asclen) | |
3198 | { | |
3199 | AACContext *ac = &latmctx->aac_ctx; | |
3200 | AVCodecContext *avctx = ac->avctx; | |
3201 | MPEG4AudioConfig m4ac = { 0 }; | |
3202 | int config_start_bit = get_bits_count(gb); | |
3203 | int sync_extension = 0; | |
3204 | int bits_consumed, esize; | |
3205 | ||
3206 | if (asclen) { | |
3207 | sync_extension = 1; | |
3208 | asclen = FFMIN(asclen, get_bits_left(gb)); | |
3209 | } else | |
3210 | asclen = get_bits_left(gb); | |
3211 | ||
3212 | if (config_start_bit % 8) { | |
3213 | avpriv_request_sample(latmctx->aac_ctx.avctx, | |
3214 | "Non-byte-aligned audio-specific config"); | |
3215 | return AVERROR_PATCHWELCOME; | |
3216 | } | |
3217 | if (asclen <= 0) | |
3218 | return AVERROR_INVALIDDATA; | |
3219 | bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac, | |
3220 | gb->buffer + (config_start_bit / 8), | |
3221 | asclen, sync_extension); | |
3222 | ||
3223 | if (bits_consumed < 0) | |
3224 | return AVERROR_INVALIDDATA; | |
3225 | ||
3226 | if (!latmctx->initialized || | |
3227 | ac->oc[1].m4ac.sample_rate != m4ac.sample_rate || | |
3228 | ac->oc[1].m4ac.chan_config != m4ac.chan_config) { | |
3229 | ||
3230 | if(latmctx->initialized) { | |
3231 | av_log(avctx, AV_LOG_INFO, "audio config changed\n"); | |
3232 | } else { | |
3233 | av_log(avctx, AV_LOG_DEBUG, "initializing latmctx\n"); | |
3234 | } | |
3235 | latmctx->initialized = 0; | |
3236 | ||
3237 | esize = (bits_consumed+7) / 8; | |
3238 | ||
3239 | if (avctx->extradata_size < esize) { | |
3240 | av_free(avctx->extradata); | |
3241 | avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE); | |
3242 | if (!avctx->extradata) | |
3243 | return AVERROR(ENOMEM); | |
3244 | } | |
3245 | ||
3246 | avctx->extradata_size = esize; | |
3247 | memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize); | |
3248 | memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE); | |
3249 | } | |
3250 | skip_bits_long(gb, bits_consumed); | |
3251 | ||
3252 | return bits_consumed; | |
3253 | } | |
3254 | ||
3255 | static int read_stream_mux_config(struct LATMContext *latmctx, | |
3256 | GetBitContext *gb) | |
3257 | { | |
3258 | int ret, audio_mux_version = get_bits(gb, 1); | |
3259 | ||
3260 | latmctx->audio_mux_version_A = 0; | |
3261 | if (audio_mux_version) | |
3262 | latmctx->audio_mux_version_A = get_bits(gb, 1); | |
3263 | ||
3264 | if (!latmctx->audio_mux_version_A) { | |
3265 | ||
3266 | if (audio_mux_version) | |
3267 | latm_get_value(gb); // taraFullness | |
3268 | ||
3269 | skip_bits(gb, 1); // allStreamSameTimeFraming | |
3270 | skip_bits(gb, 6); // numSubFrames | |
3271 | // numPrograms | |
3272 | if (get_bits(gb, 4)) { // numPrograms | |
3273 | avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple programs"); | |
3274 | return AVERROR_PATCHWELCOME; | |
3275 | } | |
3276 | ||
3277 | // for each program (which there is only one in DVB) | |
3278 | ||
3279 | // for each layer (which there is only one in DVB) | |
3280 | if (get_bits(gb, 3)) { // numLayer | |
3281 | avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple layers"); | |
3282 | return AVERROR_PATCHWELCOME; | |
3283 | } | |
3284 | ||
3285 | // for all but first stream: use_same_config = get_bits(gb, 1); | |
3286 | if (!audio_mux_version) { | |
3287 | if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0) | |
3288 | return ret; | |
3289 | } else { | |
3290 | int ascLen = latm_get_value(gb); | |
3291 | if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0) | |
3292 | return ret; | |
3293 | ascLen -= ret; | |
3294 | skip_bits_long(gb, ascLen); | |
3295 | } | |
3296 | ||
3297 | latmctx->frame_length_type = get_bits(gb, 3); | |
3298 | switch (latmctx->frame_length_type) { | |
3299 | case 0: | |
3300 | skip_bits(gb, 8); // latmBufferFullness | |
3301 | break; | |
3302 | case 1: | |
3303 | latmctx->frame_length = get_bits(gb, 9); | |
3304 | break; | |
3305 | case 3: | |
3306 | case 4: | |
3307 | case 5: | |
3308 | skip_bits(gb, 6); // CELP frame length table index | |
3309 | break; | |
3310 | case 6: | |
3311 | case 7: | |
3312 | skip_bits(gb, 1); // HVXC frame length table index | |
3313 | break; | |
3314 | } | |
3315 | ||
3316 | if (get_bits(gb, 1)) { // other data | |
3317 | if (audio_mux_version) { | |
3318 | latm_get_value(gb); // other_data_bits | |
3319 | } else { | |
3320 | int esc; | |
3321 | do { | |
3322 | esc = get_bits(gb, 1); | |
3323 | skip_bits(gb, 8); | |
3324 | } while (esc); | |
3325 | } | |
3326 | } | |
3327 | ||
3328 | if (get_bits(gb, 1)) // crc present | |
3329 | skip_bits(gb, 8); // config_crc | |
3330 | } | |
3331 | ||
3332 | return 0; | |
3333 | } | |
3334 | ||
3335 | static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb) | |
3336 | { | |
3337 | uint8_t tmp; | |
3338 | ||
3339 | if (ctx->frame_length_type == 0) { | |
3340 | int mux_slot_length = 0; | |
3341 | do { | |
3342 | tmp = get_bits(gb, 8); | |
3343 | mux_slot_length += tmp; | |
3344 | } while (tmp == 255); | |
3345 | return mux_slot_length; | |
3346 | } else if (ctx->frame_length_type == 1) { | |
3347 | return ctx->frame_length; | |
3348 | } else if (ctx->frame_length_type == 3 || | |
3349 | ctx->frame_length_type == 5 || | |
3350 | ctx->frame_length_type == 7) { | |
3351 | skip_bits(gb, 2); // mux_slot_length_coded | |
3352 | } | |
3353 | return 0; | |
3354 | } | |
3355 | ||
3356 | static int read_audio_mux_element(struct LATMContext *latmctx, | |
3357 | GetBitContext *gb) | |
3358 | { | |
3359 | int err; | |
3360 | uint8_t use_same_mux = get_bits(gb, 1); | |
3361 | if (!use_same_mux) { | |
3362 | if ((err = read_stream_mux_config(latmctx, gb)) < 0) | |
3363 | return err; | |
3364 | } else if (!latmctx->aac_ctx.avctx->extradata) { | |
3365 | av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG, | |
3366 | "no decoder config found\n"); | |
3367 | return AVERROR(EAGAIN); | |
3368 | } | |
3369 | if (latmctx->audio_mux_version_A == 0) { | |
3370 | int mux_slot_length_bytes = read_payload_length_info(latmctx, gb); | |
3371 | if (mux_slot_length_bytes * 8 > get_bits_left(gb)) { | |
3372 | av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n"); | |
3373 | return AVERROR_INVALIDDATA; | |
3374 | } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) { | |
3375 | av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, | |
3376 | "frame length mismatch %d << %d\n", | |
3377 | mux_slot_length_bytes * 8, get_bits_left(gb)); | |
3378 | return AVERROR_INVALIDDATA; | |
3379 | } | |
3380 | } | |
3381 | return 0; | |
3382 | } | |
3383 | ||
3384 | ||
3385 | static int latm_decode_frame(AVCodecContext *avctx, void *out, | |
3386 | int *got_frame_ptr, AVPacket *avpkt) | |
3387 | { | |
3388 | struct LATMContext *latmctx = avctx->priv_data; | |
3389 | int muxlength, err; | |
3390 | GetBitContext gb; | |
3391 | ||
3392 | if ((err = init_get_bits8(&gb, avpkt->data, avpkt->size)) < 0) | |
3393 | return err; | |
3394 | ||
3395 | // check for LOAS sync word | |
3396 | if (get_bits(&gb, 11) != LOAS_SYNC_WORD) | |
3397 | return AVERROR_INVALIDDATA; | |
3398 | ||
3399 | muxlength = get_bits(&gb, 13) + 3; | |
3400 | // not enough data, the parser should have sorted this out | |
3401 | if (muxlength > avpkt->size) | |
3402 | return AVERROR_INVALIDDATA; | |
3403 | ||
3404 | if ((err = read_audio_mux_element(latmctx, &gb)) < 0) | |
3405 | return err; | |
3406 | ||
3407 | if (!latmctx->initialized) { | |
3408 | if (!avctx->extradata) { | |
3409 | *got_frame_ptr = 0; | |
3410 | return avpkt->size; | |
3411 | } else { | |
3412 | push_output_configuration(&latmctx->aac_ctx); | |
3413 | if ((err = decode_audio_specific_config( | |
3414 | &latmctx->aac_ctx, avctx, &latmctx->aac_ctx.oc[1].m4ac, | |
3415 | avctx->extradata, avctx->extradata_size*8, 1)) < 0) { | |
3416 | pop_output_configuration(&latmctx->aac_ctx); | |
3417 | return err; | |
3418 | } | |
3419 | latmctx->initialized = 1; | |
3420 | } | |
3421 | } | |
3422 | ||
3423 | if (show_bits(&gb, 12) == 0xfff) { | |
3424 | av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, | |
3425 | "ADTS header detected, probably as result of configuration " | |
3426 | "misparsing\n"); | |
3427 | return AVERROR_INVALIDDATA; | |
3428 | } | |
3429 | ||
3430 | if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb, avpkt)) < 0) | |
3431 | return err; | |
3432 | ||
3433 | return muxlength; | |
3434 | } | |
3435 | ||
3436 | static av_cold int latm_decode_init(AVCodecContext *avctx) | |
3437 | { | |
3438 | struct LATMContext *latmctx = avctx->priv_data; | |
3439 | int ret = aac_decode_init(avctx); | |
3440 | ||
3441 | if (avctx->extradata_size > 0) | |
3442 | latmctx->initialized = !ret; | |
3443 | ||
3444 | return ret; | |
3445 | } | |
3446 | ||
3447 | static void aacdec_init(AACContext *c) | |
3448 | { | |
3449 | c->imdct_and_windowing = imdct_and_windowing; | |
3450 | c->apply_ltp = apply_ltp; | |
3451 | c->apply_tns = apply_tns; | |
3452 | c->windowing_and_mdct_ltp = windowing_and_mdct_ltp; | |
3453 | c->update_ltp = update_ltp; | |
3454 | ||
3455 | if(ARCH_MIPS) | |
3456 | ff_aacdec_init_mips(c); | |
3457 | } | |
3458 | /** | |
3459 | * AVOptions for Japanese DTV specific extensions (ADTS only) | |
3460 | */ | |
3461 | #define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM | |
3462 | static const AVOption options[] = { | |
3463 | {"dual_mono_mode", "Select the channel to decode for dual mono", | |
3464 | offsetof(AACContext, force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2, | |
3465 | AACDEC_FLAGS, "dual_mono_mode"}, | |
3466 | ||
3467 | {"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
3468 | {"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
3469 | {"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
3470 | {"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
3471 | ||
3472 | {NULL}, | |
3473 | }; | |
3474 | ||
3475 | static const AVClass aac_decoder_class = { | |
3476 | .class_name = "AAC decoder", | |
3477 | .item_name = av_default_item_name, | |
3478 | .option = options, | |
3479 | .version = LIBAVUTIL_VERSION_INT, | |
3480 | }; | |
3481 | ||
f6fa7814 DM |
3482 | static const AVProfile profiles[] = { |
3483 | { FF_PROFILE_AAC_MAIN, "Main" }, | |
3484 | { FF_PROFILE_AAC_LOW, "LC" }, | |
3485 | { FF_PROFILE_AAC_SSR, "SSR" }, | |
3486 | { FF_PROFILE_AAC_LTP, "LTP" }, | |
3487 | { FF_PROFILE_AAC_HE, "HE-AAC" }, | |
3488 | { FF_PROFILE_AAC_HE_V2, "HE-AACv2" }, | |
3489 | { FF_PROFILE_AAC_LD, "LD" }, | |
3490 | { FF_PROFILE_AAC_ELD, "ELD" }, | |
3491 | { FF_PROFILE_UNKNOWN }, | |
3492 | }; | |
3493 | ||
2ba45a60 DM |
3494 | AVCodec ff_aac_decoder = { |
3495 | .name = "aac", | |
3496 | .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"), | |
3497 | .type = AVMEDIA_TYPE_AUDIO, | |
3498 | .id = AV_CODEC_ID_AAC, | |
3499 | .priv_data_size = sizeof(AACContext), | |
3500 | .init = aac_decode_init, | |
3501 | .close = aac_decode_close, | |
3502 | .decode = aac_decode_frame, | |
3503 | .sample_fmts = (const enum AVSampleFormat[]) { | |
3504 | AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE | |
3505 | }, | |
3506 | .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1, | |
3507 | .channel_layouts = aac_channel_layout, | |
3508 | .flush = flush, | |
3509 | .priv_class = &aac_decoder_class, | |
f6fa7814 | 3510 | .profiles = profiles, |
2ba45a60 DM |
3511 | }; |
3512 | ||
3513 | /* | |
3514 | Note: This decoder filter is intended to decode LATM streams transferred | |
3515 | in MPEG transport streams which only contain one program. | |
3516 | To do a more complex LATM demuxing a separate LATM demuxer should be used. | |
3517 | */ | |
3518 | AVCodec ff_aac_latm_decoder = { | |
3519 | .name = "aac_latm", | |
3520 | .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Coding LATM syntax)"), | |
3521 | .type = AVMEDIA_TYPE_AUDIO, | |
3522 | .id = AV_CODEC_ID_AAC_LATM, | |
3523 | .priv_data_size = sizeof(struct LATMContext), | |
3524 | .init = latm_decode_init, | |
3525 | .close = aac_decode_close, | |
3526 | .decode = latm_decode_frame, | |
3527 | .sample_fmts = (const enum AVSampleFormat[]) { | |
3528 | AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE | |
3529 | }, | |
3530 | .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1, | |
3531 | .channel_layouts = aac_channel_layout, | |
3532 | .flush = flush, | |
f6fa7814 | 3533 | .profiles = profiles, |
2ba45a60 | 3534 | }; |