Imported Debian version 2.5.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / adpcm.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2001-2003 The FFmpeg Project
3 *
4 * first version by Francois Revol (revol@free.fr)
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 * by Mike Melanson (melanson@pcisys.net)
7 * CD-ROM XA ADPCM codec by BERO
8 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15 *
16 * This file is part of FFmpeg.
17 *
18 * FFmpeg is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU Lesser General Public
20 * License as published by the Free Software Foundation; either
21 * version 2.1 of the License, or (at your option) any later version.
22 *
23 * FFmpeg is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 * Lesser General Public License for more details.
27 *
28 * You should have received a copy of the GNU Lesser General Public
29 * License along with FFmpeg; if not, write to the Free Software
30 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31 */
32#include "avcodec.h"
33#include "get_bits.h"
34#include "bytestream.h"
35#include "adpcm.h"
36#include "adpcm_data.h"
37#include "internal.h"
38
39/**
40 * @file
41 * ADPCM decoders
42 * Features and limitations:
43 *
44 * Reference documents:
45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48 * http://openquicktime.sourceforge.net/
49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51 * SoX source code http://sox.sourceforge.net/
52 *
53 * CD-ROM XA:
54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56 * readstr http://www.geocities.co.jp/Playtown/2004/
57 */
58
59/* These are for CD-ROM XA ADPCM */
60static const int xa_adpcm_table[5][2] = {
61 { 0, 0 },
62 { 60, 0 },
63 { 115, -52 },
64 { 98, -55 },
65 { 122, -60 }
66};
67
68static const int ea_adpcm_table[] = {
69 0, 240, 460, 392,
70 0, 0, -208, -220,
71 0, 1, 3, 4,
72 7, 8, 10, 11,
73 0, -1, -3, -4
74};
75
76// padded to zero where table size is less then 16
77static const int swf_index_tables[4][16] = {
78 /*2*/ { -1, 2 },
79 /*3*/ { -1, -1, 2, 4 },
80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82};
83
84/* end of tables */
85
86typedef struct ADPCMDecodeContext {
87 ADPCMChannelStatus status[6];
88 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
89} ADPCMDecodeContext;
90
91static av_cold int adpcm_decode_init(AVCodecContext * avctx)
92{
93 ADPCMDecodeContext *c = avctx->priv_data;
94 unsigned int min_channels = 1;
95 unsigned int max_channels = 2;
96
97 switch(avctx->codec->id) {
98 case AV_CODEC_ID_ADPCM_DTK:
99 case AV_CODEC_ID_ADPCM_EA:
100 min_channels = 2;
101 break;
102 case AV_CODEC_ID_ADPCM_AFC:
103 case AV_CODEC_ID_ADPCM_EA_R1:
104 case AV_CODEC_ID_ADPCM_EA_R2:
105 case AV_CODEC_ID_ADPCM_EA_R3:
106 case AV_CODEC_ID_ADPCM_EA_XAS:
107 case AV_CODEC_ID_ADPCM_THP:
108 max_channels = 6;
109 break;
110 }
111 if (avctx->channels < min_channels || avctx->channels > max_channels) {
112 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
113 return AVERROR(EINVAL);
114 }
115
116 switch(avctx->codec->id) {
117 case AV_CODEC_ID_ADPCM_CT:
118 c->status[0].step = c->status[1].step = 511;
119 break;
120 case AV_CODEC_ID_ADPCM_IMA_WAV:
121 if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
122 return AVERROR_INVALIDDATA;
123 break;
124 case AV_CODEC_ID_ADPCM_IMA_APC:
125 if (avctx->extradata && avctx->extradata_size >= 8) {
126 c->status[0].predictor = AV_RL32(avctx->extradata);
127 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
128 }
129 break;
130 case AV_CODEC_ID_ADPCM_IMA_WS:
131 if (avctx->extradata && avctx->extradata_size >= 2)
132 c->vqa_version = AV_RL16(avctx->extradata);
133 break;
134 default:
135 break;
136 }
137
138 switch(avctx->codec->id) {
139 case AV_CODEC_ID_ADPCM_IMA_QT:
140 case AV_CODEC_ID_ADPCM_IMA_WAV:
141 case AV_CODEC_ID_ADPCM_4XM:
142 case AV_CODEC_ID_ADPCM_XA:
143 case AV_CODEC_ID_ADPCM_EA_R1:
144 case AV_CODEC_ID_ADPCM_EA_R2:
145 case AV_CODEC_ID_ADPCM_EA_R3:
146 case AV_CODEC_ID_ADPCM_EA_XAS:
147 case AV_CODEC_ID_ADPCM_THP:
148 case AV_CODEC_ID_ADPCM_AFC:
149 case AV_CODEC_ID_ADPCM_DTK:
150 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
151 break;
152 case AV_CODEC_ID_ADPCM_IMA_WS:
153 avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
154 AV_SAMPLE_FMT_S16;
155 break;
156 default:
157 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
158 }
159
160 return 0;
161}
162
163static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
164{
165 int step_index;
166 int predictor;
167 int sign, delta, diff, step;
168
169 step = ff_adpcm_step_table[c->step_index];
170 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
171 step_index = av_clip(step_index, 0, 88);
172
173 sign = nibble & 8;
174 delta = nibble & 7;
175 /* perform direct multiplication instead of series of jumps proposed by
176 * the reference ADPCM implementation since modern CPUs can do the mults
177 * quickly enough */
178 diff = ((2 * delta + 1) * step) >> shift;
179 predictor = c->predictor;
180 if (sign) predictor -= diff;
181 else predictor += diff;
182
183 c->predictor = av_clip_int16(predictor);
184 c->step_index = step_index;
185
186 return (short)c->predictor;
187}
188
189static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
190{
191 int nibble, step_index, predictor, sign, delta, diff, step, shift;
192
193 shift = bps - 1;
194 nibble = get_bits_le(gb, bps),
195 step = ff_adpcm_step_table[c->step_index];
196 step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
197 step_index = av_clip(step_index, 0, 88);
198
199 sign = nibble & (1 << shift);
200 delta = nibble & ((1 << shift) - 1);
201 diff = ((2 * delta + 1) * step) >> shift;
202 predictor = c->predictor;
203 if (sign) predictor -= diff;
204 else predictor += diff;
205
206 c->predictor = av_clip_int16(predictor);
207 c->step_index = step_index;
208
209 return (int16_t)c->predictor;
210}
211
212static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
213{
214 int step_index;
215 int predictor;
216 int diff, step;
217
218 step = ff_adpcm_step_table[c->step_index];
219 step_index = c->step_index + ff_adpcm_index_table[nibble];
220 step_index = av_clip(step_index, 0, 88);
221
222 diff = step >> 3;
223 if (nibble & 4) diff += step;
224 if (nibble & 2) diff += step >> 1;
225 if (nibble & 1) diff += step >> 2;
226
227 if (nibble & 8)
228 predictor = c->predictor - diff;
229 else
230 predictor = c->predictor + diff;
231
232 c->predictor = av_clip_int16(predictor);
233 c->step_index = step_index;
234
235 return c->predictor;
236}
237
238static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
239{
240 int predictor;
241
242 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
243 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
244
245 c->sample2 = c->sample1;
246 c->sample1 = av_clip_int16(predictor);
247 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
248 if (c->idelta < 16) c->idelta = 16;
249
250 return c->sample1;
251}
252
253static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
254{
255 int step_index, predictor, sign, delta, diff, step;
256
257 step = ff_adpcm_oki_step_table[c->step_index];
258 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
259 step_index = av_clip(step_index, 0, 48);
260
261 sign = nibble & 8;
262 delta = nibble & 7;
263 diff = ((2 * delta + 1) * step) >> 3;
264 predictor = c->predictor;
265 if (sign) predictor -= diff;
266 else predictor += diff;
267
268 c->predictor = av_clip(predictor, -2048, 2047);
269 c->step_index = step_index;
270
271 return c->predictor << 4;
272}
273
274static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
275{
276 int sign, delta, diff;
277 int new_step;
278
279 sign = nibble & 8;
280 delta = nibble & 7;
281 /* perform direct multiplication instead of series of jumps proposed by
282 * the reference ADPCM implementation since modern CPUs can do the mults
283 * quickly enough */
284 diff = ((2 * delta + 1) * c->step) >> 3;
285 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
286 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
287 c->predictor = av_clip_int16(c->predictor);
288 /* calculate new step and clamp it to range 511..32767 */
289 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
290 c->step = av_clip(new_step, 511, 32767);
291
292 return (short)c->predictor;
293}
294
295static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
296{
297 int sign, delta, diff;
298
299 sign = nibble & (1<<(size-1));
300 delta = nibble & ((1<<(size-1))-1);
301 diff = delta << (7 + c->step + shift);
302
303 /* clamp result */
304 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
305
306 /* calculate new step */
307 if (delta >= (2*size - 3) && c->step < 3)
308 c->step++;
309 else if (delta == 0 && c->step > 0)
310 c->step--;
311
312 return (short) c->predictor;
313}
314
315static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
316{
317 if(!c->step) {
318 c->predictor = 0;
319 c->step = 127;
320 }
321
322 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
323 c->predictor = av_clip_int16(c->predictor);
324 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
325 c->step = av_clip(c->step, 127, 24567);
326 return c->predictor;
327}
328
329static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
330 const uint8_t *in, ADPCMChannelStatus *left,
331 ADPCMChannelStatus *right, int channels, int sample_offset)
332{
333 int i, j;
334 int shift,filter,f0,f1;
335 int s_1,s_2;
336 int d,s,t;
337
338 out0 += sample_offset;
339 if (channels == 1)
340 out1 = out0 + 28;
341 else
342 out1 += sample_offset;
343
344 for(i=0;i<4;i++) {
345 shift = 12 - (in[4+i*2] & 15);
346 filter = in[4+i*2] >> 4;
347 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
348 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
349 filter=0;
350 }
351 f0 = xa_adpcm_table[filter][0];
352 f1 = xa_adpcm_table[filter][1];
353
354 s_1 = left->sample1;
355 s_2 = left->sample2;
356
357 for(j=0;j<28;j++) {
358 d = in[16+i+j*4];
359
360 t = sign_extend(d, 4);
361 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
362 s_2 = s_1;
363 s_1 = av_clip_int16(s);
364 out0[j] = s_1;
365 }
366
367 if (channels == 2) {
368 left->sample1 = s_1;
369 left->sample2 = s_2;
370 s_1 = right->sample1;
371 s_2 = right->sample2;
372 }
373
374 shift = 12 - (in[5+i*2] & 15);
375 filter = in[5+i*2] >> 4;
376 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
377 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
378 filter=0;
379 }
380
381 f0 = xa_adpcm_table[filter][0];
382 f1 = xa_adpcm_table[filter][1];
383
384 for(j=0;j<28;j++) {
385 d = in[16+i+j*4];
386
387 t = sign_extend(d >> 4, 4);
388 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
389 s_2 = s_1;
390 s_1 = av_clip_int16(s);
391 out1[j] = s_1;
392 }
393
394 if (channels == 2) {
395 right->sample1 = s_1;
396 right->sample2 = s_2;
397 } else {
398 left->sample1 = s_1;
399 left->sample2 = s_2;
400 }
401
402 out0 += 28 * (3 - channels);
403 out1 += 28 * (3 - channels);
404 }
405
406 return 0;
407}
408
409static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
410{
411 ADPCMDecodeContext *c = avctx->priv_data;
412 GetBitContext gb;
413 const int *table;
414 int k0, signmask, nb_bits, count;
415 int size = buf_size*8;
416 int i;
417
418 init_get_bits(&gb, buf, size);
419
420 //read bits & initial values
421 nb_bits = get_bits(&gb, 2)+2;
422 table = swf_index_tables[nb_bits-2];
423 k0 = 1 << (nb_bits-2);
424 signmask = 1 << (nb_bits-1);
425
426 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
427 for (i = 0; i < avctx->channels; i++) {
428 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
429 c->status[i].step_index = get_bits(&gb, 6);
430 }
431
432 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
433 int i;
434
435 for (i = 0; i < avctx->channels; i++) {
436 // similar to IMA adpcm
437 int delta = get_bits(&gb, nb_bits);
438 int step = ff_adpcm_step_table[c->status[i].step_index];
439 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
440 int k = k0;
441
442 do {
443 if (delta & k)
444 vpdiff += step;
445 step >>= 1;
446 k >>= 1;
447 } while(k);
448 vpdiff += step;
449
450 if (delta & signmask)
451 c->status[i].predictor -= vpdiff;
452 else
453 c->status[i].predictor += vpdiff;
454
455 c->status[i].step_index += table[delta & (~signmask)];
456
457 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
458 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
459
460 *samples++ = c->status[i].predictor;
461 }
462 }
463 }
464}
465
466/**
467 * Get the number of samples that will be decoded from the packet.
468 * In one case, this is actually the maximum number of samples possible to
469 * decode with the given buf_size.
470 *
471 * @param[out] coded_samples set to the number of samples as coded in the
472 * packet, or 0 if the codec does not encode the
473 * number of samples in each frame.
474 * @param[out] approx_nb_samples set to non-zero if the number of samples
475 * returned is an approximation.
476 */
477static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
478 int buf_size, int *coded_samples, int *approx_nb_samples)
479{
480 ADPCMDecodeContext *s = avctx->priv_data;
481 int nb_samples = 0;
482 int ch = avctx->channels;
483 int has_coded_samples = 0;
484 int header_size;
485
486 *coded_samples = 0;
487 *approx_nb_samples = 0;
488
489 if(ch <= 0)
490 return 0;
491
492 switch (avctx->codec->id) {
493 /* constant, only check buf_size */
494 case AV_CODEC_ID_ADPCM_EA_XAS:
495 if (buf_size < 76 * ch)
496 return 0;
497 nb_samples = 128;
498 break;
499 case AV_CODEC_ID_ADPCM_IMA_QT:
500 if (buf_size < 34 * ch)
501 return 0;
502 nb_samples = 64;
503 break;
504 /* simple 4-bit adpcm */
505 case AV_CODEC_ID_ADPCM_CT:
506 case AV_CODEC_ID_ADPCM_IMA_APC:
507 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
508 case AV_CODEC_ID_ADPCM_IMA_OKI:
509 case AV_CODEC_ID_ADPCM_IMA_WS:
510 case AV_CODEC_ID_ADPCM_YAMAHA:
511 nb_samples = buf_size * 2 / ch;
512 break;
513 }
514 if (nb_samples)
515 return nb_samples;
516
517 /* simple 4-bit adpcm, with header */
518 header_size = 0;
519 switch (avctx->codec->id) {
520 case AV_CODEC_ID_ADPCM_4XM:
521 case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
522 case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
523 case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
524 }
525 if (header_size > 0)
526 return (buf_size - header_size) * 2 / ch;
527
528 /* more complex formats */
529 switch (avctx->codec->id) {
530 case AV_CODEC_ID_ADPCM_EA:
531 has_coded_samples = 1;
532 *coded_samples = bytestream2_get_le32(gb);
533 *coded_samples -= *coded_samples % 28;
534 nb_samples = (buf_size - 12) / 30 * 28;
535 break;
536 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
537 has_coded_samples = 1;
538 *coded_samples = bytestream2_get_le32(gb);
539 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
540 break;
541 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
542 nb_samples = (buf_size - ch) / ch * 2;
543 break;
544 case AV_CODEC_ID_ADPCM_EA_R1:
545 case AV_CODEC_ID_ADPCM_EA_R2:
546 case AV_CODEC_ID_ADPCM_EA_R3:
547 /* maximum number of samples */
548 /* has internal offsets and a per-frame switch to signal raw 16-bit */
549 has_coded_samples = 1;
550 switch (avctx->codec->id) {
551 case AV_CODEC_ID_ADPCM_EA_R1:
552 header_size = 4 + 9 * ch;
553 *coded_samples = bytestream2_get_le32(gb);
554 break;
555 case AV_CODEC_ID_ADPCM_EA_R2:
556 header_size = 4 + 5 * ch;
557 *coded_samples = bytestream2_get_le32(gb);
558 break;
559 case AV_CODEC_ID_ADPCM_EA_R3:
560 header_size = 4 + 5 * ch;
561 *coded_samples = bytestream2_get_be32(gb);
562 break;
563 }
564 *coded_samples -= *coded_samples % 28;
565 nb_samples = (buf_size - header_size) * 2 / ch;
566 nb_samples -= nb_samples % 28;
567 *approx_nb_samples = 1;
568 break;
569 case AV_CODEC_ID_ADPCM_IMA_DK3:
570 if (avctx->block_align > 0)
571 buf_size = FFMIN(buf_size, avctx->block_align);
572 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
573 break;
574 case AV_CODEC_ID_ADPCM_IMA_DK4:
575 if (avctx->block_align > 0)
576 buf_size = FFMIN(buf_size, avctx->block_align);
577 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
578 break;
579 case AV_CODEC_ID_ADPCM_IMA_RAD:
580 if (avctx->block_align > 0)
581 buf_size = FFMIN(buf_size, avctx->block_align);
582 nb_samples = (buf_size - 4 * ch) * 2 / ch;
583 break;
584 case AV_CODEC_ID_ADPCM_IMA_WAV:
585 {
586 int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
587 int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
588 if (avctx->block_align > 0)
589 buf_size = FFMIN(buf_size, avctx->block_align);
590 nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
591 break;
592 }
593 case AV_CODEC_ID_ADPCM_MS:
594 if (avctx->block_align > 0)
595 buf_size = FFMIN(buf_size, avctx->block_align);
596 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
597 break;
598 case AV_CODEC_ID_ADPCM_SBPRO_2:
599 case AV_CODEC_ID_ADPCM_SBPRO_3:
600 case AV_CODEC_ID_ADPCM_SBPRO_4:
601 {
602 int samples_per_byte;
603 switch (avctx->codec->id) {
604 case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
605 case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
606 case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
607 }
608 if (!s->status[0].step_index) {
609 nb_samples++;
610 buf_size -= ch;
611 }
612 nb_samples += buf_size * samples_per_byte / ch;
613 break;
614 }
615 case AV_CODEC_ID_ADPCM_SWF:
616 {
617 int buf_bits = buf_size * 8 - 2;
618 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
619 int block_hdr_size = 22 * ch;
620 int block_size = block_hdr_size + nbits * ch * 4095;
621 int nblocks = buf_bits / block_size;
622 int bits_left = buf_bits - nblocks * block_size;
623 nb_samples = nblocks * 4096;
624 if (bits_left >= block_hdr_size)
625 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
626 break;
627 }
628 case AV_CODEC_ID_ADPCM_THP:
629 if (avctx->extradata) {
630 nb_samples = buf_size / (8 * ch) * 14;
631 break;
632 }
633 has_coded_samples = 1;
634 bytestream2_skip(gb, 4); // channel size
635 *coded_samples = bytestream2_get_be32(gb);
636 *coded_samples -= *coded_samples % 14;
637 nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14;
638 break;
639 case AV_CODEC_ID_ADPCM_AFC:
640 nb_samples = buf_size / (9 * ch) * 16;
641 break;
642 case AV_CODEC_ID_ADPCM_XA:
643 nb_samples = (buf_size / 128) * 224 / ch;
644 break;
645 case AV_CODEC_ID_ADPCM_DTK:
646 nb_samples = buf_size / (16 * ch) * 28;
647 break;
648 }
649
650 /* validate coded sample count */
651 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
652 return AVERROR_INVALIDDATA;
653
654 return nb_samples;
655}
656
657static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
658 int *got_frame_ptr, AVPacket *avpkt)
659{
660 AVFrame *frame = data;
661 const uint8_t *buf = avpkt->data;
662 int buf_size = avpkt->size;
663 ADPCMDecodeContext *c = avctx->priv_data;
664 ADPCMChannelStatus *cs;
665 int n, m, channel, i;
666 short *samples;
667 int16_t **samples_p;
668 int st; /* stereo */
669 int count1, count2;
670 int nb_samples, coded_samples, approx_nb_samples, ret;
671 GetByteContext gb;
672
673 bytestream2_init(&gb, buf, buf_size);
674 nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
675 if (nb_samples <= 0) {
676 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
677 return AVERROR_INVALIDDATA;
678 }
679
680 /* get output buffer */
681 frame->nb_samples = nb_samples;
682 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
683 return ret;
684 samples = (short *)frame->data[0];
685 samples_p = (int16_t **)frame->extended_data;
686
687 /* use coded_samples when applicable */
688 /* it is always <= nb_samples, so the output buffer will be large enough */
689 if (coded_samples) {
690 if (!approx_nb_samples && coded_samples != nb_samples)
691 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
692 frame->nb_samples = nb_samples = coded_samples;
693 }
694
695 st = avctx->channels == 2 ? 1 : 0;
696
697 switch(avctx->codec->id) {
698 case AV_CODEC_ID_ADPCM_IMA_QT:
699 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
700 Channel data is interleaved per-chunk. */
701 for (channel = 0; channel < avctx->channels; channel++) {
702 int predictor;
703 int step_index;
704 cs = &(c->status[channel]);
705 /* (pppppp) (piiiiiii) */
706
707 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
708 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
709 step_index = predictor & 0x7F;
710 predictor &= ~0x7F;
711
712 if (cs->step_index == step_index) {
713 int diff = predictor - cs->predictor;
714 if (diff < 0)
715 diff = - diff;
716 if (diff > 0x7f)
717 goto update;
718 } else {
719 update:
720 cs->step_index = step_index;
721 cs->predictor = predictor;
722 }
723
724 if (cs->step_index > 88u){
725 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
726 channel, cs->step_index);
727 return AVERROR_INVALIDDATA;
728 }
729
730 samples = samples_p[channel];
731
732 for (m = 0; m < 64; m += 2) {
733 int byte = bytestream2_get_byteu(&gb);
734 samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
735 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
736 }
737 }
738 break;
739 case AV_CODEC_ID_ADPCM_IMA_WAV:
740 for(i=0; i<avctx->channels; i++){
741 cs = &(c->status[i]);
742 cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
743
744 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
745 if (cs->step_index > 88u){
746 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
747 i, cs->step_index);
748 return AVERROR_INVALIDDATA;
749 }
750 }
751
752 if (avctx->bits_per_coded_sample != 4) {
753 int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
754 GetBitContext g;
755
756 init_get_bits8(&g, gb.buffer, bytestream2_get_bytes_left(&gb));
757 for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
758 for (i = 0; i < avctx->channels; i++) {
759 cs = &c->status[i];
760 samples = &samples_p[i][1 + n * samples_per_block];
761 for (m = 0; m < samples_per_block; m++) {
762 samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
763 avctx->bits_per_coded_sample);
764 }
765 }
766 }
767 bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
768 } else {
769 for (n = 0; n < (nb_samples - 1) / 8; n++) {
770 for (i = 0; i < avctx->channels; i++) {
771 cs = &c->status[i];
772 samples = &samples_p[i][1 + n * 8];
773 for (m = 0; m < 8; m += 2) {
774 int v = bytestream2_get_byteu(&gb);
775 samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
776 samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
777 }
778 }
779 }
780 }
781 break;
782 case AV_CODEC_ID_ADPCM_4XM:
783 for (i = 0; i < avctx->channels; i++)
784 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
785
786 for (i = 0; i < avctx->channels; i++) {
787 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
788 if (c->status[i].step_index > 88u) {
789 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
790 i, c->status[i].step_index);
791 return AVERROR_INVALIDDATA;
792 }
793 }
794
795 for (i = 0; i < avctx->channels; i++) {
796 samples = (int16_t *)frame->data[i];
797 cs = &c->status[i];
798 for (n = nb_samples >> 1; n > 0; n--) {
799 int v = bytestream2_get_byteu(&gb);
800 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
801 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
802 }
803 }
804 break;
805 case AV_CODEC_ID_ADPCM_MS:
806 {
807 int block_predictor;
808
809 block_predictor = bytestream2_get_byteu(&gb);
810 if (block_predictor > 6) {
811 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
812 block_predictor);
813 return AVERROR_INVALIDDATA;
814 }
815 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
816 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
817 if (st) {
818 block_predictor = bytestream2_get_byteu(&gb);
819 if (block_predictor > 6) {
820 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
821 block_predictor);
822 return AVERROR_INVALIDDATA;
823 }
824 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
825 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
826 }
827 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
828 if (st){
829 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
830 }
831
832 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
833 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
834 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
835 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
836
837 *samples++ = c->status[0].sample2;
838 if (st) *samples++ = c->status[1].sample2;
839 *samples++ = c->status[0].sample1;
840 if (st) *samples++ = c->status[1].sample1;
841 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
842 int byte = bytestream2_get_byteu(&gb);
843 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
844 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
845 }
846 break;
847 }
848 case AV_CODEC_ID_ADPCM_IMA_DK4:
849 for (channel = 0; channel < avctx->channels; channel++) {
850 cs = &c->status[channel];
851 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
852 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
853 if (cs->step_index > 88u){
854 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
855 channel, cs->step_index);
856 return AVERROR_INVALIDDATA;
857 }
858 }
859 for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
860 int v = bytestream2_get_byteu(&gb);
861 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
862 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
863 }
864 break;
865 case AV_CODEC_ID_ADPCM_IMA_DK3:
866 {
867 int last_byte = 0;
868 int nibble;
869 int decode_top_nibble_next = 0;
870 int diff_channel;
871 const int16_t *samples_end = samples + avctx->channels * nb_samples;
872
873 bytestream2_skipu(&gb, 10);
874 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
875 c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
876 c->status[0].step_index = bytestream2_get_byteu(&gb);
877 c->status[1].step_index = bytestream2_get_byteu(&gb);
878 if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
879 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
880 c->status[0].step_index, c->status[1].step_index);
881 return AVERROR_INVALIDDATA;
882 }
883 /* sign extend the predictors */
884 diff_channel = c->status[1].predictor;
885
886 /* DK3 ADPCM support macro */
887#define DK3_GET_NEXT_NIBBLE() \
888 if (decode_top_nibble_next) { \
889 nibble = last_byte >> 4; \
890 decode_top_nibble_next = 0; \
891 } else { \
892 last_byte = bytestream2_get_byteu(&gb); \
893 nibble = last_byte & 0x0F; \
894 decode_top_nibble_next = 1; \
895 }
896
897 while (samples < samples_end) {
898
899 /* for this algorithm, c->status[0] is the sum channel and
900 * c->status[1] is the diff channel */
901
902 /* process the first predictor of the sum channel */
903 DK3_GET_NEXT_NIBBLE();
904 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
905
906 /* process the diff channel predictor */
907 DK3_GET_NEXT_NIBBLE();
908 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
909
910 /* process the first pair of stereo PCM samples */
911 diff_channel = (diff_channel + c->status[1].predictor) / 2;
912 *samples++ = c->status[0].predictor + c->status[1].predictor;
913 *samples++ = c->status[0].predictor - c->status[1].predictor;
914
915 /* process the second predictor of the sum channel */
916 DK3_GET_NEXT_NIBBLE();
917 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
918
919 /* process the second pair of stereo PCM samples */
920 diff_channel = (diff_channel + c->status[1].predictor) / 2;
921 *samples++ = c->status[0].predictor + c->status[1].predictor;
922 *samples++ = c->status[0].predictor - c->status[1].predictor;
923 }
924
925 if ((bytestream2_tell(&gb) & 1))
926 bytestream2_skip(&gb, 1);
927 break;
928 }
929 case AV_CODEC_ID_ADPCM_IMA_ISS:
930 for (channel = 0; channel < avctx->channels; channel++) {
931 cs = &c->status[channel];
932 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
933 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
934 if (cs->step_index > 88u){
935 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
936 channel, cs->step_index);
937 return AVERROR_INVALIDDATA;
938 }
939 }
940
941 for (n = nb_samples >> (1 - st); n > 0; n--) {
942 int v1, v2;
943 int v = bytestream2_get_byteu(&gb);
944 /* nibbles are swapped for mono */
945 if (st) {
946 v1 = v >> 4;
947 v2 = v & 0x0F;
948 } else {
949 v2 = v >> 4;
950 v1 = v & 0x0F;
951 }
952 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
953 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
954 }
955 break;
956 case AV_CODEC_ID_ADPCM_IMA_APC:
957 while (bytestream2_get_bytes_left(&gb) > 0) {
958 int v = bytestream2_get_byteu(&gb);
959 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
960 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
961 }
962 break;
963 case AV_CODEC_ID_ADPCM_IMA_OKI:
964 while (bytestream2_get_bytes_left(&gb) > 0) {
965 int v = bytestream2_get_byteu(&gb);
966 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
967 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
968 }
969 break;
970 case AV_CODEC_ID_ADPCM_IMA_RAD:
971 for (channel = 0; channel < avctx->channels; channel++) {
972 cs = &c->status[channel];
973 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
974 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
975 if (cs->step_index > 88u){
976 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
977 channel, cs->step_index);
978 return AVERROR_INVALIDDATA;
979 }
980 }
981 for (n = 0; n < nb_samples / 2; n++) {
982 int byte[2];
983
984 byte[0] = bytestream2_get_byteu(&gb);
985 if (st)
986 byte[1] = bytestream2_get_byteu(&gb);
987 for(channel = 0; channel < avctx->channels; channel++) {
988 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
989 }
990 for(channel = 0; channel < avctx->channels; channel++) {
991 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
992 }
993 }
994 break;
995 case AV_CODEC_ID_ADPCM_IMA_WS:
996 if (c->vqa_version == 3) {
997 for (channel = 0; channel < avctx->channels; channel++) {
998 int16_t *smp = samples_p[channel];
999
1000 for (n = nb_samples / 2; n > 0; n--) {
1001 int v = bytestream2_get_byteu(&gb);
1002 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1003 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1004 }
1005 }
1006 } else {
1007 for (n = nb_samples / 2; n > 0; n--) {
1008 for (channel = 0; channel < avctx->channels; channel++) {
1009 int v = bytestream2_get_byteu(&gb);
1010 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1011 samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1012 }
1013 samples += avctx->channels;
1014 }
1015 }
1016 bytestream2_seek(&gb, 0, SEEK_END);
1017 break;
1018 case AV_CODEC_ID_ADPCM_XA:
1019 {
1020 int16_t *out0 = samples_p[0];
1021 int16_t *out1 = samples_p[1];
1022 int samples_per_block = 28 * (3 - avctx->channels) * 4;
1023 int sample_offset = 0;
1024 while (bytestream2_get_bytes_left(&gb) >= 128) {
1025 if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1026 &c->status[0], &c->status[1],
1027 avctx->channels, sample_offset)) < 0)
1028 return ret;
1029 bytestream2_skipu(&gb, 128);
1030 sample_offset += samples_per_block;
1031 }
1032 break;
1033 }
1034 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
1035 for (i=0; i<=st; i++) {
1036 c->status[i].step_index = bytestream2_get_le32u(&gb);
1037 if (c->status[i].step_index > 88u) {
1038 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1039 i, c->status[i].step_index);
1040 return AVERROR_INVALIDDATA;
1041 }
1042 }
1043 for (i=0; i<=st; i++)
1044 c->status[i].predictor = bytestream2_get_le32u(&gb);
1045
1046 for (n = nb_samples >> (1 - st); n > 0; n--) {
1047 int byte = bytestream2_get_byteu(&gb);
1048 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1049 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1050 }
1051 break;
1052 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
1053 for (n = nb_samples >> (1 - st); n > 0; n--) {
1054 int byte = bytestream2_get_byteu(&gb);
1055 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1056 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1057 }
1058 break;
1059 case AV_CODEC_ID_ADPCM_EA:
1060 {
1061 int previous_left_sample, previous_right_sample;
1062 int current_left_sample, current_right_sample;
1063 int next_left_sample, next_right_sample;
1064 int coeff1l, coeff2l, coeff1r, coeff2r;
1065 int shift_left, shift_right;
1066
1067 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1068 each coding 28 stereo samples. */
1069
1070 if(avctx->channels != 2)
1071 return AVERROR_INVALIDDATA;
1072
1073 current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1074 previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1075 current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1076 previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1077
1078 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1079 int byte = bytestream2_get_byteu(&gb);
1080 coeff1l = ea_adpcm_table[ byte >> 4 ];
1081 coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1082 coeff1r = ea_adpcm_table[ byte & 0x0F];
1083 coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1084
1085 byte = bytestream2_get_byteu(&gb);
1086 shift_left = 20 - (byte >> 4);
1087 shift_right = 20 - (byte & 0x0F);
1088
1089 for (count2 = 0; count2 < 28; count2++) {
1090 byte = bytestream2_get_byteu(&gb);
1091 next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1092 next_right_sample = sign_extend(byte, 4) << shift_right;
1093
1094 next_left_sample = (next_left_sample +
1095 (current_left_sample * coeff1l) +
1096 (previous_left_sample * coeff2l) + 0x80) >> 8;
1097 next_right_sample = (next_right_sample +
1098 (current_right_sample * coeff1r) +
1099 (previous_right_sample * coeff2r) + 0x80) >> 8;
1100
1101 previous_left_sample = current_left_sample;
1102 current_left_sample = av_clip_int16(next_left_sample);
1103 previous_right_sample = current_right_sample;
1104 current_right_sample = av_clip_int16(next_right_sample);
1105 *samples++ = current_left_sample;
1106 *samples++ = current_right_sample;
1107 }
1108 }
1109
1110 bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1111
1112 break;
1113 }
1114 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
1115 {
1116 int coeff[2][2], shift[2];
1117
1118 for(channel = 0; channel < avctx->channels; channel++) {
1119 int byte = bytestream2_get_byteu(&gb);
1120 for (i=0; i<2; i++)
1121 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1122 shift[channel] = 20 - (byte & 0x0F);
1123 }
1124 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1125 int byte[2];
1126
1127 byte[0] = bytestream2_get_byteu(&gb);
1128 if (st) byte[1] = bytestream2_get_byteu(&gb);
1129 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1130 for(channel = 0; channel < avctx->channels; channel++) {
1131 int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1132 sample = (sample +
1133 c->status[channel].sample1 * coeff[channel][0] +
1134 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1135 c->status[channel].sample2 = c->status[channel].sample1;
1136 c->status[channel].sample1 = av_clip_int16(sample);
1137 *samples++ = c->status[channel].sample1;
1138 }
1139 }
1140 }
1141 bytestream2_seek(&gb, 0, SEEK_END);
1142 break;
1143 }
1144 case AV_CODEC_ID_ADPCM_EA_R1:
1145 case AV_CODEC_ID_ADPCM_EA_R2:
1146 case AV_CODEC_ID_ADPCM_EA_R3: {
1147 /* channel numbering
1148 2chan: 0=fl, 1=fr
1149 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1150 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1151 const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1152 int previous_sample, current_sample, next_sample;
1153 int coeff1, coeff2;
1154 int shift;
1155 unsigned int channel;
1156 uint16_t *samplesC;
1157 int count = 0;
1158 int offsets[6];
1159
1160 for (channel=0; channel<avctx->channels; channel++)
1161 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1162 bytestream2_get_le32(&gb)) +
1163 (avctx->channels + 1) * 4;
1164
1165 for (channel=0; channel<avctx->channels; channel++) {
1166 bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1167 samplesC = samples_p[channel];
1168
1169 if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1170 current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1171 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1172 } else {
1173 current_sample = c->status[channel].predictor;
1174 previous_sample = c->status[channel].prev_sample;
1175 }
1176
1177 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1178 int byte = bytestream2_get_byte(&gb);
1179 if (byte == 0xEE) { /* only seen in R2 and R3 */
1180 current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1181 previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1182
1183 for (count2=0; count2<28; count2++)
1184 *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1185 } else {
1186 coeff1 = ea_adpcm_table[ byte >> 4 ];
1187 coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1188 shift = 20 - (byte & 0x0F);
1189
1190 for (count2=0; count2<28; count2++) {
1191 if (count2 & 1)
1192 next_sample = sign_extend(byte, 4) << shift;
1193 else {
1194 byte = bytestream2_get_byte(&gb);
1195 next_sample = sign_extend(byte >> 4, 4) << shift;
1196 }
1197
1198 next_sample += (current_sample * coeff1) +
1199 (previous_sample * coeff2);
1200 next_sample = av_clip_int16(next_sample >> 8);
1201
1202 previous_sample = current_sample;
1203 current_sample = next_sample;
1204 *samplesC++ = current_sample;
1205 }
1206 }
1207 }
1208 if (!count) {
1209 count = count1;
1210 } else if (count != count1) {
1211 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1212 count = FFMAX(count, count1);
1213 }
1214
1215 if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1216 c->status[channel].predictor = current_sample;
1217 c->status[channel].prev_sample = previous_sample;
1218 }
1219 }
1220
1221 frame->nb_samples = count * 28;
1222 bytestream2_seek(&gb, 0, SEEK_END);
1223 break;
1224 }
1225 case AV_CODEC_ID_ADPCM_EA_XAS:
1226 for (channel=0; channel<avctx->channels; channel++) {
1227 int coeff[2][4], shift[4];
1228 int16_t *s = samples_p[channel];
1229 for (n = 0; n < 4; n++, s += 32) {
1230 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1231 for (i=0; i<2; i++)
1232 coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1233 s[0] = val & ~0x0F;
1234
1235 val = sign_extend(bytestream2_get_le16u(&gb), 16);
1236 shift[n] = 20 - (val & 0x0F);
1237 s[1] = val & ~0x0F;
1238 }
1239
1240 for (m=2; m<32; m+=2) {
1241 s = &samples_p[channel][m];
1242 for (n = 0; n < 4; n++, s += 32) {
1243 int level, pred;
1244 int byte = bytestream2_get_byteu(&gb);
1245
1246 level = sign_extend(byte >> 4, 4) << shift[n];
1247 pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1248 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1249
1250 level = sign_extend(byte, 4) << shift[n];
1251 pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1252 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1253 }
1254 }
1255 }
1256 break;
1257 case AV_CODEC_ID_ADPCM_IMA_AMV:
1258 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1259 c->status[0].step_index = bytestream2_get_le16u(&gb);
1260 bytestream2_skipu(&gb, 4);
1261 if (c->status[0].step_index > 88u) {
1262 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1263 c->status[0].step_index);
1264 return AVERROR_INVALIDDATA;
1265 }
1266
1267 for (n = nb_samples >> (1 - st); n > 0; n--) {
1268 int v = bytestream2_get_byteu(&gb);
1269
1270 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1271 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1272 }
1273 break;
1274 case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1275 for (i = 0; i < avctx->channels; i++) {
1276 c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1277 c->status[i].step_index = bytestream2_get_byteu(&gb);
1278 bytestream2_skipu(&gb, 1);
1279 if (c->status[i].step_index > 88u) {
1280 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1281 c->status[i].step_index);
1282 return AVERROR_INVALIDDATA;
1283 }
1284 }
1285
1286 for (n = nb_samples >> (1 - st); n > 0; n--) {
1287 int v = bytestream2_get_byteu(&gb);
1288
1289 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1290 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1291 }
1292 break;
1293 case AV_CODEC_ID_ADPCM_CT:
1294 for (n = nb_samples >> (1 - st); n > 0; n--) {
1295 int v = bytestream2_get_byteu(&gb);
1296 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1297 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1298 }
1299 break;
1300 case AV_CODEC_ID_ADPCM_SBPRO_4:
1301 case AV_CODEC_ID_ADPCM_SBPRO_3:
1302 case AV_CODEC_ID_ADPCM_SBPRO_2:
1303 if (!c->status[0].step_index) {
1304 /* the first byte is a raw sample */
1305 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1306 if (st)
1307 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1308 c->status[0].step_index = 1;
1309 nb_samples--;
1310 }
1311 if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1312 for (n = nb_samples >> (1 - st); n > 0; n--) {
1313 int byte = bytestream2_get_byteu(&gb);
1314 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1315 byte >> 4, 4, 0);
1316 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1317 byte & 0x0F, 4, 0);
1318 }
1319 } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1320 for (n = (nb_samples<<st) / 3; n > 0; n--) {
1321 int byte = bytestream2_get_byteu(&gb);
1322 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1323 byte >> 5 , 3, 0);
1324 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1325 (byte >> 2) & 0x07, 3, 0);
1326 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1327 byte & 0x03, 2, 0);
1328 }
1329 } else {
1330 for (n = nb_samples >> (2 - st); n > 0; n--) {
1331 int byte = bytestream2_get_byteu(&gb);
1332 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1333 byte >> 6 , 2, 2);
1334 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1335 (byte >> 4) & 0x03, 2, 2);
1336 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1337 (byte >> 2) & 0x03, 2, 2);
1338 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1339 byte & 0x03, 2, 2);
1340 }
1341 }
1342 break;
1343 case AV_CODEC_ID_ADPCM_SWF:
1344 adpcm_swf_decode(avctx, buf, buf_size, samples);
1345 bytestream2_seek(&gb, 0, SEEK_END);
1346 break;
1347 case AV_CODEC_ID_ADPCM_YAMAHA:
1348 for (n = nb_samples >> (1 - st); n > 0; n--) {
1349 int v = bytestream2_get_byteu(&gb);
1350 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1351 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1352 }
1353 break;
1354 case AV_CODEC_ID_ADPCM_AFC:
1355 {
1356 int samples_per_block;
1357 int blocks;
1358
1359 if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1360 samples_per_block = avctx->extradata[0] / 16;
1361 blocks = nb_samples / avctx->extradata[0];
1362 } else {
1363 samples_per_block = nb_samples / 16;
1364 blocks = 1;
1365 }
1366
1367 for (m = 0; m < blocks; m++) {
1368 for (channel = 0; channel < avctx->channels; channel++) {
1369 int prev1 = c->status[channel].sample1;
1370 int prev2 = c->status[channel].sample2;
1371
1372 samples = samples_p[channel] + m * 16;
1373 /* Read in every sample for this channel. */
1374 for (i = 0; i < samples_per_block; i++) {
1375 int byte = bytestream2_get_byteu(&gb);
1376 int scale = 1 << (byte >> 4);
1377 int index = byte & 0xf;
1378 int factor1 = ff_adpcm_afc_coeffs[0][index];
1379 int factor2 = ff_adpcm_afc_coeffs[1][index];
1380
1381 /* Decode 16 samples. */
1382 for (n = 0; n < 16; n++) {
1383 int32_t sampledat;
1384
1385 if (n & 1) {
1386 sampledat = sign_extend(byte, 4);
1387 } else {
1388 byte = bytestream2_get_byteu(&gb);
1389 sampledat = sign_extend(byte >> 4, 4);
1390 }
1391
1392 sampledat = ((prev1 * factor1 + prev2 * factor2) +
1393 ((sampledat * scale) << 11)) >> 11;
1394 *samples = av_clip_int16(sampledat);
1395 prev2 = prev1;
1396 prev1 = *samples++;
1397 }
1398 }
1399
1400 c->status[channel].sample1 = prev1;
1401 c->status[channel].sample2 = prev2;
1402 }
1403 }
1404 bytestream2_seek(&gb, 0, SEEK_END);
1405 break;
1406 }
1407 case AV_CODEC_ID_ADPCM_THP:
1408 {
1409 int table[6][16];
1410 int ch;
1411
1412 if (avctx->extradata) {
1413 GetByteContext tb;
1414 if (avctx->extradata_size < 32 * avctx->channels) {
1415 av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1416 return AVERROR_INVALIDDATA;
1417 }
1418
1419 bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1420 for (i = 0; i < avctx->channels; i++)
1421 for (n = 0; n < 16; n++)
1422 table[i][n] = sign_extend(bytestream2_get_be16u(&tb), 16);
1423 } else {
1424 for (i = 0; i < avctx->channels; i++)
1425 for (n = 0; n < 16; n++)
1426 table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1427
1428 /* Initialize the previous sample. */
1429 for (i = 0; i < avctx->channels; i++) {
1430 c->status[i].sample1 = sign_extend(bytestream2_get_be16u(&gb), 16);
1431 c->status[i].sample2 = sign_extend(bytestream2_get_be16u(&gb), 16);
1432 }
1433 }
1434
1435 for (ch = 0; ch < avctx->channels; ch++) {
1436 samples = samples_p[ch];
1437
1438 /* Read in every sample for this channel. */
1439 for (i = 0; i < nb_samples / 14; i++) {
1440 int byte = bytestream2_get_byteu(&gb);
1441 int index = (byte >> 4) & 7;
1442 unsigned int exp = byte & 0x0F;
1443 int factor1 = table[ch][index * 2];
1444 int factor2 = table[ch][index * 2 + 1];
1445
1446 /* Decode 14 samples. */
1447 for (n = 0; n < 14; n++) {
1448 int32_t sampledat;
1449
1450 if (n & 1) {
1451 sampledat = sign_extend(byte, 4);
1452 } else {
1453 byte = bytestream2_get_byteu(&gb);
1454 sampledat = sign_extend(byte >> 4, 4);
1455 }
1456
1457 sampledat = ((c->status[ch].sample1 * factor1
1458 + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1459 *samples = av_clip_int16(sampledat);
1460 c->status[ch].sample2 = c->status[ch].sample1;
1461 c->status[ch].sample1 = *samples++;
1462 }
1463 }
1464 }
1465 break;
1466 }
1467 case AV_CODEC_ID_ADPCM_DTK:
1468 for (channel = 0; channel < avctx->channels; channel++) {
1469 samples = samples_p[channel];
1470
1471 /* Read in every sample for this channel. */
1472 for (i = 0; i < nb_samples / 28; i++) {
1473 int byte, header;
1474 if (channel)
1475 bytestream2_skipu(&gb, 1);
1476 header = bytestream2_get_byteu(&gb);
1477 bytestream2_skipu(&gb, 3 - channel);
1478
1479 /* Decode 28 samples. */
1480 for (n = 0; n < 28; n++) {
1481 int32_t sampledat, prev;
1482
1483 switch (header >> 4) {
1484 case 1:
1485 prev = (c->status[channel].sample1 * 0x3c);
1486 break;
1487 case 2:
1488 prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1489 break;
1490 case 3:
1491 prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1492 break;
1493 default:
1494 prev = 0;
1495 }
1496
1497 prev = av_clip((prev + 0x20) >> 6, -0x200000, 0x1fffff);
1498
1499 byte = bytestream2_get_byteu(&gb);
1500 if (!channel)
1501 sampledat = sign_extend(byte, 4);
1502 else
1503 sampledat = sign_extend(byte >> 4, 4);
1504
1505 sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1506 *samples++ = av_clip_int16(sampledat >> 6);
1507 c->status[channel].sample2 = c->status[channel].sample1;
1508 c->status[channel].sample1 = sampledat;
1509 }
1510 }
1511 if (!channel)
1512 bytestream2_seek(&gb, 0, SEEK_SET);
1513 }
1514 break;
1515
1516 default:
1517 return -1;
1518 }
1519
1520 if (avpkt->size && bytestream2_tell(&gb) == 0) {
1521 av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1522 return AVERROR_INVALIDDATA;
1523 }
1524
1525 *got_frame_ptr = 1;
1526
1527 return bytestream2_tell(&gb);
1528}
1529
1530
1531static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
1532 AV_SAMPLE_FMT_NONE };
1533static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
1534 AV_SAMPLE_FMT_NONE };
1535static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
1536 AV_SAMPLE_FMT_S16P,
1537 AV_SAMPLE_FMT_NONE };
1538
1539#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1540AVCodec ff_ ## name_ ## _decoder = { \
1541 .name = #name_, \
1542 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1543 .type = AVMEDIA_TYPE_AUDIO, \
1544 .id = id_, \
1545 .priv_data_size = sizeof(ADPCMDecodeContext), \
1546 .init = adpcm_decode_init, \
1547 .decode = adpcm_decode_frame, \
1548 .capabilities = CODEC_CAP_DR1, \
1549 .sample_fmts = sample_fmts_, \
1550}
1551
1552/* Note: Do not forget to add new entries to the Makefile as well. */
1553ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1554ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1555ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1556ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1557ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1558ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1559ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1560ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1561ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1562ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1563ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1564ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1565ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1566ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1567ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1568ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1569ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1570ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1571ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1572ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1573ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1574ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1575ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1576ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1577ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1578ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1579ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1580ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1581ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1582ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1583ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");