Imported Debian version 2.5.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / exr.c
CommitLineData
2ba45a60
DM
1/*
2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2009 Jimmy Christensen
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * OpenEXR decoder
25 * @author Jimmy Christensen
26 *
27 * For more information on the OpenEXR format, visit:
28 * http://openexr.com/
29 *
30 * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
31 * exr_half2float() is credited to Aaftab Munshi; Dan Ginsburg, Dave Shreiner.
32 *
33 */
34
35#include <zlib.h>
36#include <float.h>
37
38#include "libavutil/imgutils.h"
39#include "libavutil/opt.h"
40#include "libavutil/intfloat.h"
41
42#include "avcodec.h"
43#include "bytestream.h"
44#include "get_bits.h"
45#include "internal.h"
46#include "mathops.h"
47#include "thread.h"
48
49enum ExrCompr {
50 EXR_RAW,
51 EXR_RLE,
52 EXR_ZIP1,
53 EXR_ZIP16,
54 EXR_PIZ,
55 EXR_PXR24,
56 EXR_B44,
57 EXR_B44A,
58 EXR_UNKN,
59};
60
61enum ExrPixelType {
62 EXR_UINT,
63 EXR_HALF,
64 EXR_FLOAT,
65 EXR_UNKNOWN,
66};
67
68typedef struct EXRChannel {
69 int xsub, ysub;
70 enum ExrPixelType pixel_type;
71} EXRChannel;
72
73typedef struct EXRThreadData {
74 uint8_t *uncompressed_data;
75 int uncompressed_size;
76
77 uint8_t *tmp;
78 int tmp_size;
79
80 uint8_t *bitmap;
81 uint16_t *lut;
82} EXRThreadData;
83
84typedef struct EXRContext {
85 AVClass *class;
86 AVFrame *picture;
87 AVCodecContext *avctx;
88
89 enum ExrCompr compression;
90 enum ExrPixelType pixel_type;
91 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
92 const AVPixFmtDescriptor *desc;
93
94 int w, h;
95 uint32_t xmax, xmin;
96 uint32_t ymax, ymin;
97 uint32_t xdelta, ydelta;
98 int ysize;
99
100 uint64_t scan_line_size;
101 int scan_lines_per_block;
102
103 GetByteContext gb;
104 const uint8_t *buf;
105 int buf_size;
106
107 EXRChannel *channels;
108 int nb_channels;
109
110 EXRThreadData *thread_data;
111
112 const char *layer;
113
114 float gamma;
115
116 uint16_t gamma_table[65536];
117
118} EXRContext;
119
120/* -15 stored using a single precision bias of 127 */
121#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
122/* max exponent value in single precision that will be converted
123 * to Inf or Nan when stored as a half-float */
124#define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
125
126/* 255 is the max exponent biased value */
127#define FLOAT_MAX_BIASED_EXP (0xFF << 23)
128
129#define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
130
131/*
132 * Convert a half float as a uint16_t into a full float.
133 *
134 * @param hf half float as uint16_t
135 *
136 * @return float value
137 */
138static union av_intfloat32 exr_half2float(uint16_t hf)
139{
140 unsigned int sign = (unsigned int)(hf >> 15);
141 unsigned int mantissa = (unsigned int)(hf & ((1 << 10) - 1));
142 unsigned int exp = (unsigned int)(hf & HALF_FLOAT_MAX_BIASED_EXP);
143 union av_intfloat32 f;
144
145 if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
146 // we have a half-float NaN or Inf
147 // half-float NaNs will be converted to a single precision NaN
148 // half-float Infs will be converted to a single precision Inf
149 exp = FLOAT_MAX_BIASED_EXP;
150 if (mantissa)
151 mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
152 } else if (exp == 0x0) {
153 // convert half-float zero/denorm to single precision value
154 if (mantissa) {
155 mantissa <<= 1;
156 exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
157 // check for leading 1 in denorm mantissa
158 while ((mantissa & (1 << 10))) {
159 // for every leading 0, decrement single precision exponent by 1
160 // and shift half-float mantissa value to the left
161 mantissa <<= 1;
162 exp -= (1 << 23);
163 }
164 // clamp the mantissa to 10-bits
165 mantissa &= ((1 << 10) - 1);
166 // shift left to generate single-precision mantissa of 23-bits
167 mantissa <<= 13;
168 }
169 } else {
170 // shift left to generate single-precision mantissa of 23-bits
171 mantissa <<= 13;
172 // generate single precision biased exponent value
173 exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
174 }
175
176 f.i = (sign << 31) | exp | mantissa;
177
178 return f;
179}
180
181
182/**
183 * Convert from 32-bit float as uint32_t to uint16_t.
184 *
185 * @param v 32-bit float
186 *
187 * @return normalized 16-bit unsigned int
188 */
189static inline uint16_t exr_flt2uint(uint32_t v)
190{
191 unsigned int exp = v >> 23;
192 // "HACK": negative values result in exp< 0, so clipping them to 0
193 // is also handled by this condition, avoids explicit check for sign bit.
194 if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
195 return 0;
196 if (exp >= 127)
197 return 0xffff;
198 v &= 0x007fffff;
199 return (v + (1 << 23)) >> (127 + 7 - exp);
200}
201
202/**
203 * Convert from 16-bit float as uint16_t to uint16_t.
204 *
205 * @param v 16-bit float
206 *
207 * @return normalized 16-bit unsigned int
208 */
209static inline uint16_t exr_halflt2uint(uint16_t v)
210{
211 unsigned exp = 14 - (v >> 10);
212 if (exp >= 14) {
213 if (exp == 14)
214 return (v >> 9) & 1;
215 else
216 return (v & 0x8000) ? 0 : 0xffff;
217 }
218 v <<= 6;
219 return (v + (1 << 16)) >> (exp + 1);
220}
221
222static void predictor(uint8_t *src, int size)
223{
224 uint8_t *t = src + 1;
225 uint8_t *stop = src + size;
226
227 while (t < stop) {
228 int d = (int) t[-1] + (int) t[0] - 128;
229 t[0] = d;
230 ++t;
231 }
232}
233
234static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
235{
236 const int8_t *t1 = src;
237 const int8_t *t2 = src + (size + 1) / 2;
238 int8_t *s = dst;
239 int8_t *stop = s + size;
240
241 while (1) {
242 if (s < stop)
243 *(s++) = *(t1++);
244 else
245 break;
246
247 if (s < stop)
248 *(s++) = *(t2++);
249 else
250 break;
251 }
252}
253
254static int zip_uncompress(const uint8_t *src, int compressed_size,
255 int uncompressed_size, EXRThreadData *td)
256{
257 unsigned long dest_len = uncompressed_size;
258
259 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
260 dest_len != uncompressed_size)
261 return AVERROR_INVALIDDATA;
262
263 predictor(td->tmp, uncompressed_size);
264 reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
265
266 return 0;
267}
268
269static int rle_uncompress(const uint8_t *src, int compressed_size,
270 int uncompressed_size, EXRThreadData *td)
271{
272 uint8_t *d = td->tmp;
273 const int8_t *s = src;
274 int ssize = compressed_size;
275 int dsize = uncompressed_size;
276 uint8_t *dend = d + dsize;
277 int count;
278
279 while (ssize > 0) {
280 count = *s++;
281
282 if (count < 0) {
283 count = -count;
284
285 if ((dsize -= count) < 0 ||
286 (ssize -= count + 1) < 0)
287 return AVERROR_INVALIDDATA;
288
289 while (count--)
290 *d++ = *s++;
291 } else {
292 count++;
293
294 if ((dsize -= count) < 0 ||
295 (ssize -= 2) < 0)
296 return AVERROR_INVALIDDATA;
297
298 while (count--)
299 *d++ = *s;
300
301 s++;
302 }
303 }
304
305 if (dend != d)
306 return AVERROR_INVALIDDATA;
307
308 predictor(td->tmp, uncompressed_size);
309 reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
310
311 return 0;
312}
313
314#define USHORT_RANGE (1 << 16)
315#define BITMAP_SIZE (1 << 13)
316
317static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
318{
319 int i, k = 0;
320
321 for (i = 0; i < USHORT_RANGE; i++)
322 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
323 lut[k++] = i;
324
325 i = k - 1;
326
327 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
328
329 return i;
330}
331
332static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
333{
334 int i;
335
336 for (i = 0; i < dsize; ++i)
337 dst[i] = lut[dst[i]];
338}
339
340#define HUF_ENCBITS 16 // literal (value) bit length
341#define HUF_DECBITS 14 // decoding bit size (>= 8)
342
343#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
344#define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
345#define HUF_DECMASK (HUF_DECSIZE - 1)
346
347typedef struct HufDec {
348 int len;
349 int lit;
350 int *p;
351} HufDec;
352
353static void huf_canonical_code_table(uint64_t *hcode)
354{
355 uint64_t c, n[59] = { 0 };
356 int i;
357
358 for (i = 0; i < HUF_ENCSIZE; ++i)
359 n[hcode[i]] += 1;
360
361 c = 0;
362 for (i = 58; i > 0; --i) {
363 uint64_t nc = ((c + n[i]) >> 1);
364 n[i] = c;
365 c = nc;
366 }
367
368 for (i = 0; i < HUF_ENCSIZE; ++i) {
369 int l = hcode[i];
370
371 if (l > 0)
372 hcode[i] = l | (n[l]++ << 6);
373 }
374}
375
376#define SHORT_ZEROCODE_RUN 59
377#define LONG_ZEROCODE_RUN 63
378#define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
379#define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
380
381static int huf_unpack_enc_table(GetByteContext *gb,
382 int32_t im, int32_t iM, uint64_t *hcode)
383{
384 GetBitContext gbit;
f6fa7814
DM
385 int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
386 if (ret < 0)
387 return ret;
2ba45a60
DM
388
389 for (; im <= iM; im++) {
390 uint64_t l = hcode[im] = get_bits(&gbit, 6);
391
392 if (l == LONG_ZEROCODE_RUN) {
393 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
394
395 if (im + zerun > iM + 1)
396 return AVERROR_INVALIDDATA;
397
398 while (zerun--)
399 hcode[im++] = 0;
400
401 im--;
402 } else if (l >= SHORT_ZEROCODE_RUN) {
403 int zerun = l - SHORT_ZEROCODE_RUN + 2;
404
405 if (im + zerun > iM + 1)
406 return AVERROR_INVALIDDATA;
407
408 while (zerun--)
409 hcode[im++] = 0;
410
411 im--;
412 }
413 }
414
415 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
416 huf_canonical_code_table(hcode);
417
418 return 0;
419}
420
421static int huf_build_dec_table(const uint64_t *hcode, int im,
422 int iM, HufDec *hdecod)
423{
424 for (; im <= iM; im++) {
425 uint64_t c = hcode[im] >> 6;
426 int i, l = hcode[im] & 63;
427
428 if (c >> l)
429 return AVERROR_INVALIDDATA;
430
431 if (l > HUF_DECBITS) {
432 HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
433 if (pl->len)
434 return AVERROR_INVALIDDATA;
435
436 pl->lit++;
437
438 pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
439 if (!pl->p)
440 return AVERROR(ENOMEM);
441
442 pl->p[pl->lit - 1] = im;
443 } else if (l) {
444 HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
445
446 for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
447 if (pl->len || pl->p)
448 return AVERROR_INVALIDDATA;
449 pl->len = l;
450 pl->lit = im;
451 }
452 }
453 }
454
455 return 0;
456}
457
458#define get_char(c, lc, gb) \
459{ \
460 c = (c << 8) | bytestream2_get_byte(gb); \
461 lc += 8; \
462}
463
464#define get_code(po, rlc, c, lc, gb, out, oe) \
465{ \
466 if (po == rlc) { \
467 if (lc < 8) \
468 get_char(c, lc, gb); \
469 lc -= 8; \
470 \
471 cs = c >> lc; \
472 \
473 if (out + cs > oe) \
474 return AVERROR_INVALIDDATA; \
475 \
476 s = out[-1]; \
477 \
478 while (cs-- > 0) \
479 *out++ = s; \
480 } else if (out < oe) { \
481 *out++ = po; \
482 } else { \
483 return AVERROR_INVALIDDATA; \
484 } \
485}
486
487static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
488 GetByteContext *gb, int nbits,
489 int rlc, int no, uint16_t *out)
490{
491 uint64_t c = 0;
492 uint16_t *outb = out;
493 uint16_t *oe = out + no;
494 const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
495 uint8_t cs, s;
496 int i, lc = 0;
497
498 while (gb->buffer < ie) {
499 get_char(c, lc, gb);
500
501 while (lc >= HUF_DECBITS) {
502 const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
503
504 if (pl.len) {
505 lc -= pl.len;
506 get_code(pl.lit, rlc, c, lc, gb, out, oe);
507 } else {
508 int j;
509
510 if (!pl.p)
511 return AVERROR_INVALIDDATA;
512
513 for (j = 0; j < pl.lit; j++) {
514 int l = hcode[pl.p[j]] & 63;
515
516 while (lc < l && bytestream2_get_bytes_left(gb) > 0)
517 get_char(c, lc, gb);
518
519 if (lc >= l) {
520 if ((hcode[pl.p[j]] >> 6) ==
521 ((c >> (lc - l)) & ((1LL << l) - 1))) {
522 lc -= l;
523 get_code(pl.p[j], rlc, c, lc, gb, out, oe);
524 break;
525 }
526 }
527 }
528
529 if (j == pl.lit)
530 return AVERROR_INVALIDDATA;
531 }
532 }
533 }
534
535 i = (8 - nbits) & 7;
536 c >>= i;
537 lc -= i;
538
539 while (lc > 0) {
540 const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
541
542 if (pl.len) {
543 lc -= pl.len;
544 get_code(pl.lit, rlc, c, lc, gb, out, oe);
545 } else {
546 return AVERROR_INVALIDDATA;
547 }
548 }
549
550 if (out - outb != no)
551 return AVERROR_INVALIDDATA;
552 return 0;
553}
554
555static int huf_uncompress(GetByteContext *gb,
556 uint16_t *dst, int dst_size)
557{
558 int32_t src_size, im, iM;
559 uint32_t nBits;
560 uint64_t *freq;
561 HufDec *hdec;
562 int ret, i;
563
564 src_size = bytestream2_get_le32(gb);
565 im = bytestream2_get_le32(gb);
566 iM = bytestream2_get_le32(gb);
567 bytestream2_skip(gb, 4);
568 nBits = bytestream2_get_le32(gb);
569 if (im < 0 || im >= HUF_ENCSIZE ||
570 iM < 0 || iM >= HUF_ENCSIZE ||
571 src_size < 0)
572 return AVERROR_INVALIDDATA;
573
574 bytestream2_skip(gb, 4);
575
576 freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
577 hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
578 if (!freq || !hdec) {
579 ret = AVERROR(ENOMEM);
580 goto fail;
581 }
582
583 if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
584 goto fail;
585
586 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
587 ret = AVERROR_INVALIDDATA;
588 goto fail;
589 }
590
591 if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
592 goto fail;
593 ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
594
595fail:
596 for (i = 0; i < HUF_DECSIZE; i++)
597 if (hdec)
598 av_freep(&hdec[i].p);
599
600 av_free(freq);
601 av_free(hdec);
602
603 return ret;
604}
605
606static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
607{
608 int16_t ls = l;
609 int16_t hs = h;
610 int hi = hs;
611 int ai = ls + (hi & 1) + (hi >> 1);
612 int16_t as = ai;
613 int16_t bs = ai - hi;
614
615 *a = as;
616 *b = bs;
617}
618
619#define NBITS 16
620#define A_OFFSET (1 << (NBITS - 1))
621#define MOD_MASK ((1 << NBITS) - 1)
622
623static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
624{
625 int m = l;
626 int d = h;
627 int bb = (m - (d >> 1)) & MOD_MASK;
628 int aa = (d + bb - A_OFFSET) & MOD_MASK;
629 *b = bb;
630 *a = aa;
631}
632
633static void wav_decode(uint16_t *in, int nx, int ox,
634 int ny, int oy, uint16_t mx)
635{
636 int w14 = (mx < (1 << 14));
637 int n = (nx > ny) ? ny : nx;
638 int p = 1;
639 int p2;
640
641 while (p <= n)
642 p <<= 1;
643
644 p >>= 1;
645 p2 = p;
646 p >>= 1;
647
648 while (p >= 1) {
649 uint16_t *py = in;
650 uint16_t *ey = in + oy * (ny - p2);
651 uint16_t i00, i01, i10, i11;
652 int oy1 = oy * p;
653 int oy2 = oy * p2;
654 int ox1 = ox * p;
655 int ox2 = ox * p2;
656
657 for (; py <= ey; py += oy2) {
658 uint16_t *px = py;
659 uint16_t *ex = py + ox * (nx - p2);
660
661 for (; px <= ex; px += ox2) {
662 uint16_t *p01 = px + ox1;
663 uint16_t *p10 = px + oy1;
664 uint16_t *p11 = p10 + ox1;
665
666 if (w14) {
667 wdec14(*px, *p10, &i00, &i10);
668 wdec14(*p01, *p11, &i01, &i11);
669 wdec14(i00, i01, px, p01);
670 wdec14(i10, i11, p10, p11);
671 } else {
672 wdec16(*px, *p10, &i00, &i10);
673 wdec16(*p01, *p11, &i01, &i11);
674 wdec16(i00, i01, px, p01);
675 wdec16(i10, i11, p10, p11);
676 }
677 }
678
679 if (nx & p) {
680 uint16_t *p10 = px + oy1;
681
682 if (w14)
683 wdec14(*px, *p10, &i00, p10);
684 else
685 wdec16(*px, *p10, &i00, p10);
686
687 *px = i00;
688 }
689 }
690
691 if (ny & p) {
692 uint16_t *px = py;
693 uint16_t *ex = py + ox * (nx - p2);
694
695 for (; px <= ex; px += ox2) {
696 uint16_t *p01 = px + ox1;
697
698 if (w14)
699 wdec14(*px, *p01, &i00, p01);
700 else
701 wdec16(*px, *p01, &i00, p01);
702
703 *px = i00;
704 }
705 }
706
707 p2 = p;
708 p >>= 1;
709 }
710}
711
712static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
713 int dsize, EXRThreadData *td)
714{
715 GetByteContext gb;
716 uint16_t maxval, min_non_zero, max_non_zero;
717 uint16_t *ptr;
718 uint16_t *tmp = (uint16_t *)td->tmp;
719 uint8_t *out;
720 int ret, i, j;
721
722 if (!td->bitmap)
723 td->bitmap = av_malloc(BITMAP_SIZE);
724 if (!td->lut)
725 td->lut = av_malloc(1 << 17);
726 if (!td->bitmap || !td->lut) {
727 av_freep(&td->bitmap);
728 av_freep(&td->lut);
729 return AVERROR(ENOMEM);
730 }
731
732 bytestream2_init(&gb, src, ssize);
733 min_non_zero = bytestream2_get_le16(&gb);
734 max_non_zero = bytestream2_get_le16(&gb);
735
736 if (max_non_zero >= BITMAP_SIZE)
737 return AVERROR_INVALIDDATA;
738
739 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
740 if (min_non_zero <= max_non_zero)
741 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
742 max_non_zero - min_non_zero + 1);
743 memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
744
745 maxval = reverse_lut(td->bitmap, td->lut);
746
747 ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
748 if (ret)
749 return ret;
750
751 ptr = tmp;
752 for (i = 0; i < s->nb_channels; i++) {
753 EXRChannel *channel = &s->channels[i];
754 int size = channel->pixel_type;
755
756 for (j = 0; j < size; j++)
757 wav_decode(ptr + j, s->xdelta, size, s->ysize,
758 s->xdelta * size, maxval);
759 ptr += s->xdelta * s->ysize * size;
760 }
761
762 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
763
764 out = td->uncompressed_data;
765 for (i = 0; i < s->ysize; i++)
766 for (j = 0; j < s->nb_channels; j++) {
767 uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
768 memcpy(out, in, s->xdelta * 2);
769 out += s->xdelta * 2;
770 }
771
772 return 0;
773}
774
775static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
776 int compressed_size, int uncompressed_size,
777 EXRThreadData *td)
778{
779 unsigned long dest_len = uncompressed_size;
780 const uint8_t *in = td->tmp;
781 uint8_t *out;
782 int c, i, j;
783
784 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
785 dest_len != uncompressed_size)
786 return AVERROR_INVALIDDATA;
787
788 out = td->uncompressed_data;
789 for (i = 0; i < s->ysize; i++)
790 for (c = 0; c < s->nb_channels; c++) {
791 EXRChannel *channel = &s->channels[c];
792 const uint8_t *ptr[4];
793 uint32_t pixel = 0;
794
795 switch (channel->pixel_type) {
796 case EXR_FLOAT:
797 ptr[0] = in;
798 ptr[1] = ptr[0] + s->xdelta;
799 ptr[2] = ptr[1] + s->xdelta;
800 in = ptr[2] + s->xdelta;
801
802 for (j = 0; j < s->xdelta; ++j) {
803 uint32_t diff = (*(ptr[0]++) << 24) |
804 (*(ptr[1]++) << 16) |
805 (*(ptr[2]++) << 8);
806 pixel += diff;
807 bytestream_put_le32(&out, pixel);
808 }
809 break;
810 case EXR_HALF:
811 ptr[0] = in;
812 ptr[1] = ptr[0] + s->xdelta;
813 in = ptr[1] + s->xdelta;
814 for (j = 0; j < s->xdelta; j++) {
815 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
816
817 pixel += diff;
818 bytestream_put_le16(&out, pixel);
819 }
820 break;
821 default:
822 return AVERROR_INVALIDDATA;
823 }
824 }
825
826 return 0;
827}
828
829static int decode_block(AVCodecContext *avctx, void *tdata,
830 int jobnr, int threadnr)
831{
832 EXRContext *s = avctx->priv_data;
833 AVFrame *const p = s->picture;
834 EXRThreadData *td = &s->thread_data[threadnr];
835 const uint8_t *channel_buffer[4] = { 0 };
836 const uint8_t *buf = s->buf;
837 uint64_t line_offset, uncompressed_size;
838 uint32_t xdelta = s->xdelta;
839 uint16_t *ptr_x;
840 uint8_t *ptr;
841 uint32_t data_size, line;
842 const uint8_t *src;
843 int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
844 int bxmin = s->xmin * 2 * s->desc->nb_components;
845 int i, x, buf_size = s->buf_size;
846 int ret;
847 float one_gamma = 1.0f / s->gamma;
848
849 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
850 // Check if the buffer has the required bytes needed from the offset
851 if (line_offset > buf_size - 8)
852 return AVERROR_INVALIDDATA;
853
854 src = buf + line_offset + 8;
855 line = AV_RL32(src - 8);
856 if (line < s->ymin || line > s->ymax)
857 return AVERROR_INVALIDDATA;
858
859 data_size = AV_RL32(src - 4);
860 if (data_size <= 0 || data_size > buf_size)
861 return AVERROR_INVALIDDATA;
862
863 s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
864 uncompressed_size = s->scan_line_size * s->ysize;
865 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
866 line_offset > buf_size - uncompressed_size)) ||
867 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
868 line_offset > buf_size - data_size))) {
869 return AVERROR_INVALIDDATA;
870 }
871
872 if (data_size < uncompressed_size) {
873 av_fast_padded_malloc(&td->uncompressed_data,
874 &td->uncompressed_size, uncompressed_size);
875 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
876 if (!td->uncompressed_data || !td->tmp)
877 return AVERROR(ENOMEM);
878
879 ret = AVERROR_INVALIDDATA;
880 switch (s->compression) {
881 case EXR_ZIP1:
882 case EXR_ZIP16:
883 ret = zip_uncompress(src, data_size, uncompressed_size, td);
884 break;
885 case EXR_PIZ:
886 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
887 break;
888 case EXR_PXR24:
889 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
890 break;
891 case EXR_RLE:
892 ret = rle_uncompress(src, data_size, uncompressed_size, td);
893 }
894 if (ret < 0) {
895 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
896 return ret;
897 }
898 src = td->uncompressed_data;
899 }
900
901 channel_buffer[0] = src + xdelta * s->channel_offsets[0];
902 channel_buffer[1] = src + xdelta * s->channel_offsets[1];
903 channel_buffer[2] = src + xdelta * s->channel_offsets[2];
904 if (s->channel_offsets[3] >= 0)
905 channel_buffer[3] = src + xdelta * s->channel_offsets[3];
906
907 ptr = p->data[0] + line * p->linesize[0];
908 for (i = 0;
909 i < s->scan_lines_per_block && line + i <= s->ymax;
910 i++, ptr += p->linesize[0]) {
911 const uint8_t *r, *g, *b, *a;
912
913 r = channel_buffer[0];
914 g = channel_buffer[1];
915 b = channel_buffer[2];
916 if (channel_buffer[3])
917 a = channel_buffer[3];
918
919 ptr_x = (uint16_t *) ptr;
920
921 // Zero out the start if xmin is not 0
922 memset(ptr_x, 0, bxmin);
923 ptr_x += s->xmin * s->desc->nb_components;
924 if (s->pixel_type == EXR_FLOAT) {
925 // 32-bit
926 for (x = 0; x < xdelta; x++) {
927 union av_intfloat32 t;
928 t.i = bytestream_get_le32(&r);
929 if ( t.f > 0.0f ) /* avoid negative values */
930 t.f = powf(t.f, one_gamma);
931 *ptr_x++ = exr_flt2uint(t.i);
932
933 t.i = bytestream_get_le32(&g);
934 if ( t.f > 0.0f )
935 t.f = powf(t.f, one_gamma);
936 *ptr_x++ = exr_flt2uint(t.i);
937
938 t.i = bytestream_get_le32(&b);
939 if ( t.f > 0.0f )
940 t.f = powf(t.f, one_gamma);
941 *ptr_x++ = exr_flt2uint(t.i);
942 if (channel_buffer[3])
943 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
944 }
945 } else {
946 // 16-bit
947 for (x = 0; x < xdelta; x++) {
948 *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
949 *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
950 *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
951 if (channel_buffer[3])
952 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
953 }
954 }
955
956 // Zero out the end if xmax+1 is not w
957 memset(ptr_x, 0, axmax);
958
959 channel_buffer[0] += s->scan_line_size;
960 channel_buffer[1] += s->scan_line_size;
961 channel_buffer[2] += s->scan_line_size;
962 if (channel_buffer[3])
963 channel_buffer[3] += s->scan_line_size;
964 }
965
966 return 0;
967}
968
969/**
970 * Check if the variable name corresponds to its data type.
971 *
972 * @param s the EXRContext
973 * @param value_name name of the variable to check
974 * @param value_type type of the variable to check
975 * @param minimum_length minimum length of the variable data
976 *
977 * @return bytes to read containing variable data
978 * -1 if variable is not found
979 * 0 if buffer ended prematurely
980 */
981static int check_header_variable(EXRContext *s,
982 const char *value_name,
983 const char *value_type,
984 unsigned int minimum_length)
985{
986 int var_size = -1;
987
988 if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
989 !strcmp(s->gb.buffer, value_name)) {
990 // found value_name, jump to value_type (null terminated strings)
991 s->gb.buffer += strlen(value_name) + 1;
992 if (!strcmp(s->gb.buffer, value_type)) {
993 s->gb.buffer += strlen(value_type) + 1;
994 var_size = bytestream2_get_le32(&s->gb);
995 // don't go read past boundaries
996 if (var_size > bytestream2_get_bytes_left(&s->gb))
997 var_size = 0;
998 } else {
999 // value_type not found, reset the buffer
1000 s->gb.buffer -= strlen(value_name) + 1;
1001 av_log(s->avctx, AV_LOG_WARNING,
1002 "Unknown data type %s for header variable %s.\n",
1003 value_type, value_name);
1004 }
1005 }
1006
1007 return var_size;
1008}
1009
1010static int decode_header(EXRContext *s)
1011{
1012 int current_channel_offset = 0;
1013 int magic_number, version, flags, i;
1014
1015 if (bytestream2_get_bytes_left(&s->gb) < 10) {
1016 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1017 return AVERROR_INVALIDDATA;
1018 }
1019
1020 magic_number = bytestream2_get_le32(&s->gb);
1021 if (magic_number != 20000630) {
1022 /* As per documentation of OpenEXR, it is supposed to be
1023 * int 20000630 little-endian */
1024 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1025 return AVERROR_INVALIDDATA;
1026 }
1027
1028 version = bytestream2_get_byte(&s->gb);
1029 if (version != 2) {
1030 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1031 return AVERROR_PATCHWELCOME;
1032 }
1033
1034 flags = bytestream2_get_le24(&s->gb);
1035 if (flags & 0x02) {
1036 avpriv_report_missing_feature(s->avctx, "Tile support");
1037 return AVERROR_PATCHWELCOME;
1038 }
1039
1040 // Parse the header
1041 while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1042 int var_size;
1043 if ((var_size = check_header_variable(s, "channels",
1044 "chlist", 38)) >= 0) {
1045 GetByteContext ch_gb;
1046 if (!var_size)
1047 return AVERROR_INVALIDDATA;
1048
1049 bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1050
1051 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1052 EXRChannel *channel;
1053 enum ExrPixelType current_pixel_type;
1054 int channel_index = -1;
1055 int xsub, ysub;
1056
1057 if (strcmp(s->layer, "") != 0) {
1058 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1059 ch_gb.buffer += strlen(s->layer);
1060 if (*ch_gb.buffer == '.')
1061 ch_gb.buffer++; /* skip dot if not given */
1062 av_log(s->avctx, AV_LOG_INFO,
1063 "Layer %s.%s matched.\n", s->layer, ch_gb.buffer);
1064 }
1065 }
1066
1067 if (!strcmp(ch_gb.buffer, "R") ||
1068 !strcmp(ch_gb.buffer, "X") ||
1069 !strcmp(ch_gb.buffer, "U"))
1070 channel_index = 0;
1071 else if (!strcmp(ch_gb.buffer, "G") ||
1072 !strcmp(ch_gb.buffer, "Y") ||
1073 !strcmp(ch_gb.buffer, "V"))
1074 channel_index = 1;
1075 else if (!strcmp(ch_gb.buffer, "B") ||
1076 !strcmp(ch_gb.buffer, "Z") ||
1077 !strcmp(ch_gb.buffer, "W"))
1078 channel_index = 2;
1079 else if (!strcmp(ch_gb.buffer, "A"))
1080 channel_index = 3;
1081 else
1082 av_log(s->avctx, AV_LOG_WARNING,
1083 "Unsupported channel %.256s.\n", ch_gb.buffer);
1084
1085 /* skip until you get a 0 */
1086 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1087 bytestream2_get_byte(&ch_gb))
1088 continue;
1089
1090 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1091 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1092 return AVERROR_INVALIDDATA;
1093 }
1094
1095 current_pixel_type = bytestream2_get_le32(&ch_gb);
1096 if (current_pixel_type >= EXR_UNKNOWN) {
1097 avpriv_report_missing_feature(s->avctx,
1098 "Pixel type %d.\n",
1099 current_pixel_type);
1100 return AVERROR_PATCHWELCOME;
1101 }
1102
1103 bytestream2_skip(&ch_gb, 4);
1104 xsub = bytestream2_get_le32(&ch_gb);
1105 ysub = bytestream2_get_le32(&ch_gb);
1106 if (xsub != 1 || ysub != 1) {
1107 avpriv_report_missing_feature(s->avctx,
1108 "Subsampling %dx%d",
1109 xsub, ysub);
1110 return AVERROR_PATCHWELCOME;
1111 }
1112
1113 if (channel_index >= 0) {
1114 if (s->pixel_type != EXR_UNKNOWN &&
1115 s->pixel_type != current_pixel_type) {
1116 av_log(s->avctx, AV_LOG_ERROR,
1117 "RGB channels not of the same depth.\n");
1118 return AVERROR_INVALIDDATA;
1119 }
1120 s->pixel_type = current_pixel_type;
1121 s->channel_offsets[channel_index] = current_channel_offset;
1122 }
1123
1124 s->channels = av_realloc(s->channels,
1125 ++s->nb_channels * sizeof(EXRChannel));
1126 if (!s->channels)
1127 return AVERROR(ENOMEM);
1128 channel = &s->channels[s->nb_channels - 1];
1129 channel->pixel_type = current_pixel_type;
1130 channel->xsub = xsub;
1131 channel->ysub = ysub;
1132
1133 current_channel_offset += 1 << current_pixel_type;
1134 }
1135
1136 /* Check if all channels are set with an offset or if the channels
1137 * are causing an overflow */
1138 if (FFMIN3(s->channel_offsets[0],
1139 s->channel_offsets[1],
1140 s->channel_offsets[2]) < 0) {
1141 if (s->channel_offsets[0] < 0)
1142 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1143 if (s->channel_offsets[1] < 0)
1144 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1145 if (s->channel_offsets[2] < 0)
1146 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1147 return AVERROR_INVALIDDATA;
1148 }
1149
1150 // skip one last byte and update main gb
1151 s->gb.buffer = ch_gb.buffer + 1;
1152 continue;
1153 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1154 31)) >= 0) {
1155 if (!var_size)
1156 return AVERROR_INVALIDDATA;
1157
1158 s->xmin = bytestream2_get_le32(&s->gb);
1159 s->ymin = bytestream2_get_le32(&s->gb);
1160 s->xmax = bytestream2_get_le32(&s->gb);
1161 s->ymax = bytestream2_get_le32(&s->gb);
1162 s->xdelta = (s->xmax - s->xmin) + 1;
1163 s->ydelta = (s->ymax - s->ymin) + 1;
1164
1165 continue;
1166 } else if ((var_size = check_header_variable(s, "displayWindow",
1167 "box2i", 34)) >= 0) {
1168 if (!var_size)
1169 return AVERROR_INVALIDDATA;
1170
1171 bytestream2_skip(&s->gb, 8);
1172 s->w = bytestream2_get_le32(&s->gb) + 1;
1173 s->h = bytestream2_get_le32(&s->gb) + 1;
1174
1175 continue;
1176 } else if ((var_size = check_header_variable(s, "lineOrder",
1177 "lineOrder", 25)) >= 0) {
1178 int line_order;
1179 if (!var_size)
1180 return AVERROR_INVALIDDATA;
1181
1182 line_order = bytestream2_get_byte(&s->gb);
1183 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1184 if (line_order > 2) {
1185 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1186 return AVERROR_INVALIDDATA;
1187 }
1188
1189 continue;
1190 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1191 "float", 31)) >= 0) {
1192 if (!var_size)
1193 return AVERROR_INVALIDDATA;
1194
1195 ff_set_sar(s->avctx,
1196 av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255));
1197
1198 continue;
1199 } else if ((var_size = check_header_variable(s, "compression",
1200 "compression", 29)) >= 0) {
1201 if (!var_size)
1202 return AVERROR_INVALIDDATA;
1203
1204 if (s->compression == EXR_UNKN)
1205 s->compression = bytestream2_get_byte(&s->gb);
1206 else
1207 av_log(s->avctx, AV_LOG_WARNING,
1208 "Found more than one compression attribute.\n");
1209
1210 continue;
1211 }
1212
1213 // Check if there are enough bytes for a header
1214 if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1215 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1216 return AVERROR_INVALIDDATA;
1217 }
1218
1219 // Process unknown variables
1220 for (i = 0; i < 2; i++) // value_name and value_type
1221 while (bytestream2_get_byte(&s->gb) != 0);
1222
1223 // Skip variable length
1224 bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1225 }
1226
1227 if (s->compression == EXR_UNKN) {
1228 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1229 return AVERROR_INVALIDDATA;
1230 }
1231 s->scan_line_size = s->xdelta * current_channel_offset;
1232
1233 if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1234 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1235 return AVERROR_INVALIDDATA;
1236 }
1237
1238 // aaand we are done
1239 bytestream2_skip(&s->gb, 1);
1240 return 0;
1241}
1242
1243static int decode_frame(AVCodecContext *avctx, void *data,
1244 int *got_frame, AVPacket *avpkt)
1245{
1246 EXRContext *s = avctx->priv_data;
1247 ThreadFrame frame = { .f = data };
1248 AVFrame *picture = data;
1249 uint8_t *ptr;
1250
1251 int y, ret;
1252 int out_line_size;
1253 int scan_line_blocks;
1254
1255 bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1256
1257 if ((ret = decode_header(s)) < 0)
1258 return ret;
1259
1260 switch (s->pixel_type) {
1261 case EXR_FLOAT:
1262 case EXR_HALF:
1263 if (s->channel_offsets[3] >= 0)
1264 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1265 else
1266 avctx->pix_fmt = AV_PIX_FMT_RGB48;
1267 break;
1268 case EXR_UINT:
1269 avpriv_request_sample(avctx, "32-bit unsigned int");
1270 return AVERROR_PATCHWELCOME;
1271 default:
1272 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1273 return AVERROR_INVALIDDATA;
1274 }
1275
1276 switch (s->compression) {
1277 case EXR_RAW:
1278 case EXR_RLE:
1279 case EXR_ZIP1:
1280 s->scan_lines_per_block = 1;
1281 break;
1282 case EXR_PXR24:
1283 case EXR_ZIP16:
1284 s->scan_lines_per_block = 16;
1285 break;
1286 case EXR_PIZ:
1287 s->scan_lines_per_block = 32;
1288 break;
1289 default:
1290 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1291 return AVERROR_PATCHWELCOME;
1292 }
1293
1294 /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1295 * the actual image size. */
1296 if (s->xmin > s->xmax ||
1297 s->ymin > s->ymax ||
1298 s->xdelta != s->xmax - s->xmin + 1 ||
1299 s->xmax >= s->w ||
1300 s->ymax >= s->h) {
1301 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1302 return AVERROR_INVALIDDATA;
1303 }
1304
1305 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1306 return ret;
1307
1308 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1309 if (!s->desc)
1310 return AVERROR_INVALIDDATA;
1311 out_line_size = avctx->width * 2 * s->desc->nb_components;
1312 scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1313 s->scan_lines_per_block;
1314
1315 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1316 return ret;
1317
1318 if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8)
1319 return AVERROR_INVALIDDATA;
1320
1321 // save pointer we are going to use in decode_block
1322 s->buf = avpkt->data;
1323 s->buf_size = avpkt->size;
1324 ptr = picture->data[0];
1325
1326 // Zero out the start if ymin is not 0
1327 for (y = 0; y < s->ymin; y++) {
1328 memset(ptr, 0, out_line_size);
1329 ptr += picture->linesize[0];
1330 }
1331
1332 s->picture = picture;
1333 avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1334
1335 // Zero out the end if ymax+1 is not h
1336 for (y = s->ymax + 1; y < avctx->height; y++) {
1337 memset(ptr, 0, out_line_size);
1338 ptr += picture->linesize[0];
1339 }
1340
1341 picture->pict_type = AV_PICTURE_TYPE_I;
1342 *got_frame = 1;
1343
1344 return avpkt->size;
1345}
1346
1347static av_cold int decode_init(AVCodecContext *avctx)
1348{
1349 uint32_t i;
1350 union av_intfloat32 t;
1351 EXRContext *s = avctx->priv_data;
1352 float one_gamma = 1.0f / s->gamma;
1353
1354 s->avctx = avctx;
1355 s->xmin = ~0;
1356 s->xmax = ~0;
1357 s->ymin = ~0;
1358 s->ymax = ~0;
1359 s->xdelta = ~0;
1360 s->ydelta = ~0;
1361 s->channel_offsets[0] = -1;
1362 s->channel_offsets[1] = -1;
1363 s->channel_offsets[2] = -1;
1364 s->channel_offsets[3] = -1;
1365 s->pixel_type = EXR_UNKNOWN;
1366 s->compression = EXR_UNKN;
1367 s->nb_channels = 0;
1368 s->w = 0;
1369 s->h = 0;
1370
1371 if ( one_gamma > 0.9999f && one_gamma < 1.0001f ) {
1372 for ( i = 0; i < 65536; ++i ) {
1373 s->gamma_table[i] = exr_halflt2uint(i);
1374 }
1375 } else {
1376 for ( i = 0; i < 65536; ++i ) {
1377 t = exr_half2float(i);
1378 /* If negative value we reuse half value */
1379 if ( t.f <= 0.0f ) {
1380 s->gamma_table[i] = exr_halflt2uint(i);
1381 } else {
1382 t.f = powf(t.f, one_gamma);
1383 s->gamma_table[i] = exr_flt2uint(t.i);
1384 }
1385 }
1386 }
1387
1388 // allocate thread data, used for non EXR_RAW compreesion types
1389 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1390 if (!s->thread_data)
1391 return AVERROR_INVALIDDATA;
1392
1393 return 0;
1394}
1395
1396static int decode_init_thread_copy(AVCodecContext *avctx)
1397{ EXRContext *s = avctx->priv_data;
1398
1399 // allocate thread data, used for non EXR_RAW compreesion types
1400 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1401 if (!s->thread_data)
1402 return AVERROR_INVALIDDATA;
1403
1404 return 0;
1405}
1406
1407static av_cold int decode_end(AVCodecContext *avctx)
1408{
1409 EXRContext *s = avctx->priv_data;
1410 int i;
1411 for (i = 0; i < avctx->thread_count; i++) {
1412 EXRThreadData *td = &s->thread_data[i];
1413 av_freep(&td->uncompressed_data);
1414 av_freep(&td->tmp);
1415 av_freep(&td->bitmap);
1416 av_freep(&td->lut);
1417 }
1418
1419 av_freep(&s->thread_data);
1420 av_freep(&s->channels);
1421
1422 return 0;
1423}
1424
1425#define OFFSET(x) offsetof(EXRContext, x)
1426#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1427static const AVOption options[] = {
1428 { "layer", "Set the decoding layer", OFFSET(layer),
1429 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1430 { "gamma", "Set the float gamma value when decoding (experimental/unsupported)", OFFSET(gamma),
1431 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1432 { NULL },
1433};
1434
1435static const AVClass exr_class = {
1436 .class_name = "EXR",
1437 .item_name = av_default_item_name,
1438 .option = options,
1439 .version = LIBAVUTIL_VERSION_INT,
1440};
1441
1442AVCodec ff_exr_decoder = {
1443 .name = "exr",
1444 .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1445 .type = AVMEDIA_TYPE_VIDEO,
1446 .id = AV_CODEC_ID_EXR,
1447 .priv_data_size = sizeof(EXRContext),
1448 .init = decode_init,
1449 .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1450 .close = decode_end,
1451 .decode = decode_frame,
1452 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS |
1453 CODEC_CAP_SLICE_THREADS,
1454 .priv_class = &exr_class,
1455};