Commit | Line | Data |
---|---|---|
2ba45a60 DM |
1 | /* |
2 | * This file is part of the Independent JPEG Group's software. | |
3 | * | |
4 | * The authors make NO WARRANTY or representation, either express or implied, | |
5 | * with respect to this software, its quality, accuracy, merchantability, or | |
6 | * fitness for a particular purpose. This software is provided "AS IS", and | |
7 | * you, its user, assume the entire risk as to its quality and accuracy. | |
8 | * | |
9 | * This software is copyright (C) 1994-1996, Thomas G. Lane. | |
10 | * All Rights Reserved except as specified below. | |
11 | * | |
12 | * Permission is hereby granted to use, copy, modify, and distribute this | |
13 | * software (or portions thereof) for any purpose, without fee, subject to | |
14 | * these conditions: | |
15 | * (1) If any part of the source code for this software is distributed, then | |
16 | * this README file must be included, with this copyright and no-warranty | |
17 | * notice unaltered; and any additions, deletions, or changes to the original | |
18 | * files must be clearly indicated in accompanying documentation. | |
19 | * (2) If only executable code is distributed, then the accompanying | |
20 | * documentation must state that "this software is based in part on the work | |
21 | * of the Independent JPEG Group". | |
22 | * (3) Permission for use of this software is granted only if the user accepts | |
23 | * full responsibility for any undesirable consequences; the authors accept | |
24 | * NO LIABILITY for damages of any kind. | |
25 | * | |
26 | * These conditions apply to any software derived from or based on the IJG | |
27 | * code, not just to the unmodified library. If you use our work, you ought | |
28 | * to acknowledge us. | |
29 | * | |
30 | * Permission is NOT granted for the use of any IJG author's name or company | |
31 | * name in advertising or publicity relating to this software or products | |
32 | * derived from it. This software may be referred to only as "the Independent | |
33 | * JPEG Group's software". | |
34 | * | |
35 | * We specifically permit and encourage the use of this software as the basis | |
36 | * of commercial products, provided that all warranty or liability claims are | |
37 | * assumed by the product vendor. | |
38 | * | |
39 | * This file contains a fast, not so accurate integer implementation of the | |
40 | * forward DCT (Discrete Cosine Transform). | |
41 | * | |
42 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |
43 | * on each column. Direct algorithms are also available, but they are | |
44 | * much more complex and seem not to be any faster when reduced to code. | |
45 | * | |
46 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
47 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
48 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
49 | * JPEG textbook (see REFERENCES section in file README). The following code | |
50 | * is based directly on figure 4-8 in P&M. | |
51 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
52 | * possible to arrange the computation so that many of the multiplies are | |
53 | * simple scalings of the final outputs. These multiplies can then be | |
54 | * folded into the multiplications or divisions by the JPEG quantization | |
55 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
56 | * to be done in the DCT itself. | |
57 | * The primary disadvantage of this method is that with fixed-point math, | |
58 | * accuracy is lost due to imprecise representation of the scaled | |
59 | * quantization values. The smaller the quantization table entry, the less | |
60 | * precise the scaled value, so this implementation does worse with high- | |
61 | * quality-setting files than with low-quality ones. | |
62 | */ | |
63 | ||
64 | /** | |
65 | * @file | |
66 | * Independent JPEG Group's fast AAN dct. | |
67 | */ | |
68 | ||
69 | #include <stdlib.h> | |
70 | #include <stdio.h> | |
71 | #include "libavutil/common.h" | |
72 | #include "dct.h" | |
73 | ||
74 | #define DCTSIZE 8 | |
75 | #define GLOBAL(x) x | |
76 | #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
77 | ||
78 | /* | |
79 | * This module is specialized to the case DCTSIZE = 8. | |
80 | */ | |
81 | ||
82 | #if DCTSIZE != 8 | |
83 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
84 | #endif | |
85 | ||
86 | ||
87 | /* Scaling decisions are generally the same as in the LL&M algorithm; | |
88 | * see jfdctint.c for more details. However, we choose to descale | |
89 | * (right shift) multiplication products as soon as they are formed, | |
90 | * rather than carrying additional fractional bits into subsequent additions. | |
91 | * This compromises accuracy slightly, but it lets us save a few shifts. | |
92 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | |
93 | * everywhere except in the multiplications proper; this saves a good deal | |
94 | * of work on 16-bit-int machines. | |
95 | * | |
96 | * Again to save a few shifts, the intermediate results between pass 1 and | |
97 | * pass 2 are not upscaled, but are represented only to integral precision. | |
98 | * | |
99 | * A final compromise is to represent the multiplicative constants to only | |
100 | * 8 fractional bits, rather than 13. This saves some shifting work on some | |
101 | * machines, and may also reduce the cost of multiplication (since there | |
102 | * are fewer one-bits in the constants). | |
103 | */ | |
104 | ||
105 | #define CONST_BITS 8 | |
106 | ||
107 | ||
108 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
109 | * causing a lot of useless floating-point operations at run time. | |
110 | * To get around this we use the following pre-calculated constants. | |
111 | * If you change CONST_BITS you may want to add appropriate values. | |
112 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
113 | */ | |
114 | ||
115 | #if CONST_BITS == 8 | |
116 | #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ | |
117 | #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ | |
118 | #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ | |
119 | #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ | |
120 | #else | |
121 | #define FIX_0_382683433 FIX(0.382683433) | |
122 | #define FIX_0_541196100 FIX(0.541196100) | |
123 | #define FIX_0_707106781 FIX(0.707106781) | |
124 | #define FIX_1_306562965 FIX(1.306562965) | |
125 | #endif | |
126 | ||
127 | ||
128 | /* We can gain a little more speed, with a further compromise in accuracy, | |
129 | * by omitting the addition in a descaling shift. This yields an incorrectly | |
130 | * rounded result half the time... | |
131 | */ | |
132 | ||
133 | #ifndef USE_ACCURATE_ROUNDING | |
134 | #undef DESCALE | |
135 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) | |
136 | #endif | |
137 | ||
138 | ||
139 | /* Multiply a int16_t variable by an int32_t constant, and immediately | |
140 | * descale to yield a int16_t result. | |
141 | */ | |
142 | ||
143 | #define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS)) | |
144 | ||
145 | static av_always_inline void row_fdct(int16_t * data){ | |
146 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
147 | int tmp10, tmp11, tmp12, tmp13; | |
148 | int z1, z2, z3, z4, z5, z11, z13; | |
149 | int16_t *dataptr; | |
150 | int ctr; | |
151 | ||
152 | /* Pass 1: process rows. */ | |
153 | ||
154 | dataptr = data; | |
155 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
156 | tmp0 = dataptr[0] + dataptr[7]; | |
157 | tmp7 = dataptr[0] - dataptr[7]; | |
158 | tmp1 = dataptr[1] + dataptr[6]; | |
159 | tmp6 = dataptr[1] - dataptr[6]; | |
160 | tmp2 = dataptr[2] + dataptr[5]; | |
161 | tmp5 = dataptr[2] - dataptr[5]; | |
162 | tmp3 = dataptr[3] + dataptr[4]; | |
163 | tmp4 = dataptr[3] - dataptr[4]; | |
164 | ||
165 | /* Even part */ | |
166 | ||
167 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
168 | tmp13 = tmp0 - tmp3; | |
169 | tmp11 = tmp1 + tmp2; | |
170 | tmp12 = tmp1 - tmp2; | |
171 | ||
172 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ | |
173 | dataptr[4] = tmp10 - tmp11; | |
174 | ||
175 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
176 | dataptr[2] = tmp13 + z1; /* phase 5 */ | |
177 | dataptr[6] = tmp13 - z1; | |
178 | ||
179 | /* Odd part */ | |
180 | ||
181 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
182 | tmp11 = tmp5 + tmp6; | |
183 | tmp12 = tmp6 + tmp7; | |
184 | ||
185 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
186 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
187 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
188 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
189 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
190 | ||
191 | z11 = tmp7 + z3; /* phase 5 */ | |
192 | z13 = tmp7 - z3; | |
193 | ||
194 | dataptr[5] = z13 + z2; /* phase 6 */ | |
195 | dataptr[3] = z13 - z2; | |
196 | dataptr[1] = z11 + z4; | |
197 | dataptr[7] = z11 - z4; | |
198 | ||
199 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
200 | } | |
201 | } | |
202 | ||
203 | /* | |
204 | * Perform the forward DCT on one block of samples. | |
205 | */ | |
206 | ||
207 | GLOBAL(void) | |
208 | ff_fdct_ifast (int16_t * data) | |
209 | { | |
210 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
211 | int tmp10, tmp11, tmp12, tmp13; | |
212 | int z1, z2, z3, z4, z5, z11, z13; | |
213 | int16_t *dataptr; | |
214 | int ctr; | |
215 | ||
216 | row_fdct(data); | |
217 | ||
218 | /* Pass 2: process columns. */ | |
219 | ||
220 | dataptr = data; | |
221 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
222 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
223 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
224 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
225 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
226 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
227 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
228 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
229 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
230 | ||
231 | /* Even part */ | |
232 | ||
233 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
234 | tmp13 = tmp0 - tmp3; | |
235 | tmp11 = tmp1 + tmp2; | |
236 | tmp12 = tmp1 - tmp2; | |
237 | ||
238 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |
239 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
240 | ||
241 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
242 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |
243 | dataptr[DCTSIZE*6] = tmp13 - z1; | |
244 | ||
245 | /* Odd part */ | |
246 | ||
247 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
248 | tmp11 = tmp5 + tmp6; | |
249 | tmp12 = tmp6 + tmp7; | |
250 | ||
251 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
252 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
253 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
254 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
255 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
256 | ||
257 | z11 = tmp7 + z3; /* phase 5 */ | |
258 | z13 = tmp7 - z3; | |
259 | ||
260 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |
261 | dataptr[DCTSIZE*3] = z13 - z2; | |
262 | dataptr[DCTSIZE*1] = z11 + z4; | |
263 | dataptr[DCTSIZE*7] = z11 - z4; | |
264 | ||
265 | dataptr++; /* advance pointer to next column */ | |
266 | } | |
267 | } | |
268 | ||
269 | /* | |
270 | * Perform the forward 2-4-8 DCT on one block of samples. | |
271 | */ | |
272 | ||
273 | GLOBAL(void) | |
274 | ff_fdct_ifast248 (int16_t * data) | |
275 | { | |
276 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
277 | int tmp10, tmp11, tmp12, tmp13; | |
278 | int z1; | |
279 | int16_t *dataptr; | |
280 | int ctr; | |
281 | ||
282 | row_fdct(data); | |
283 | ||
284 | /* Pass 2: process columns. */ | |
285 | ||
286 | dataptr = data; | |
287 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
288 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; | |
289 | tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; | |
290 | tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; | |
291 | tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; | |
292 | tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; | |
293 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; | |
294 | tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; | |
295 | tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; | |
296 | ||
297 | /* Even part */ | |
298 | ||
299 | tmp10 = tmp0 + tmp3; | |
300 | tmp11 = tmp1 + tmp2; | |
301 | tmp12 = tmp1 - tmp2; | |
302 | tmp13 = tmp0 - tmp3; | |
303 | ||
304 | dataptr[DCTSIZE*0] = tmp10 + tmp11; | |
305 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
306 | ||
307 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); | |
308 | dataptr[DCTSIZE*2] = tmp13 + z1; | |
309 | dataptr[DCTSIZE*6] = tmp13 - z1; | |
310 | ||
311 | tmp10 = tmp4 + tmp7; | |
312 | tmp11 = tmp5 + tmp6; | |
313 | tmp12 = tmp5 - tmp6; | |
314 | tmp13 = tmp4 - tmp7; | |
315 | ||
316 | dataptr[DCTSIZE*1] = tmp10 + tmp11; | |
317 | dataptr[DCTSIZE*5] = tmp10 - tmp11; | |
318 | ||
319 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); | |
320 | dataptr[DCTSIZE*3] = tmp13 + z1; | |
321 | dataptr[DCTSIZE*7] = tmp13 - z1; | |
322 | ||
323 | dataptr++; /* advance pointer to next column */ | |
324 | } | |
325 | } | |
326 | ||
327 | ||
328 | #undef GLOBAL | |
329 | #undef CONST_BITS | |
330 | #undef DESCALE | |
331 | #undef FIX_0_541196100 | |
332 | #undef FIX_1_306562965 |