Commit | Line | Data |
---|---|---|
2ba45a60 DM |
1 | /* |
2 | * (I)RDFT transforms | |
3 | * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com> | |
4 | * | |
5 | * This file is part of FFmpeg. | |
6 | * | |
7 | * FFmpeg is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU Lesser General Public | |
9 | * License as published by the Free Software Foundation; either | |
10 | * version 2.1 of the License, or (at your option) any later version. | |
11 | * | |
12 | * FFmpeg is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | * Lesser General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU Lesser General Public | |
18 | * License along with FFmpeg; if not, write to the Free Software | |
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
20 | */ | |
21 | #include <stdlib.h> | |
22 | #include <math.h> | |
23 | #include "libavutil/mathematics.h" | |
24 | #include "rdft.h" | |
25 | ||
26 | /** | |
27 | * @file | |
28 | * (Inverse) Real Discrete Fourier Transforms. | |
29 | */ | |
30 | ||
31 | /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */ | |
32 | #if !CONFIG_HARDCODED_TABLES | |
33 | SINTABLE(16); | |
34 | SINTABLE(32); | |
35 | SINTABLE(64); | |
36 | SINTABLE(128); | |
37 | SINTABLE(256); | |
38 | SINTABLE(512); | |
39 | SINTABLE(1024); | |
40 | SINTABLE(2048); | |
41 | SINTABLE(4096); | |
42 | SINTABLE(8192); | |
43 | SINTABLE(16384); | |
44 | SINTABLE(32768); | |
45 | SINTABLE(65536); | |
46 | #endif | |
47 | static SINTABLE_CONST FFTSample * const ff_sin_tabs[] = { | |
48 | NULL, NULL, NULL, NULL, | |
49 | ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024, | |
50 | ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536, | |
51 | }; | |
52 | ||
53 | /** Map one real FFT into two parallel real even and odd FFTs. Then interleave | |
54 | * the two real FFTs into one complex FFT. Unmangle the results. | |
55 | * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM | |
56 | */ | |
57 | static void rdft_calc_c(RDFTContext *s, FFTSample *data) | |
58 | { | |
59 | int i, i1, i2; | |
60 | FFTComplex ev, od; | |
61 | const int n = 1 << s->nbits; | |
62 | const float k1 = 0.5; | |
63 | const float k2 = 0.5 - s->inverse; | |
64 | const FFTSample *tcos = s->tcos; | |
65 | const FFTSample *tsin = s->tsin; | |
66 | ||
67 | if (!s->inverse) { | |
68 | s->fft.fft_permute(&s->fft, (FFTComplex*)data); | |
69 | s->fft.fft_calc(&s->fft, (FFTComplex*)data); | |
70 | } | |
71 | /* i=0 is a special case because of packing, the DC term is real, so we | |
72 | are going to throw the N/2 term (also real) in with it. */ | |
73 | ev.re = data[0]; | |
74 | data[0] = ev.re+data[1]; | |
75 | data[1] = ev.re-data[1]; | |
76 | for (i = 1; i < (n>>2); i++) { | |
77 | i1 = 2*i; | |
78 | i2 = n-i1; | |
79 | /* Separate even and odd FFTs */ | |
80 | ev.re = k1*(data[i1 ]+data[i2 ]); | |
81 | od.im = -k2*(data[i1 ]-data[i2 ]); | |
82 | ev.im = k1*(data[i1+1]-data[i2+1]); | |
83 | od.re = k2*(data[i1+1]+data[i2+1]); | |
84 | /* Apply twiddle factors to the odd FFT and add to the even FFT */ | |
85 | data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i]; | |
86 | data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i]; | |
87 | data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i]; | |
88 | data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i]; | |
89 | } | |
90 | data[2*i+1]=s->sign_convention*data[2*i+1]; | |
91 | if (s->inverse) { | |
92 | data[0] *= k1; | |
93 | data[1] *= k1; | |
94 | s->fft.fft_permute(&s->fft, (FFTComplex*)data); | |
95 | s->fft.fft_calc(&s->fft, (FFTComplex*)data); | |
96 | } | |
97 | } | |
98 | ||
99 | av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans) | |
100 | { | |
101 | int n = 1 << nbits; | |
102 | ||
103 | s->nbits = nbits; | |
104 | s->inverse = trans == IDFT_C2R || trans == DFT_C2R; | |
105 | s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1; | |
106 | ||
107 | if (nbits < 4 || nbits > 16) | |
108 | return -1; | |
109 | ||
110 | if (ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C) < 0) | |
111 | return -1; | |
112 | ||
113 | ff_init_ff_cos_tabs(nbits); | |
114 | s->tcos = ff_cos_tabs[nbits]; | |
115 | s->tsin = ff_sin_tabs[nbits]+(trans == DFT_R2C || trans == DFT_C2R)*(n>>2); | |
116 | #if !CONFIG_HARDCODED_TABLES | |
117 | { | |
118 | int i; | |
119 | const double theta = (trans == DFT_R2C || trans == DFT_C2R ? -1 : 1) * 2 * M_PI / n; | |
120 | for (i = 0; i < (n >> 2); i++) | |
121 | s->tsin[i] = sin(i * theta); | |
122 | } | |
123 | #endif | |
124 | s->rdft_calc = rdft_calc_c; | |
125 | ||
126 | if (ARCH_ARM) ff_rdft_init_arm(s); | |
127 | ||
128 | return 0; | |
129 | } | |
130 | ||
131 | av_cold void ff_rdft_end(RDFTContext *s) | |
132 | { | |
133 | ff_fft_end(&s->fft); | |
134 | } |