Commit | Line | Data |
---|---|---|
2ba45a60 DM |
1 | /* |
2 | * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com> | |
3 | * | |
4 | * Triangular with Noise Shaping is based on opusfile. | |
5 | * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors | |
6 | * | |
7 | * This file is part of FFmpeg. | |
8 | * | |
9 | * FFmpeg is free software; you can redistribute it and/or | |
10 | * modify it under the terms of the GNU Lesser General Public | |
11 | * License as published by the Free Software Foundation; either | |
12 | * version 2.1 of the License, or (at your option) any later version. | |
13 | * | |
14 | * FFmpeg is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
17 | * Lesser General Public License for more details. | |
18 | * | |
19 | * You should have received a copy of the GNU Lesser General Public | |
20 | * License along with FFmpeg; if not, write to the Free Software | |
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
22 | */ | |
23 | ||
24 | /** | |
25 | * @file | |
26 | * Dithered Audio Sample Quantization | |
27 | * | |
28 | * Converts from dbl, flt, or s32 to s16 using dithering. | |
29 | */ | |
30 | ||
31 | #include <math.h> | |
32 | #include <stdint.h> | |
33 | ||
34 | #include "libavutil/attributes.h" | |
35 | #include "libavutil/common.h" | |
36 | #include "libavutil/lfg.h" | |
37 | #include "libavutil/mem.h" | |
38 | #include "libavutil/samplefmt.h" | |
39 | #include "audio_convert.h" | |
40 | #include "dither.h" | |
41 | #include "internal.h" | |
42 | ||
43 | typedef struct DitherState { | |
44 | int mute; | |
45 | unsigned int seed; | |
46 | AVLFG lfg; | |
47 | float *noise_buf; | |
48 | int noise_buf_size; | |
49 | int noise_buf_ptr; | |
50 | float dither_a[4]; | |
51 | float dither_b[4]; | |
52 | } DitherState; | |
53 | ||
54 | struct DitherContext { | |
55 | DitherDSPContext ddsp; | |
56 | enum AVResampleDitherMethod method; | |
57 | int apply_map; | |
58 | ChannelMapInfo *ch_map_info; | |
59 | ||
60 | int mute_dither_threshold; // threshold for disabling dither | |
61 | int mute_reset_threshold; // threshold for resetting noise shaping | |
62 | const float *ns_coef_b; // noise shaping coeffs | |
63 | const float *ns_coef_a; // noise shaping coeffs | |
64 | ||
65 | int channels; | |
66 | DitherState *state; // dither states for each channel | |
67 | ||
68 | AudioData *flt_data; // input data in fltp | |
69 | AudioData *s16_data; // dithered output in s16p | |
70 | AudioConvert *ac_in; // converter for input to fltp | |
71 | AudioConvert *ac_out; // converter for s16p to s16 (if needed) | |
72 | ||
73 | void (*quantize)(int16_t *dst, const float *src, float *dither, int len); | |
74 | int samples_align; | |
75 | }; | |
76 | ||
77 | /* mute threshold, in seconds */ | |
78 | #define MUTE_THRESHOLD_SEC 0.000333 | |
79 | ||
80 | /* scale factor for 16-bit output. | |
81 | The signal is attenuated slightly to avoid clipping */ | |
82 | #define S16_SCALE 32753.0f | |
83 | ||
84 | /* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */ | |
85 | #define LFG_SCALE (1.0f / (2.0f * INT32_MAX)) | |
86 | ||
87 | /* noise shaping coefficients */ | |
88 | ||
89 | static const float ns_48_coef_b[4] = { | |
90 | 2.2374f, -0.7339f, -0.1251f, -0.6033f | |
91 | }; | |
92 | ||
93 | static const float ns_48_coef_a[4] = { | |
94 | 0.9030f, 0.0116f, -0.5853f, -0.2571f | |
95 | }; | |
96 | ||
97 | static const float ns_44_coef_b[4] = { | |
98 | 2.2061f, -0.4707f, -0.2534f, -0.6213f | |
99 | }; | |
100 | ||
101 | static const float ns_44_coef_a[4] = { | |
102 | 1.0587f, 0.0676f, -0.6054f, -0.2738f | |
103 | }; | |
104 | ||
105 | static void dither_int_to_float_rectangular_c(float *dst, int *src, int len) | |
106 | { | |
107 | int i; | |
108 | for (i = 0; i < len; i++) | |
109 | dst[i] = src[i] * LFG_SCALE; | |
110 | } | |
111 | ||
112 | static void dither_int_to_float_triangular_c(float *dst, int *src0, int len) | |
113 | { | |
114 | int i; | |
115 | int *src1 = src0 + len; | |
116 | ||
117 | for (i = 0; i < len; i++) { | |
118 | float r = src0[i] * LFG_SCALE; | |
119 | r += src1[i] * LFG_SCALE; | |
120 | dst[i] = r; | |
121 | } | |
122 | } | |
123 | ||
124 | static void quantize_c(int16_t *dst, const float *src, float *dither, int len) | |
125 | { | |
126 | int i; | |
127 | for (i = 0; i < len; i++) | |
128 | dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i])); | |
129 | } | |
130 | ||
131 | #define SQRT_1_6 0.40824829046386301723f | |
132 | ||
133 | static void dither_highpass_filter(float *src, int len) | |
134 | { | |
135 | int i; | |
136 | ||
137 | /* filter is from libswresample in FFmpeg */ | |
138 | for (i = 0; i < len - 2; i++) | |
139 | src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6; | |
140 | } | |
141 | ||
142 | static int generate_dither_noise(DitherContext *c, DitherState *state, | |
143 | int min_samples) | |
144 | { | |
145 | int i; | |
146 | int nb_samples = FFALIGN(min_samples, 16) + 16; | |
147 | int buf_samples = nb_samples * | |
148 | (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2); | |
149 | unsigned int *noise_buf_ui; | |
150 | ||
151 | av_freep(&state->noise_buf); | |
152 | state->noise_buf_size = state->noise_buf_ptr = 0; | |
153 | ||
154 | state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf)); | |
155 | if (!state->noise_buf) | |
156 | return AVERROR(ENOMEM); | |
157 | state->noise_buf_size = FFALIGN(min_samples, 16); | |
158 | noise_buf_ui = (unsigned int *)state->noise_buf; | |
159 | ||
160 | av_lfg_init(&state->lfg, state->seed); | |
161 | for (i = 0; i < buf_samples; i++) | |
162 | noise_buf_ui[i] = av_lfg_get(&state->lfg); | |
163 | ||
164 | c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples); | |
165 | ||
166 | if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_HP) | |
167 | dither_highpass_filter(state->noise_buf, nb_samples); | |
168 | ||
169 | return 0; | |
170 | } | |
171 | ||
172 | static void quantize_triangular_ns(DitherContext *c, DitherState *state, | |
173 | int16_t *dst, const float *src, | |
174 | int nb_samples) | |
175 | { | |
176 | int i, j; | |
177 | float *dither = &state->noise_buf[state->noise_buf_ptr]; | |
178 | ||
179 | if (state->mute > c->mute_reset_threshold) | |
180 | memset(state->dither_a, 0, sizeof(state->dither_a)); | |
181 | ||
182 | for (i = 0; i < nb_samples; i++) { | |
183 | float err = 0; | |
184 | float sample = src[i] * S16_SCALE; | |
185 | ||
186 | for (j = 0; j < 4; j++) { | |
187 | err += c->ns_coef_b[j] * state->dither_b[j] - | |
188 | c->ns_coef_a[j] * state->dither_a[j]; | |
189 | } | |
190 | for (j = 3; j > 0; j--) { | |
191 | state->dither_a[j] = state->dither_a[j - 1]; | |
192 | state->dither_b[j] = state->dither_b[j - 1]; | |
193 | } | |
194 | state->dither_a[0] = err; | |
195 | sample -= err; | |
196 | ||
197 | if (state->mute > c->mute_dither_threshold) { | |
198 | dst[i] = av_clip_int16(lrintf(sample)); | |
199 | state->dither_b[0] = 0; | |
200 | } else { | |
201 | dst[i] = av_clip_int16(lrintf(sample + dither[i])); | |
202 | state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f); | |
203 | } | |
204 | ||
205 | state->mute++; | |
206 | if (src[i]) | |
207 | state->mute = 0; | |
208 | } | |
209 | } | |
210 | ||
211 | static int convert_samples(DitherContext *c, int16_t **dst, float * const *src, | |
212 | int channels, int nb_samples) | |
213 | { | |
214 | int ch, ret; | |
215 | int aligned_samples = FFALIGN(nb_samples, 16); | |
216 | ||
217 | for (ch = 0; ch < channels; ch++) { | |
218 | DitherState *state = &c->state[ch]; | |
219 | ||
220 | if (state->noise_buf_size < aligned_samples) { | |
221 | ret = generate_dither_noise(c, state, nb_samples); | |
222 | if (ret < 0) | |
223 | return ret; | |
224 | } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) { | |
225 | state->noise_buf_ptr = 0; | |
226 | } | |
227 | ||
228 | if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) { | |
229 | quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples); | |
230 | } else { | |
231 | c->quantize(dst[ch], src[ch], | |
232 | &state->noise_buf[state->noise_buf_ptr], | |
233 | FFALIGN(nb_samples, c->samples_align)); | |
234 | } | |
235 | ||
236 | state->noise_buf_ptr += aligned_samples; | |
237 | } | |
238 | ||
239 | return 0; | |
240 | } | |
241 | ||
242 | int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src) | |
243 | { | |
244 | int ret; | |
245 | AudioData *flt_data; | |
246 | ||
247 | /* output directly to dst if it is planar */ | |
248 | if (dst->sample_fmt == AV_SAMPLE_FMT_S16P) | |
249 | c->s16_data = dst; | |
250 | else { | |
251 | /* make sure s16_data is large enough for the output */ | |
252 | ret = ff_audio_data_realloc(c->s16_data, src->nb_samples); | |
253 | if (ret < 0) | |
254 | return ret; | |
255 | } | |
256 | ||
257 | if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) { | |
258 | /* make sure flt_data is large enough for the input */ | |
259 | ret = ff_audio_data_realloc(c->flt_data, src->nb_samples); | |
260 | if (ret < 0) | |
261 | return ret; | |
262 | flt_data = c->flt_data; | |
263 | } | |
264 | ||
265 | if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) { | |
266 | /* convert input samples to fltp and scale to s16 range */ | |
267 | ret = ff_audio_convert(c->ac_in, flt_data, src); | |
268 | if (ret < 0) | |
269 | return ret; | |
270 | } else if (c->apply_map) { | |
271 | ret = ff_audio_data_copy(flt_data, src, c->ch_map_info); | |
272 | if (ret < 0) | |
273 | return ret; | |
274 | } else { | |
275 | flt_data = src; | |
276 | } | |
277 | ||
278 | /* check alignment and padding constraints */ | |
279 | if (c->method != AV_RESAMPLE_DITHER_TRIANGULAR_NS) { | |
280 | int ptr_align = FFMIN(flt_data->ptr_align, c->s16_data->ptr_align); | |
281 | int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align); | |
282 | int aligned_len = FFALIGN(src->nb_samples, c->ddsp.samples_align); | |
283 | ||
284 | if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) { | |
285 | c->quantize = c->ddsp.quantize; | |
286 | c->samples_align = c->ddsp.samples_align; | |
287 | } else { | |
288 | c->quantize = quantize_c; | |
289 | c->samples_align = 1; | |
290 | } | |
291 | } | |
292 | ||
293 | ret = convert_samples(c, (int16_t **)c->s16_data->data, | |
294 | (float * const *)flt_data->data, src->channels, | |
295 | src->nb_samples); | |
296 | if (ret < 0) | |
297 | return ret; | |
298 | ||
299 | c->s16_data->nb_samples = src->nb_samples; | |
300 | ||
301 | /* interleave output to dst if needed */ | |
302 | if (dst->sample_fmt == AV_SAMPLE_FMT_S16) { | |
303 | ret = ff_audio_convert(c->ac_out, dst, c->s16_data); | |
304 | if (ret < 0) | |
305 | return ret; | |
306 | } else | |
307 | c->s16_data = NULL; | |
308 | ||
309 | return 0; | |
310 | } | |
311 | ||
312 | void ff_dither_free(DitherContext **cp) | |
313 | { | |
314 | DitherContext *c = *cp; | |
315 | int ch; | |
316 | ||
317 | if (!c) | |
318 | return; | |
319 | ff_audio_data_free(&c->flt_data); | |
320 | ff_audio_data_free(&c->s16_data); | |
321 | ff_audio_convert_free(&c->ac_in); | |
322 | ff_audio_convert_free(&c->ac_out); | |
323 | for (ch = 0; ch < c->channels; ch++) | |
324 | av_free(c->state[ch].noise_buf); | |
325 | av_free(c->state); | |
326 | av_freep(cp); | |
327 | } | |
328 | ||
329 | static av_cold void dither_init(DitherDSPContext *ddsp, | |
330 | enum AVResampleDitherMethod method) | |
331 | { | |
332 | ddsp->quantize = quantize_c; | |
333 | ddsp->ptr_align = 1; | |
334 | ddsp->samples_align = 1; | |
335 | ||
336 | if (method == AV_RESAMPLE_DITHER_RECTANGULAR) | |
337 | ddsp->dither_int_to_float = dither_int_to_float_rectangular_c; | |
338 | else | |
339 | ddsp->dither_int_to_float = dither_int_to_float_triangular_c; | |
340 | ||
341 | if (ARCH_X86) | |
342 | ff_dither_init_x86(ddsp, method); | |
343 | } | |
344 | ||
345 | DitherContext *ff_dither_alloc(AVAudioResampleContext *avr, | |
346 | enum AVSampleFormat out_fmt, | |
347 | enum AVSampleFormat in_fmt, | |
348 | int channels, int sample_rate, int apply_map) | |
349 | { | |
350 | AVLFG seed_gen; | |
351 | DitherContext *c; | |
352 | int ch; | |
353 | ||
354 | if (av_get_packed_sample_fmt(out_fmt) != AV_SAMPLE_FMT_S16 || | |
355 | av_get_bytes_per_sample(in_fmt) <= 2) { | |
356 | av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n", | |
357 | av_get_sample_fmt_name(in_fmt), av_get_sample_fmt_name(out_fmt)); | |
358 | return NULL; | |
359 | } | |
360 | ||
361 | c = av_mallocz(sizeof(*c)); | |
362 | if (!c) | |
363 | return NULL; | |
364 | ||
365 | c->apply_map = apply_map; | |
366 | if (apply_map) | |
367 | c->ch_map_info = &avr->ch_map_info; | |
368 | ||
369 | if (avr->dither_method == AV_RESAMPLE_DITHER_TRIANGULAR_NS && | |
370 | sample_rate != 48000 && sample_rate != 44100) { | |
371 | av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz " | |
372 | "for triangular_ns dither. using triangular_hp instead.\n"); | |
373 | avr->dither_method = AV_RESAMPLE_DITHER_TRIANGULAR_HP; | |
374 | } | |
375 | c->method = avr->dither_method; | |
376 | dither_init(&c->ddsp, c->method); | |
377 | ||
378 | if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) { | |
379 | if (sample_rate == 48000) { | |
380 | c->ns_coef_b = ns_48_coef_b; | |
381 | c->ns_coef_a = ns_48_coef_a; | |
382 | } else { | |
383 | c->ns_coef_b = ns_44_coef_b; | |
384 | c->ns_coef_a = ns_44_coef_a; | |
385 | } | |
386 | } | |
387 | ||
388 | /* Either s16 or s16p output format is allowed, but s16p is used | |
389 | internally, so we need to use a temp buffer and interleave if the output | |
390 | format is s16 */ | |
391 | if (out_fmt != AV_SAMPLE_FMT_S16P) { | |
392 | c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P, | |
393 | "dither s16 buffer"); | |
394 | if (!c->s16_data) | |
395 | goto fail; | |
396 | ||
397 | c->ac_out = ff_audio_convert_alloc(avr, out_fmt, AV_SAMPLE_FMT_S16P, | |
398 | channels, sample_rate, 0); | |
399 | if (!c->ac_out) | |
400 | goto fail; | |
401 | } | |
402 | ||
403 | if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) { | |
404 | c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP, | |
405 | "dither flt buffer"); | |
406 | if (!c->flt_data) | |
407 | goto fail; | |
408 | } | |
409 | if (in_fmt != AV_SAMPLE_FMT_FLTP) { | |
410 | c->ac_in = ff_audio_convert_alloc(avr, AV_SAMPLE_FMT_FLTP, in_fmt, | |
411 | channels, sample_rate, c->apply_map); | |
412 | if (!c->ac_in) | |
413 | goto fail; | |
414 | } | |
415 | ||
416 | c->state = av_mallocz(channels * sizeof(*c->state)); | |
417 | if (!c->state) | |
418 | goto fail; | |
419 | c->channels = channels; | |
420 | ||
421 | /* calculate thresholds for turning off dithering during periods of | |
422 | silence to avoid replacing digital silence with quiet dither noise */ | |
423 | c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC); | |
424 | c->mute_reset_threshold = c->mute_dither_threshold * 4; | |
425 | ||
426 | /* initialize dither states */ | |
427 | av_lfg_init(&seed_gen, 0xC0FFEE); | |
428 | for (ch = 0; ch < channels; ch++) { | |
429 | DitherState *state = &c->state[ch]; | |
430 | state->mute = c->mute_reset_threshold + 1; | |
431 | state->seed = av_lfg_get(&seed_gen); | |
432 | generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2)); | |
433 | } | |
434 | ||
435 | return c; | |
436 | ||
437 | fail: | |
438 | ff_dither_free(&c); | |
439 | return NULL; | |
440 | } |