Imported Upstream version 1.15.1
[deb_xorg-server.git] / hw / xfree86 / utils / gtf / gtf.c
CommitLineData
a09e091a
JB
1/* gtf.c Generate mode timings using the GTF Timing Standard
2 *
3 * gcc gtf.c -o gtf -lm -Wall
4 *
5 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * o Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * o Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer
16 * in the documentation and/or other materials provided with the
17 * distribution.
18 * o Neither the name of NVIDIA nor the names of its contributors
19 * may be used to endorse or promote products derived from this
20 * software without specific prior written permission.
21 *
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
25 * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
26 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
27 * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 *
37 *
38 * This program is based on the Generalized Timing Formula(GTF TM)
39 * Standard Version: 1.0, Revision: 1.0
40 *
41 * The GTF Document contains the following Copyright information:
42 *
43 * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
44 * Association. Duplication of this document within VESA member
45 * companies for review purposes is permitted. All other rights
46 * reserved.
47 *
48 * While every precaution has been taken in the preparation
49 * of this standard, the Video Electronics Standards Association and
50 * its contributors assume no responsibility for errors or omissions,
51 * and make no warranties, expressed or implied, of functionality
52 * of suitability for any purpose. The sample code contained within
53 * this standard may be used without restriction.
54 *
55 *
56 *
57 * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
58 * implementation of the GTF Timing Standard, is available at:
59 *
60 * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
61 *
62 *
63 *
64 * This program takes a desired resolution and vertical refresh rate,
65 * and computes mode timings according to the GTF Timing Standard.
66 * These mode timings can then be formatted as an XServer modeline
67 * or a mode description for use by fbset(8).
68 *
69 *
70 *
71 * NOTES:
72 *
73 * The GTF allows for computation of "margins" (the visible border
74 * surrounding the addressable video); on most non-overscan type
75 * systems, the margin period is zero. I've implemented the margin
76 * computations but not enabled it because 1) I don't really have
77 * any experience with this, and 2) neither XServer modelines nor
78 * fbset fb.modes provide an obvious way for margin timings to be
79 * included in their mode descriptions (needs more investigation).
80 *
81 * The GTF provides for computation of interlaced mode timings;
82 * I've implemented the computations but not enabled them, yet.
83 * I should probably enable and test this at some point.
84 *
85 *
86 *
87 * TODO:
88 *
89 * o Add support for interlaced modes.
90 *
91 * o Implement the other portions of the GTF: compute mode timings
92 * given either the desired pixel clock or the desired horizontal
93 * frequency.
94 *
95 * o It would be nice if this were more general purpose to do things
96 * outside the scope of the GTF: like generate double scan mode
97 * timings, for example.
98 *
99 * o Printing digits to the right of the decimal point when the
100 * digits are 0 annoys me.
101 *
102 * o Error checking.
103 *
104 */
105
106#ifdef HAVE_XORG_CONFIG_H
107#include <xorg-config.h>
108#endif
109
110#include <stdio.h>
111#include <stdlib.h>
112#include <string.h>
113#include <math.h>
114
115#define MARGIN_PERCENT 1.8 /* % of active vertical image */
116#define CELL_GRAN 8.0 /* assumed character cell granularity */
117#define MIN_PORCH 1 /* minimum front porch */
118#define V_SYNC_RQD 3 /* width of vsync in lines */
119#define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */
120#define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */
121#define M 600.0 /* blanking formula gradient */
122#define C 40.0 /* blanking formula offset */
123#define K 128.0 /* blanking formula scaling factor */
124#define J 20.0 /* blanking formula scaling factor */
125
126/* C' and M' are part of the Blanking Duty Cycle computation */
127
128#define C_PRIME (((C - J) * K/256.0) + J)
129#define M_PRIME (K/256.0 * M)
130
131/* struct definitions */
132
133typedef struct __mode {
134 int hr, hss, hse, hfl;
135 int vr, vss, vse, vfl;
136 float pclk, h_freq, v_freq;
137} mode;
138
139typedef struct __options {
140 int x, y;
141 int xorgmode, fbmode;
142 float v_freq;
143} options;
144
145/* prototypes */
146
147void print_value(int n, const char *name, float val);
148void print_xf86_mode(mode * m);
149void print_fb_mode(mode * m);
150mode *vert_refresh(int h_pixels, int v_lines, float freq,
151 int interlaced, int margins);
152options *parse_command_line(int argc, char *argv[]);
153
154/*
155 * print_value() - print the result of the named computation; this is
156 * useful when comparing against the GTF EXCEL spreadsheet.
157 */
158
159int global_verbose = 0;
160
161void
162print_value(int n, const char *name, float val)
163{
164 if (global_verbose) {
165 printf("%2d: %-27s: %15f\n", n, name, val);
166 }
167}
168
169/* print_xf86_mode() - print the XServer modeline, given mode timings. */
170
171void
172print_xf86_mode(mode * m)
173{
174 printf("\n");
175 printf(" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
176 m->hr, m->vr, m->v_freq, m->h_freq, m->pclk);
177
178 printf(" Modeline \"%dx%d_%.2f\" %.2f"
179 " %d %d %d %d"
180 " %d %d %d %d"
181 " -HSync +Vsync\n\n",
182 m->hr, m->vr, m->v_freq, m->pclk,
183 m->hr, m->hss, m->hse, m->hfl, m->vr, m->vss, m->vse, m->vfl);
184
185}
186
187/*
188 * print_fb_mode() - print a mode description in fbset(8) format;
189 * see the fb.modes(8) manpage. The timing description used in
190 * this is rather odd; they use "left and right margin" to refer
191 * to the portion of the hblank before and after the sync pulse
192 * by conceptually wrapping the portion of the blank after the pulse
193 * to infront of the visible region; ie:
194 *
195 *
196 * Timing description I'm accustomed to:
197 *
198 *
199 *
200 * <--------1--------> <--2--> <--3--> <--4-->
201 * _________
202 * |-------------------|_______| |_______
203 *
204 * R SS SE FL
205 *
206 * 1: visible image
207 * 2: blank before sync (aka front porch)
208 * 3: sync pulse
209 * 4: blank after sync (aka back porch)
210 * R: Resolution
211 * SS: Sync Start
212 * SE: Sync End
213 * FL: Frame Length
214 *
215 *
216 * But the fb.modes format is:
217 *
218 *
219 * <--4--> <--------1--------> <--2--> <--3-->
220 * _________
221 * _______|-------------------|_______| |
222 *
223 * The fb.modes(8) manpage refers to <4> and <2> as the left and
224 * right "margin" (as well as upper and lower margin in the vertical
225 * direction) -- note that this has nothing to do with the term
226 * "margin" used in the GTF Timing Standard.
227 *
228 * XXX always prints the 32 bit mode -- should I provide a command
229 * line option to specify the bpp? It's simple enough for a user
230 * to edit the mode description after it's generated.
231 */
232
233void
234print_fb_mode(mode * m)
235{
236 printf("\n");
237 printf("mode \"%dx%d %.2fHz 32bit (GTF)\"\n", m->hr, m->vr, m->v_freq);
238 printf(" # PCLK: %.2f MHz, H: %.2f kHz, V: %.2f Hz\n",
239 m->pclk, m->h_freq, m->v_freq);
240 printf(" geometry %d %d %d %d 32\n", m->hr, m->vr, m->hr, m->vr);
241 printf(" timings %d %d %d %d %d %d %d\n", (int) rint(1000000.0 / m->pclk), /* pixclock in picoseconds */
242 m->hfl - m->hse, /* left margin (in pixels) */
243 m->hss - m->hr, /* right margin (in pixels) */
244 m->vfl - m->vse, /* upper margin (in pixel lines) */
245 m->vss - m->vr, /* lower margin (in pixel lines) */
246 m->hse - m->hss, /* horizontal sync length (pixels) */
247 m->vse - m->vss); /* vert sync length (pixel lines) */
248 printf(" hsync low\n");
249 printf(" vsync high\n");
250 printf("endmode\n\n");
251
252}
253
254/*
255 * vert_refresh() - as defined by the GTF Timing Standard, compute the
256 * Stage 1 Parameters using the vertical refresh frequency. In other
257 * words: input a desired resolution and desired refresh rate, and
258 * output the GTF mode timings.
259 *
260 * XXX All the code is in place to compute interlaced modes, but I don't
261 * feel like testing it right now.
262 *
263 * XXX margin computations are implemented but not tested (nor used by
264 * XServer of fbset mode descriptions, from what I can tell).
265 */
266
267mode *
268vert_refresh(int h_pixels, int v_lines, float freq, int interlaced, int margins)
269{
270 float h_pixels_rnd;
271 float v_lines_rnd;
272 float v_field_rate_rqd;
273 float top_margin;
274 float bottom_margin;
275 float interlace;
276 float h_period_est;
277 float vsync_plus_bp;
278 float v_back_porch;
279 float total_v_lines;
280 float v_field_rate_est;
281 float h_period;
282 float v_field_rate;
283 float v_frame_rate;
284 float left_margin;
285 float right_margin;
286 float total_active_pixels;
287 float ideal_duty_cycle;
288 float h_blank;
289 float total_pixels;
290 float pixel_freq;
291 float h_freq;
292
293 float h_sync;
294 float h_front_porch;
295 float v_odd_front_porch_lines;
296
297 mode *m = (mode *) malloc(sizeof(mode));
298
299 /* 1. In order to give correct results, the number of horizontal
300 * pixels requested is first processed to ensure that it is divisible
301 * by the character size, by rounding it to the nearest character
302 * cell boundary:
303 *
304 * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
305 */
306
307 h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN;
308
309 print_value(1, "[H PIXELS RND]", h_pixels_rnd);
310
311 /* 2. If interlace is requested, the number of vertical lines assumed
312 * by the calculation must be halved, as the computation calculates
313 * the number of vertical lines per field. In either case, the
314 * number of lines is rounded to the nearest integer.
315 *
316 * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
317 * ROUND([V LINES],0))
318 */
319
320 v_lines_rnd = interlaced ?
321 rint((float) v_lines) / 2.0 : rint((float) v_lines);
322
323 print_value(2, "[V LINES RND]", v_lines_rnd);
324
325 /* 3. Find the frame rate required:
326 *
327 * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
328 * [I/P FREQ RQD])
329 */
330
331 v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq);
332
333 print_value(3, "[V FIELD RATE RQD]", v_field_rate_rqd);
334
335 /* 4. Find number of lines in Top margin:
336 *
337 * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
338 * ROUND(([MARGIN%]/100*[V LINES RND]),0),
339 * 0)
340 */
341
342 top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
343
344 print_value(4, "[TOP MARGIN (LINES)]", top_margin);
345
346 /* 5. Find number of lines in Bottom margin:
347 *
348 * [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
349 * ROUND(([MARGIN%]/100*[V LINES RND]),0),
350 * 0)
351 */
352
353 bottom_margin =
354 margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
355
356 print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
357
358 /* 6. If interlace is required, then set variable [INTERLACE]=0.5:
359 *
360 * [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
361 */
362
363 interlace = interlaced ? 0.5 : 0.0;
364
365 print_value(6, "[INTERLACE]", interlace);
366
367 /* 7. Estimate the Horizontal period
368 *
369 * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
370 * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
371 * [MIN PORCH RND]+[INTERLACE]) * 1000000
372 */
373
374 h_period_est = (((1.0 / v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP / 1000000.0))
375 / (v_lines_rnd + (2 * top_margin) + MIN_PORCH + interlace)
376 * 1000000.0);
377
378 print_value(7, "[H PERIOD EST]", h_period_est);
379
380 /* 8. Find the number of lines in V sync + back porch:
381 *
382 * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
383 */
384
385 vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP / h_period_est);
386
387 print_value(8, "[V SYNC+BP]", vsync_plus_bp);
388
389 /* 9. Find the number of lines in V back porch alone:
390 *
391 * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
392 *
393 * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
394 */
395
396 v_back_porch = vsync_plus_bp - V_SYNC_RQD;
397
398 print_value(9, "[V BACK PORCH]", v_back_porch);
399
400 /* 10. Find the total number of lines in Vertical field period:
401 *
402 * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
403 * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
404 * [MIN PORCH RND]
405 */
406
407 total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp +
408 interlace + MIN_PORCH;
409
410 print_value(10, "[TOTAL V LINES]", total_v_lines);
411
412 /* 11. Estimate the Vertical field frequency:
413 *
414 * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
415 */
416
417 v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0;
418
419 print_value(11, "[V FIELD RATE EST]", v_field_rate_est);
420
421 /* 12. Find the actual horizontal period:
422 *
423 * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
424 */
425
426 h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est);
427
428 print_value(12, "[H PERIOD]", h_period);
429
430 /* 13. Find the actual Vertical field frequency:
431 *
432 * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
433 */
434
435 v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0;
436
437 print_value(13, "[V FIELD RATE]", v_field_rate);
438
439 /* 14. Find the Vertical frame frequency:
440 *
441 * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
442 */
443
444 v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate;
445
446 print_value(14, "[V FRAME RATE]", v_frame_rate);
447
448 /* 15. Find number of pixels in left margin:
449 *
450 * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
451 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
452 * [CELL GRAN RND]),0)) * [CELL GRAN RND],
453 * 0))
454 */
455
456 left_margin = margins ?
457 rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
458 0.0;
459
460 print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
461
462 /* 16. Find number of pixels in right margin:
463 *
464 * [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
465 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
466 * [CELL GRAN RND]),0)) * [CELL GRAN RND],
467 * 0))
468 */
469
470 right_margin = margins ?
471 rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
472 0.0;
473
474 print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
475
476 /* 17. Find total number of active pixels in image and left and right
477 * margins:
478 *
479 * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
480 * [RIGHT MARGIN (PIXELS)]
481 */
482
483 total_active_pixels = h_pixels_rnd + left_margin + right_margin;
484
485 print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
486
487 /* 18. Find the ideal blanking duty cycle from the blanking duty cycle
488 * equation:
489 *
490 * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
491 */
492
493 ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0);
494
495 print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
496
497 /* 19. Find the number of pixels in the blanking time to the nearest
498 * double character cell:
499 *
500 * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
501 * [IDEAL DUTY CYCLE] /
502 * (100-[IDEAL DUTY CYCLE]) /
503 * (2*[CELL GRAN RND])), 0))
504 * * (2*[CELL GRAN RND])
505 */
506
507 h_blank = rint(total_active_pixels *
508 ideal_duty_cycle /
509 (100.0 - ideal_duty_cycle) /
510 (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN);
511
512 print_value(19, "[H BLANK (PIXELS)]", h_blank);
513
514 /* 20. Find total number of pixels:
515 *
516 * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
517 */
518
519 total_pixels = total_active_pixels + h_blank;
520
521 print_value(20, "[TOTAL PIXELS]", total_pixels);
522
523 /* 21. Find pixel clock frequency:
524 *
525 * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
526 */
527
528 pixel_freq = total_pixels / h_period;
529
530 print_value(21, "[PIXEL FREQ]", pixel_freq);
531
532 /* 22. Find horizontal frequency:
533 *
534 * [H FREQ] = 1000 / [H PERIOD]
535 */
536
537 h_freq = 1000.0 / h_period;
538
539 print_value(22, "[H FREQ]", h_freq);
540
541 /* Stage 1 computations are now complete; I should really pass
542 the results to another function and do the Stage 2
543 computations, but I only need a few more values so I'll just
544 append the computations here for now */
545
546 /* 17. Find the number of pixels in the horizontal sync period:
547 *
548 * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
549 * [CELL GRAN RND]),0))*[CELL GRAN RND]
550 */
551
552 h_sync =
553 rint(H_SYNC_PERCENT / 100.0 * total_pixels / CELL_GRAN) * CELL_GRAN;
554
555 print_value(17, "[H SYNC (PIXELS)]", h_sync);
556
557 /* 18. Find the number of pixels in the horizontal front porch period:
558 *
559 * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
560 */
561
562 h_front_porch = (h_blank / 2.0) - h_sync;
563
564 print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
565
566 /* 36. Find the number of lines in the odd front porch period:
567 *
568 * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
569 */
570
571 v_odd_front_porch_lines = MIN_PORCH + interlace;
572
573 print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
574
575 /* finally, pack the results in the mode struct */
576
577 m->hr = (int) (h_pixels_rnd);
578 m->hss = (int) (h_pixels_rnd + h_front_porch);
579 m->hse = (int) (h_pixels_rnd + h_front_porch + h_sync);
580 m->hfl = (int) (total_pixels);
581
582 m->vr = (int) (v_lines_rnd);
583 m->vss = (int) (v_lines_rnd + v_odd_front_porch_lines);
584 m->vse = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD);
585 m->vfl = (int) (total_v_lines);
586
587 m->pclk = pixel_freq;
588 m->h_freq = h_freq;
589 m->v_freq = freq;
590
591 return m;
592
593}
594
595/*
596 * parse_command_line() - parse the command line and return an
597 * alloced structure containing the results. On error print usage
598 * and return NULL.
599 */
600
601options *
602parse_command_line(int argc, char *argv[])
603{
604 int n;
605
606 options *o = (options *) calloc(1, sizeof(options));
607
608 if (argc < 4)
609 goto bad_option;
610
611 o->x = atoi(argv[1]);
612 o->y = atoi(argv[2]);
613 o->v_freq = atof(argv[3]);
614
615 /* XXX should check for errors in the above */
616
617 n = 4;
618
619 while (n < argc) {
620 if ((strcmp(argv[n], "-v") == 0) || (strcmp(argv[n], "--verbose") == 0)) {
621 global_verbose = 1;
622 }
623 else if ((strcmp(argv[n], "-f") == 0) ||
624 (strcmp(argv[n], "--fbmode") == 0)) {
625 o->fbmode = 1;
626 }
627 else if ((strcmp(argv[n], "-x") == 0) ||
628 (strcmp(argv[n], "--xorgmode") == 0) ||
629 (strcmp(argv[n], "--xf86mode") == 0)) {
630 o->xorgmode = 1;
631 }
632 else {
633 goto bad_option;
634 }
635
636 n++;
637 }
638
639 /* if neither xorgmode nor fbmode were requested, default to
640 xorgmode */
641
642 if (!o->fbmode && !o->xorgmode)
643 o->xorgmode = 1;
644
645 return o;
646
647 bad_option:
648
649 fprintf(stderr, "\n");
650 fprintf(stderr, "usage: %s x y refresh [-v|--verbose] "
651 "[-f|--fbmode] [-x|--xorgmode]\n", argv[0]);
652
653 fprintf(stderr, "\n");
654
655 fprintf(stderr, " x : the desired horizontal "
656 "resolution (required)\n");
657 fprintf(stderr, " y : the desired vertical "
658 "resolution (required)\n");
659 fprintf(stderr, " refresh : the desired refresh " "rate (required)\n");
660 fprintf(stderr, " -v|--verbose : enable verbose printouts "
661 "(traces each step of the computation)\n");
662 fprintf(stderr, " -f|--fbmode : output an fbset(8)-style mode "
663 "description\n");
664 fprintf(stderr, " -x|--xorgmode : output an " __XSERVERNAME__ "-style mode "
665 "description (this is the default\n"
666 " if no mode description is requested)\n");
667
668 fprintf(stderr, "\n");
669
670 free(o);
671 return NULL;
672
673}
674
675int
676main(int argc, char *argv[])
677{
678 mode *m;
679 options *o;
680
681 o = parse_command_line(argc, argv);
682 if (!o)
683 exit(1);
684
685 m = vert_refresh(o->x, o->y, o->v_freq, 0, 0);
686 if (!m)
687 exit(1);
688
689 if (o->xorgmode)
690 print_xf86_mode(m);
691
692 if (o->fbmode)
693 print_fb_mode(m);
694
695 return 0;
696
697}