| 1 | /* |
| 2 | * MPEG Audio decoder |
| 3 | * Copyright (c) 2001, 2002 Fabrice Bellard |
| 4 | * |
| 5 | * This file is part of FFmpeg. |
| 6 | * |
| 7 | * FFmpeg is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU Lesser General Public |
| 9 | * License as published by the Free Software Foundation; either |
| 10 | * version 2.1 of the License, or (at your option) any later version. |
| 11 | * |
| 12 | * FFmpeg is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | * Lesser General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU Lesser General Public |
| 18 | * License along with FFmpeg; if not, write to the Free Software |
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 20 | */ |
| 21 | |
| 22 | /** |
| 23 | * @file |
| 24 | * MPEG Audio decoder |
| 25 | */ |
| 26 | |
| 27 | #include "libavutil/attributes.h" |
| 28 | #include "libavutil/avassert.h" |
| 29 | #include "libavutil/channel_layout.h" |
| 30 | #include "libavutil/float_dsp.h" |
| 31 | #include "libavutil/libm.h" |
| 32 | #include "avcodec.h" |
| 33 | #include "get_bits.h" |
| 34 | #include "internal.h" |
| 35 | #include "mathops.h" |
| 36 | #include "mpegaudiodsp.h" |
| 37 | |
| 38 | /* |
| 39 | * TODO: |
| 40 | * - test lsf / mpeg25 extensively. |
| 41 | */ |
| 42 | |
| 43 | #include "mpegaudio.h" |
| 44 | #include "mpegaudiodecheader.h" |
| 45 | |
| 46 | #define BACKSTEP_SIZE 512 |
| 47 | #define EXTRABYTES 24 |
| 48 | #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES |
| 49 | |
| 50 | /* layer 3 "granule" */ |
| 51 | typedef struct GranuleDef { |
| 52 | uint8_t scfsi; |
| 53 | int part2_3_length; |
| 54 | int big_values; |
| 55 | int global_gain; |
| 56 | int scalefac_compress; |
| 57 | uint8_t block_type; |
| 58 | uint8_t switch_point; |
| 59 | int table_select[3]; |
| 60 | int subblock_gain[3]; |
| 61 | uint8_t scalefac_scale; |
| 62 | uint8_t count1table_select; |
| 63 | int region_size[3]; /* number of huffman codes in each region */ |
| 64 | int preflag; |
| 65 | int short_start, long_end; /* long/short band indexes */ |
| 66 | uint8_t scale_factors[40]; |
| 67 | DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */ |
| 68 | } GranuleDef; |
| 69 | |
| 70 | typedef struct MPADecodeContext { |
| 71 | MPA_DECODE_HEADER |
| 72 | uint8_t last_buf[LAST_BUF_SIZE]; |
| 73 | int last_buf_size; |
| 74 | /* next header (used in free format parsing) */ |
| 75 | uint32_t free_format_next_header; |
| 76 | GetBitContext gb; |
| 77 | GetBitContext in_gb; |
| 78 | DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2]; |
| 79 | int synth_buf_offset[MPA_MAX_CHANNELS]; |
| 80 | DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT]; |
| 81 | INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */ |
| 82 | GranuleDef granules[2][2]; /* Used in Layer 3 */ |
| 83 | int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3 |
| 84 | int dither_state; |
| 85 | int err_recognition; |
| 86 | AVCodecContext* avctx; |
| 87 | MPADSPContext mpadsp; |
| 88 | AVFloatDSPContext *fdsp; |
| 89 | AVFrame *frame; |
| 90 | } MPADecodeContext; |
| 91 | |
| 92 | #define HEADER_SIZE 4 |
| 93 | |
| 94 | #include "mpegaudiodata.h" |
| 95 | #include "mpegaudiodectab.h" |
| 96 | |
| 97 | /* vlc structure for decoding layer 3 huffman tables */ |
| 98 | static VLC huff_vlc[16]; |
| 99 | static VLC_TYPE huff_vlc_tables[ |
| 100 | 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 + |
| 101 | 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414 |
| 102 | ][2]; |
| 103 | static const int huff_vlc_tables_sizes[16] = { |
| 104 | 0, 128, 128, 128, 130, 128, 154, 166, |
| 105 | 142, 204, 190, 170, 542, 460, 662, 414 |
| 106 | }; |
| 107 | static VLC huff_quad_vlc[2]; |
| 108 | static VLC_TYPE huff_quad_vlc_tables[128+16][2]; |
| 109 | static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 }; |
| 110 | /* computed from band_size_long */ |
| 111 | static uint16_t band_index_long[9][23]; |
| 112 | #include "mpegaudio_tablegen.h" |
| 113 | /* intensity stereo coef table */ |
| 114 | static INTFLOAT is_table[2][16]; |
| 115 | static INTFLOAT is_table_lsf[2][2][16]; |
| 116 | static INTFLOAT csa_table[8][4]; |
| 117 | |
| 118 | static int16_t division_tab3[1<<6 ]; |
| 119 | static int16_t division_tab5[1<<8 ]; |
| 120 | static int16_t division_tab9[1<<11]; |
| 121 | |
| 122 | static int16_t * const division_tabs[4] = { |
| 123 | division_tab3, division_tab5, NULL, division_tab9 |
| 124 | }; |
| 125 | |
| 126 | /* lower 2 bits: modulo 3, higher bits: shift */ |
| 127 | static uint16_t scale_factor_modshift[64]; |
| 128 | /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ |
| 129 | static int32_t scale_factor_mult[15][3]; |
| 130 | /* mult table for layer 2 group quantization */ |
| 131 | |
| 132 | #define SCALE_GEN(v) \ |
| 133 | { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } |
| 134 | |
| 135 | static const int32_t scale_factor_mult2[3][3] = { |
| 136 | SCALE_GEN(4.0 / 3.0), /* 3 steps */ |
| 137 | SCALE_GEN(4.0 / 5.0), /* 5 steps */ |
| 138 | SCALE_GEN(4.0 / 9.0), /* 9 steps */ |
| 139 | }; |
| 140 | |
| 141 | /** |
| 142 | * Convert region offsets to region sizes and truncate |
| 143 | * size to big_values. |
| 144 | */ |
| 145 | static void region_offset2size(GranuleDef *g) |
| 146 | { |
| 147 | int i, k, j = 0; |
| 148 | g->region_size[2] = 576 / 2; |
| 149 | for (i = 0; i < 3; i++) { |
| 150 | k = FFMIN(g->region_size[i], g->big_values); |
| 151 | g->region_size[i] = k - j; |
| 152 | j = k; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | static void init_short_region(MPADecodeContext *s, GranuleDef *g) |
| 157 | { |
| 158 | if (g->block_type == 2) { |
| 159 | if (s->sample_rate_index != 8) |
| 160 | g->region_size[0] = (36 / 2); |
| 161 | else |
| 162 | g->region_size[0] = (72 / 2); |
| 163 | } else { |
| 164 | if (s->sample_rate_index <= 2) |
| 165 | g->region_size[0] = (36 / 2); |
| 166 | else if (s->sample_rate_index != 8) |
| 167 | g->region_size[0] = (54 / 2); |
| 168 | else |
| 169 | g->region_size[0] = (108 / 2); |
| 170 | } |
| 171 | g->region_size[1] = (576 / 2); |
| 172 | } |
| 173 | |
| 174 | static void init_long_region(MPADecodeContext *s, GranuleDef *g, |
| 175 | int ra1, int ra2) |
| 176 | { |
| 177 | int l; |
| 178 | g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1; |
| 179 | /* should not overflow */ |
| 180 | l = FFMIN(ra1 + ra2 + 2, 22); |
| 181 | g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1; |
| 182 | } |
| 183 | |
| 184 | static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g) |
| 185 | { |
| 186 | if (g->block_type == 2) { |
| 187 | if (g->switch_point) { |
| 188 | if(s->sample_rate_index == 8) |
| 189 | avpriv_request_sample(s->avctx, "switch point in 8khz"); |
| 190 | /* if switched mode, we handle the 36 first samples as |
| 191 | long blocks. For 8000Hz, we handle the 72 first |
| 192 | exponents as long blocks */ |
| 193 | if (s->sample_rate_index <= 2) |
| 194 | g->long_end = 8; |
| 195 | else |
| 196 | g->long_end = 6; |
| 197 | |
| 198 | g->short_start = 3; |
| 199 | } else { |
| 200 | g->long_end = 0; |
| 201 | g->short_start = 0; |
| 202 | } |
| 203 | } else { |
| 204 | g->short_start = 13; |
| 205 | g->long_end = 22; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | /* layer 1 unscaling */ |
| 210 | /* n = number of bits of the mantissa minus 1 */ |
| 211 | static inline int l1_unscale(int n, int mant, int scale_factor) |
| 212 | { |
| 213 | int shift, mod; |
| 214 | int64_t val; |
| 215 | |
| 216 | shift = scale_factor_modshift[scale_factor]; |
| 217 | mod = shift & 3; |
| 218 | shift >>= 2; |
| 219 | val = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]); |
| 220 | shift += n; |
| 221 | /* NOTE: at this point, 1 <= shift >= 21 + 15 */ |
| 222 | return (int)((val + (1LL << (shift - 1))) >> shift); |
| 223 | } |
| 224 | |
| 225 | static inline int l2_unscale_group(int steps, int mant, int scale_factor) |
| 226 | { |
| 227 | int shift, mod, val; |
| 228 | |
| 229 | shift = scale_factor_modshift[scale_factor]; |
| 230 | mod = shift & 3; |
| 231 | shift >>= 2; |
| 232 | |
| 233 | val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; |
| 234 | /* NOTE: at this point, 0 <= shift <= 21 */ |
| 235 | if (shift > 0) |
| 236 | val = (val + (1 << (shift - 1))) >> shift; |
| 237 | return val; |
| 238 | } |
| 239 | |
| 240 | /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ |
| 241 | static inline int l3_unscale(int value, int exponent) |
| 242 | { |
| 243 | unsigned int m; |
| 244 | int e; |
| 245 | |
| 246 | e = table_4_3_exp [4 * value + (exponent & 3)]; |
| 247 | m = table_4_3_value[4 * value + (exponent & 3)]; |
| 248 | e -= exponent >> 2; |
| 249 | #ifdef DEBUG |
| 250 | if(e < 1) |
| 251 | av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e); |
| 252 | #endif |
| 253 | if (e > 31) |
| 254 | return 0; |
| 255 | m = (m + (1 << (e - 1))) >> e; |
| 256 | |
| 257 | return m; |
| 258 | } |
| 259 | |
| 260 | static av_cold void decode_init_static(void) |
| 261 | { |
| 262 | int i, j, k; |
| 263 | int offset; |
| 264 | |
| 265 | /* scale factors table for layer 1/2 */ |
| 266 | for (i = 0; i < 64; i++) { |
| 267 | int shift, mod; |
| 268 | /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ |
| 269 | shift = i / 3; |
| 270 | mod = i % 3; |
| 271 | scale_factor_modshift[i] = mod | (shift << 2); |
| 272 | } |
| 273 | |
| 274 | /* scale factor multiply for layer 1 */ |
| 275 | for (i = 0; i < 15; i++) { |
| 276 | int n, norm; |
| 277 | n = i + 2; |
| 278 | norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); |
| 279 | scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); |
| 280 | scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); |
| 281 | scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); |
| 282 | av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm, |
| 283 | scale_factor_mult[i][0], |
| 284 | scale_factor_mult[i][1], |
| 285 | scale_factor_mult[i][2]); |
| 286 | } |
| 287 | |
| 288 | RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); |
| 289 | |
| 290 | /* huffman decode tables */ |
| 291 | offset = 0; |
| 292 | for (i = 1; i < 16; i++) { |
| 293 | const HuffTable *h = &mpa_huff_tables[i]; |
| 294 | int xsize, x, y; |
| 295 | uint8_t tmp_bits [512] = { 0 }; |
| 296 | uint16_t tmp_codes[512] = { 0 }; |
| 297 | |
| 298 | xsize = h->xsize; |
| 299 | |
| 300 | j = 0; |
| 301 | for (x = 0; x < xsize; x++) { |
| 302 | for (y = 0; y < xsize; y++) { |
| 303 | tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ]; |
| 304 | tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++]; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /* XXX: fail test */ |
| 309 | huff_vlc[i].table = huff_vlc_tables+offset; |
| 310 | huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; |
| 311 | init_vlc(&huff_vlc[i], 7, 512, |
| 312 | tmp_bits, 1, 1, tmp_codes, 2, 2, |
| 313 | INIT_VLC_USE_NEW_STATIC); |
| 314 | offset += huff_vlc_tables_sizes[i]; |
| 315 | } |
| 316 | av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); |
| 317 | |
| 318 | offset = 0; |
| 319 | for (i = 0; i < 2; i++) { |
| 320 | huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; |
| 321 | huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; |
| 322 | init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, |
| 323 | mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, |
| 324 | INIT_VLC_USE_NEW_STATIC); |
| 325 | offset += huff_quad_vlc_tables_sizes[i]; |
| 326 | } |
| 327 | av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); |
| 328 | |
| 329 | for (i = 0; i < 9; i++) { |
| 330 | k = 0; |
| 331 | for (j = 0; j < 22; j++) { |
| 332 | band_index_long[i][j] = k; |
| 333 | k += band_size_long[i][j]; |
| 334 | } |
| 335 | band_index_long[i][22] = k; |
| 336 | } |
| 337 | |
| 338 | /* compute n ^ (4/3) and store it in mantissa/exp format */ |
| 339 | |
| 340 | mpegaudio_tableinit(); |
| 341 | |
| 342 | for (i = 0; i < 4; i++) { |
| 343 | if (ff_mpa_quant_bits[i] < 0) { |
| 344 | for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) { |
| 345 | int val1, val2, val3, steps; |
| 346 | int val = j; |
| 347 | steps = ff_mpa_quant_steps[i]; |
| 348 | val1 = val % steps; |
| 349 | val /= steps; |
| 350 | val2 = val % steps; |
| 351 | val3 = val / steps; |
| 352 | division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | |
| 358 | for (i = 0; i < 7; i++) { |
| 359 | float f; |
| 360 | INTFLOAT v; |
| 361 | if (i != 6) { |
| 362 | f = tan((double)i * M_PI / 12.0); |
| 363 | v = FIXR(f / (1.0 + f)); |
| 364 | } else { |
| 365 | v = FIXR(1.0); |
| 366 | } |
| 367 | is_table[0][ i] = v; |
| 368 | is_table[1][6 - i] = v; |
| 369 | } |
| 370 | /* invalid values */ |
| 371 | for (i = 7; i < 16; i++) |
| 372 | is_table[0][i] = is_table[1][i] = 0.0; |
| 373 | |
| 374 | for (i = 0; i < 16; i++) { |
| 375 | double f; |
| 376 | int e, k; |
| 377 | |
| 378 | for (j = 0; j < 2; j++) { |
| 379 | e = -(j + 1) * ((i + 1) >> 1); |
| 380 | f = exp2(e / 4.0); |
| 381 | k = i & 1; |
| 382 | is_table_lsf[j][k ^ 1][i] = FIXR(f); |
| 383 | is_table_lsf[j][k ][i] = FIXR(1.0); |
| 384 | av_dlog(NULL, "is_table_lsf %d %d: %f %f\n", |
| 385 | i, j, (float) is_table_lsf[j][0][i], |
| 386 | (float) is_table_lsf[j][1][i]); |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | for (i = 0; i < 8; i++) { |
| 391 | float ci, cs, ca; |
| 392 | ci = ci_table[i]; |
| 393 | cs = 1.0 / sqrt(1.0 + ci * ci); |
| 394 | ca = cs * ci; |
| 395 | #if !USE_FLOATS |
| 396 | csa_table[i][0] = FIXHR(cs/4); |
| 397 | csa_table[i][1] = FIXHR(ca/4); |
| 398 | csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); |
| 399 | csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4); |
| 400 | #else |
| 401 | csa_table[i][0] = cs; |
| 402 | csa_table[i][1] = ca; |
| 403 | csa_table[i][2] = ca + cs; |
| 404 | csa_table[i][3] = ca - cs; |
| 405 | #endif |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | #if USE_FLOATS |
| 410 | static av_cold int decode_close(AVCodecContext * avctx) |
| 411 | { |
| 412 | MPADecodeContext *s = avctx->priv_data; |
| 413 | av_freep(&s->fdsp); |
| 414 | |
| 415 | return 0; |
| 416 | } |
| 417 | #endif |
| 418 | |
| 419 | static av_cold int decode_init(AVCodecContext * avctx) |
| 420 | { |
| 421 | static int initialized_tables = 0; |
| 422 | MPADecodeContext *s = avctx->priv_data; |
| 423 | |
| 424 | if (!initialized_tables) { |
| 425 | decode_init_static(); |
| 426 | initialized_tables = 1; |
| 427 | } |
| 428 | |
| 429 | s->avctx = avctx; |
| 430 | |
| 431 | #if USE_FLOATS |
| 432 | s->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT); |
| 433 | if (!s->fdsp) |
| 434 | return AVERROR(ENOMEM); |
| 435 | #endif |
| 436 | |
| 437 | ff_mpadsp_init(&s->mpadsp); |
| 438 | |
| 439 | if (avctx->request_sample_fmt == OUT_FMT && |
| 440 | avctx->codec_id != AV_CODEC_ID_MP3ON4) |
| 441 | avctx->sample_fmt = OUT_FMT; |
| 442 | else |
| 443 | avctx->sample_fmt = OUT_FMT_P; |
| 444 | s->err_recognition = avctx->err_recognition; |
| 445 | |
| 446 | if (avctx->codec_id == AV_CODEC_ID_MP3ADU) |
| 447 | s->adu_mode = 1; |
| 448 | |
| 449 | return 0; |
| 450 | } |
| 451 | |
| 452 | #define C3 FIXHR(0.86602540378443864676/2) |
| 453 | #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36) |
| 454 | #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36) |
| 455 | #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36) |
| 456 | |
| 457 | /* 12 points IMDCT. We compute it "by hand" by factorizing obvious |
| 458 | cases. */ |
| 459 | static void imdct12(INTFLOAT *out, INTFLOAT *in) |
| 460 | { |
| 461 | INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; |
| 462 | |
| 463 | in0 = in[0*3]; |
| 464 | in1 = in[1*3] + in[0*3]; |
| 465 | in2 = in[2*3] + in[1*3]; |
| 466 | in3 = in[3*3] + in[2*3]; |
| 467 | in4 = in[4*3] + in[3*3]; |
| 468 | in5 = in[5*3] + in[4*3]; |
| 469 | in5 += in3; |
| 470 | in3 += in1; |
| 471 | |
| 472 | in2 = MULH3(in2, C3, 2); |
| 473 | in3 = MULH3(in3, C3, 4); |
| 474 | |
| 475 | t1 = in0 - in4; |
| 476 | t2 = MULH3(in1 - in5, C4, 2); |
| 477 | |
| 478 | out[ 7] = |
| 479 | out[10] = t1 + t2; |
| 480 | out[ 1] = |
| 481 | out[ 4] = t1 - t2; |
| 482 | |
| 483 | in0 += SHR(in4, 1); |
| 484 | in4 = in0 + in2; |
| 485 | in5 += 2*in1; |
| 486 | in1 = MULH3(in5 + in3, C5, 1); |
| 487 | out[ 8] = |
| 488 | out[ 9] = in4 + in1; |
| 489 | out[ 2] = |
| 490 | out[ 3] = in4 - in1; |
| 491 | |
| 492 | in0 -= in2; |
| 493 | in5 = MULH3(in5 - in3, C6, 2); |
| 494 | out[ 0] = |
| 495 | out[ 5] = in0 - in5; |
| 496 | out[ 6] = |
| 497 | out[11] = in0 + in5; |
| 498 | } |
| 499 | |
| 500 | /* return the number of decoded frames */ |
| 501 | static int mp_decode_layer1(MPADecodeContext *s) |
| 502 | { |
| 503 | int bound, i, v, n, ch, j, mant; |
| 504 | uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; |
| 505 | uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; |
| 506 | |
| 507 | if (s->mode == MPA_JSTEREO) |
| 508 | bound = (s->mode_ext + 1) * 4; |
| 509 | else |
| 510 | bound = SBLIMIT; |
| 511 | |
| 512 | /* allocation bits */ |
| 513 | for (i = 0; i < bound; i++) { |
| 514 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 515 | allocation[ch][i] = get_bits(&s->gb, 4); |
| 516 | } |
| 517 | } |
| 518 | for (i = bound; i < SBLIMIT; i++) |
| 519 | allocation[0][i] = get_bits(&s->gb, 4); |
| 520 | |
| 521 | /* scale factors */ |
| 522 | for (i = 0; i < bound; i++) { |
| 523 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 524 | if (allocation[ch][i]) |
| 525 | scale_factors[ch][i] = get_bits(&s->gb, 6); |
| 526 | } |
| 527 | } |
| 528 | for (i = bound; i < SBLIMIT; i++) { |
| 529 | if (allocation[0][i]) { |
| 530 | scale_factors[0][i] = get_bits(&s->gb, 6); |
| 531 | scale_factors[1][i] = get_bits(&s->gb, 6); |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | /* compute samples */ |
| 536 | for (j = 0; j < 12; j++) { |
| 537 | for (i = 0; i < bound; i++) { |
| 538 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 539 | n = allocation[ch][i]; |
| 540 | if (n) { |
| 541 | mant = get_bits(&s->gb, n + 1); |
| 542 | v = l1_unscale(n, mant, scale_factors[ch][i]); |
| 543 | } else { |
| 544 | v = 0; |
| 545 | } |
| 546 | s->sb_samples[ch][j][i] = v; |
| 547 | } |
| 548 | } |
| 549 | for (i = bound; i < SBLIMIT; i++) { |
| 550 | n = allocation[0][i]; |
| 551 | if (n) { |
| 552 | mant = get_bits(&s->gb, n + 1); |
| 553 | v = l1_unscale(n, mant, scale_factors[0][i]); |
| 554 | s->sb_samples[0][j][i] = v; |
| 555 | v = l1_unscale(n, mant, scale_factors[1][i]); |
| 556 | s->sb_samples[1][j][i] = v; |
| 557 | } else { |
| 558 | s->sb_samples[0][j][i] = 0; |
| 559 | s->sb_samples[1][j][i] = 0; |
| 560 | } |
| 561 | } |
| 562 | } |
| 563 | return 12; |
| 564 | } |
| 565 | |
| 566 | static int mp_decode_layer2(MPADecodeContext *s) |
| 567 | { |
| 568 | int sblimit; /* number of used subbands */ |
| 569 | const unsigned char *alloc_table; |
| 570 | int table, bit_alloc_bits, i, j, ch, bound, v; |
| 571 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; |
| 572 | unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; |
| 573 | unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; |
| 574 | int scale, qindex, bits, steps, k, l, m, b; |
| 575 | |
| 576 | /* select decoding table */ |
| 577 | table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels, |
| 578 | s->sample_rate, s->lsf); |
| 579 | sblimit = ff_mpa_sblimit_table[table]; |
| 580 | alloc_table = ff_mpa_alloc_tables[table]; |
| 581 | |
| 582 | if (s->mode == MPA_JSTEREO) |
| 583 | bound = (s->mode_ext + 1) * 4; |
| 584 | else |
| 585 | bound = sblimit; |
| 586 | |
| 587 | av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit); |
| 588 | |
| 589 | /* sanity check */ |
| 590 | if (bound > sblimit) |
| 591 | bound = sblimit; |
| 592 | |
| 593 | /* parse bit allocation */ |
| 594 | j = 0; |
| 595 | for (i = 0; i < bound; i++) { |
| 596 | bit_alloc_bits = alloc_table[j]; |
| 597 | for (ch = 0; ch < s->nb_channels; ch++) |
| 598 | bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); |
| 599 | j += 1 << bit_alloc_bits; |
| 600 | } |
| 601 | for (i = bound; i < sblimit; i++) { |
| 602 | bit_alloc_bits = alloc_table[j]; |
| 603 | v = get_bits(&s->gb, bit_alloc_bits); |
| 604 | bit_alloc[0][i] = v; |
| 605 | bit_alloc[1][i] = v; |
| 606 | j += 1 << bit_alloc_bits; |
| 607 | } |
| 608 | |
| 609 | /* scale codes */ |
| 610 | for (i = 0; i < sblimit; i++) { |
| 611 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 612 | if (bit_alloc[ch][i]) |
| 613 | scale_code[ch][i] = get_bits(&s->gb, 2); |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | /* scale factors */ |
| 618 | for (i = 0; i < sblimit; i++) { |
| 619 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 620 | if (bit_alloc[ch][i]) { |
| 621 | sf = scale_factors[ch][i]; |
| 622 | switch (scale_code[ch][i]) { |
| 623 | default: |
| 624 | case 0: |
| 625 | sf[0] = get_bits(&s->gb, 6); |
| 626 | sf[1] = get_bits(&s->gb, 6); |
| 627 | sf[2] = get_bits(&s->gb, 6); |
| 628 | break; |
| 629 | case 2: |
| 630 | sf[0] = get_bits(&s->gb, 6); |
| 631 | sf[1] = sf[0]; |
| 632 | sf[2] = sf[0]; |
| 633 | break; |
| 634 | case 1: |
| 635 | sf[0] = get_bits(&s->gb, 6); |
| 636 | sf[2] = get_bits(&s->gb, 6); |
| 637 | sf[1] = sf[0]; |
| 638 | break; |
| 639 | case 3: |
| 640 | sf[0] = get_bits(&s->gb, 6); |
| 641 | sf[2] = get_bits(&s->gb, 6); |
| 642 | sf[1] = sf[2]; |
| 643 | break; |
| 644 | } |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | /* samples */ |
| 650 | for (k = 0; k < 3; k++) { |
| 651 | for (l = 0; l < 12; l += 3) { |
| 652 | j = 0; |
| 653 | for (i = 0; i < bound; i++) { |
| 654 | bit_alloc_bits = alloc_table[j]; |
| 655 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 656 | b = bit_alloc[ch][i]; |
| 657 | if (b) { |
| 658 | scale = scale_factors[ch][i][k]; |
| 659 | qindex = alloc_table[j+b]; |
| 660 | bits = ff_mpa_quant_bits[qindex]; |
| 661 | if (bits < 0) { |
| 662 | int v2; |
| 663 | /* 3 values at the same time */ |
| 664 | v = get_bits(&s->gb, -bits); |
| 665 | v2 = division_tabs[qindex][v]; |
| 666 | steps = ff_mpa_quant_steps[qindex]; |
| 667 | |
| 668 | s->sb_samples[ch][k * 12 + l + 0][i] = |
| 669 | l2_unscale_group(steps, v2 & 15, scale); |
| 670 | s->sb_samples[ch][k * 12 + l + 1][i] = |
| 671 | l2_unscale_group(steps, (v2 >> 4) & 15, scale); |
| 672 | s->sb_samples[ch][k * 12 + l + 2][i] = |
| 673 | l2_unscale_group(steps, v2 >> 8 , scale); |
| 674 | } else { |
| 675 | for (m = 0; m < 3; m++) { |
| 676 | v = get_bits(&s->gb, bits); |
| 677 | v = l1_unscale(bits - 1, v, scale); |
| 678 | s->sb_samples[ch][k * 12 + l + m][i] = v; |
| 679 | } |
| 680 | } |
| 681 | } else { |
| 682 | s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
| 683 | s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
| 684 | s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
| 685 | } |
| 686 | } |
| 687 | /* next subband in alloc table */ |
| 688 | j += 1 << bit_alloc_bits; |
| 689 | } |
| 690 | /* XXX: find a way to avoid this duplication of code */ |
| 691 | for (i = bound; i < sblimit; i++) { |
| 692 | bit_alloc_bits = alloc_table[j]; |
| 693 | b = bit_alloc[0][i]; |
| 694 | if (b) { |
| 695 | int mant, scale0, scale1; |
| 696 | scale0 = scale_factors[0][i][k]; |
| 697 | scale1 = scale_factors[1][i][k]; |
| 698 | qindex = alloc_table[j+b]; |
| 699 | bits = ff_mpa_quant_bits[qindex]; |
| 700 | if (bits < 0) { |
| 701 | /* 3 values at the same time */ |
| 702 | v = get_bits(&s->gb, -bits); |
| 703 | steps = ff_mpa_quant_steps[qindex]; |
| 704 | mant = v % steps; |
| 705 | v = v / steps; |
| 706 | s->sb_samples[0][k * 12 + l + 0][i] = |
| 707 | l2_unscale_group(steps, mant, scale0); |
| 708 | s->sb_samples[1][k * 12 + l + 0][i] = |
| 709 | l2_unscale_group(steps, mant, scale1); |
| 710 | mant = v % steps; |
| 711 | v = v / steps; |
| 712 | s->sb_samples[0][k * 12 + l + 1][i] = |
| 713 | l2_unscale_group(steps, mant, scale0); |
| 714 | s->sb_samples[1][k * 12 + l + 1][i] = |
| 715 | l2_unscale_group(steps, mant, scale1); |
| 716 | s->sb_samples[0][k * 12 + l + 2][i] = |
| 717 | l2_unscale_group(steps, v, scale0); |
| 718 | s->sb_samples[1][k * 12 + l + 2][i] = |
| 719 | l2_unscale_group(steps, v, scale1); |
| 720 | } else { |
| 721 | for (m = 0; m < 3; m++) { |
| 722 | mant = get_bits(&s->gb, bits); |
| 723 | s->sb_samples[0][k * 12 + l + m][i] = |
| 724 | l1_unscale(bits - 1, mant, scale0); |
| 725 | s->sb_samples[1][k * 12 + l + m][i] = |
| 726 | l1_unscale(bits - 1, mant, scale1); |
| 727 | } |
| 728 | } |
| 729 | } else { |
| 730 | s->sb_samples[0][k * 12 + l + 0][i] = 0; |
| 731 | s->sb_samples[0][k * 12 + l + 1][i] = 0; |
| 732 | s->sb_samples[0][k * 12 + l + 2][i] = 0; |
| 733 | s->sb_samples[1][k * 12 + l + 0][i] = 0; |
| 734 | s->sb_samples[1][k * 12 + l + 1][i] = 0; |
| 735 | s->sb_samples[1][k * 12 + l + 2][i] = 0; |
| 736 | } |
| 737 | /* next subband in alloc table */ |
| 738 | j += 1 << bit_alloc_bits; |
| 739 | } |
| 740 | /* fill remaining samples to zero */ |
| 741 | for (i = sblimit; i < SBLIMIT; i++) { |
| 742 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 743 | s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
| 744 | s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
| 745 | s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
| 746 | } |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | return 3 * 12; |
| 751 | } |
| 752 | |
| 753 | #define SPLIT(dst,sf,n) \ |
| 754 | if (n == 3) { \ |
| 755 | int m = (sf * 171) >> 9; \ |
| 756 | dst = sf - 3 * m; \ |
| 757 | sf = m; \ |
| 758 | } else if (n == 4) { \ |
| 759 | dst = sf & 3; \ |
| 760 | sf >>= 2; \ |
| 761 | } else if (n == 5) { \ |
| 762 | int m = (sf * 205) >> 10; \ |
| 763 | dst = sf - 5 * m; \ |
| 764 | sf = m; \ |
| 765 | } else if (n == 6) { \ |
| 766 | int m = (sf * 171) >> 10; \ |
| 767 | dst = sf - 6 * m; \ |
| 768 | sf = m; \ |
| 769 | } else { \ |
| 770 | dst = 0; \ |
| 771 | } |
| 772 | |
| 773 | static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2, |
| 774 | int n3) |
| 775 | { |
| 776 | SPLIT(slen[3], sf, n3) |
| 777 | SPLIT(slen[2], sf, n2) |
| 778 | SPLIT(slen[1], sf, n1) |
| 779 | slen[0] = sf; |
| 780 | } |
| 781 | |
| 782 | static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g, |
| 783 | int16_t *exponents) |
| 784 | { |
| 785 | const uint8_t *bstab, *pretab; |
| 786 | int len, i, j, k, l, v0, shift, gain, gains[3]; |
| 787 | int16_t *exp_ptr; |
| 788 | |
| 789 | exp_ptr = exponents; |
| 790 | gain = g->global_gain - 210; |
| 791 | shift = g->scalefac_scale + 1; |
| 792 | |
| 793 | bstab = band_size_long[s->sample_rate_index]; |
| 794 | pretab = mpa_pretab[g->preflag]; |
| 795 | for (i = 0; i < g->long_end; i++) { |
| 796 | v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400; |
| 797 | len = bstab[i]; |
| 798 | for (j = len; j > 0; j--) |
| 799 | *exp_ptr++ = v0; |
| 800 | } |
| 801 | |
| 802 | if (g->short_start < 13) { |
| 803 | bstab = band_size_short[s->sample_rate_index]; |
| 804 | gains[0] = gain - (g->subblock_gain[0] << 3); |
| 805 | gains[1] = gain - (g->subblock_gain[1] << 3); |
| 806 | gains[2] = gain - (g->subblock_gain[2] << 3); |
| 807 | k = g->long_end; |
| 808 | for (i = g->short_start; i < 13; i++) { |
| 809 | len = bstab[i]; |
| 810 | for (l = 0; l < 3; l++) { |
| 811 | v0 = gains[l] - (g->scale_factors[k++] << shift) + 400; |
| 812 | for (j = len; j > 0; j--) |
| 813 | *exp_ptr++ = v0; |
| 814 | } |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | /* handle n = 0 too */ |
| 820 | static inline int get_bitsz(GetBitContext *s, int n) |
| 821 | { |
| 822 | return n ? get_bits(s, n) : 0; |
| 823 | } |
| 824 | |
| 825 | |
| 826 | static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, |
| 827 | int *end_pos2) |
| 828 | { |
| 829 | if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) { |
| 830 | s->gb = s->in_gb; |
| 831 | s->in_gb.buffer = NULL; |
| 832 | av_assert2((get_bits_count(&s->gb) & 7) == 0); |
| 833 | skip_bits_long(&s->gb, *pos - *end_pos); |
| 834 | *end_pos2 = |
| 835 | *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos; |
| 836 | *pos = get_bits_count(&s->gb); |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | /* Following is a optimized code for |
| 841 | INTFLOAT v = *src |
| 842 | if(get_bits1(&s->gb)) |
| 843 | v = -v; |
| 844 | *dst = v; |
| 845 | */ |
| 846 | #if USE_FLOATS |
| 847 | #define READ_FLIP_SIGN(dst,src) \ |
| 848 | v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \ |
| 849 | AV_WN32A(dst, v); |
| 850 | #else |
| 851 | #define READ_FLIP_SIGN(dst,src) \ |
| 852 | v = -get_bits1(&s->gb); \ |
| 853 | *(dst) = (*(src) ^ v) - v; |
| 854 | #endif |
| 855 | |
| 856 | static int huffman_decode(MPADecodeContext *s, GranuleDef *g, |
| 857 | int16_t *exponents, int end_pos2) |
| 858 | { |
| 859 | int s_index; |
| 860 | int i; |
| 861 | int last_pos, bits_left; |
| 862 | VLC *vlc; |
| 863 | int end_pos = FFMIN(end_pos2, s->gb.size_in_bits); |
| 864 | |
| 865 | /* low frequencies (called big values) */ |
| 866 | s_index = 0; |
| 867 | for (i = 0; i < 3; i++) { |
| 868 | int j, k, l, linbits; |
| 869 | j = g->region_size[i]; |
| 870 | if (j == 0) |
| 871 | continue; |
| 872 | /* select vlc table */ |
| 873 | k = g->table_select[i]; |
| 874 | l = mpa_huff_data[k][0]; |
| 875 | linbits = mpa_huff_data[k][1]; |
| 876 | vlc = &huff_vlc[l]; |
| 877 | |
| 878 | if (!l) { |
| 879 | memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j); |
| 880 | s_index += 2 * j; |
| 881 | continue; |
| 882 | } |
| 883 | |
| 884 | /* read huffcode and compute each couple */ |
| 885 | for (; j > 0; j--) { |
| 886 | int exponent, x, y; |
| 887 | int v; |
| 888 | int pos = get_bits_count(&s->gb); |
| 889 | |
| 890 | if (pos >= end_pos){ |
| 891 | switch_buffer(s, &pos, &end_pos, &end_pos2); |
| 892 | if (pos >= end_pos) |
| 893 | break; |
| 894 | } |
| 895 | y = get_vlc2(&s->gb, vlc->table, 7, 3); |
| 896 | |
| 897 | if (!y) { |
| 898 | g->sb_hybrid[s_index ] = |
| 899 | g->sb_hybrid[s_index+1] = 0; |
| 900 | s_index += 2; |
| 901 | continue; |
| 902 | } |
| 903 | |
| 904 | exponent= exponents[s_index]; |
| 905 | |
| 906 | av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n", |
| 907 | i, g->region_size[i] - j, x, y, exponent); |
| 908 | if (y & 16) { |
| 909 | x = y >> 5; |
| 910 | y = y & 0x0f; |
| 911 | if (x < 15) { |
| 912 | READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x) |
| 913 | } else { |
| 914 | x += get_bitsz(&s->gb, linbits); |
| 915 | v = l3_unscale(x, exponent); |
| 916 | if (get_bits1(&s->gb)) |
| 917 | v = -v; |
| 918 | g->sb_hybrid[s_index] = v; |
| 919 | } |
| 920 | if (y < 15) { |
| 921 | READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y) |
| 922 | } else { |
| 923 | y += get_bitsz(&s->gb, linbits); |
| 924 | v = l3_unscale(y, exponent); |
| 925 | if (get_bits1(&s->gb)) |
| 926 | v = -v; |
| 927 | g->sb_hybrid[s_index+1] = v; |
| 928 | } |
| 929 | } else { |
| 930 | x = y >> 5; |
| 931 | y = y & 0x0f; |
| 932 | x += y; |
| 933 | if (x < 15) { |
| 934 | READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x) |
| 935 | } else { |
| 936 | x += get_bitsz(&s->gb, linbits); |
| 937 | v = l3_unscale(x, exponent); |
| 938 | if (get_bits1(&s->gb)) |
| 939 | v = -v; |
| 940 | g->sb_hybrid[s_index+!!y] = v; |
| 941 | } |
| 942 | g->sb_hybrid[s_index + !y] = 0; |
| 943 | } |
| 944 | s_index += 2; |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | /* high frequencies */ |
| 949 | vlc = &huff_quad_vlc[g->count1table_select]; |
| 950 | last_pos = 0; |
| 951 | while (s_index <= 572) { |
| 952 | int pos, code; |
| 953 | pos = get_bits_count(&s->gb); |
| 954 | if (pos >= end_pos) { |
| 955 | if (pos > end_pos2 && last_pos) { |
| 956 | /* some encoders generate an incorrect size for this |
| 957 | part. We must go back into the data */ |
| 958 | s_index -= 4; |
| 959 | skip_bits_long(&s->gb, last_pos - pos); |
| 960 | av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos); |
| 961 | if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT)) |
| 962 | s_index=0; |
| 963 | break; |
| 964 | } |
| 965 | switch_buffer(s, &pos, &end_pos, &end_pos2); |
| 966 | if (pos >= end_pos) |
| 967 | break; |
| 968 | } |
| 969 | last_pos = pos; |
| 970 | |
| 971 | code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1); |
| 972 | av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code); |
| 973 | g->sb_hybrid[s_index+0] = |
| 974 | g->sb_hybrid[s_index+1] = |
| 975 | g->sb_hybrid[s_index+2] = |
| 976 | g->sb_hybrid[s_index+3] = 0; |
| 977 | while (code) { |
| 978 | static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 }; |
| 979 | int v; |
| 980 | int pos = s_index + idxtab[code]; |
| 981 | code ^= 8 >> idxtab[code]; |
| 982 | READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos]) |
| 983 | } |
| 984 | s_index += 4; |
| 985 | } |
| 986 | /* skip extension bits */ |
| 987 | bits_left = end_pos2 - get_bits_count(&s->gb); |
| 988 | if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) { |
| 989 | av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left); |
| 990 | s_index=0; |
| 991 | } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) { |
| 992 | av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left); |
| 993 | s_index = 0; |
| 994 | } |
| 995 | memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index)); |
| 996 | skip_bits_long(&s->gb, bits_left); |
| 997 | |
| 998 | i = get_bits_count(&s->gb); |
| 999 | switch_buffer(s, &i, &end_pos, &end_pos2); |
| 1000 | |
| 1001 | return 0; |
| 1002 | } |
| 1003 | |
| 1004 | /* Reorder short blocks from bitstream order to interleaved order. It |
| 1005 | would be faster to do it in parsing, but the code would be far more |
| 1006 | complicated */ |
| 1007 | static void reorder_block(MPADecodeContext *s, GranuleDef *g) |
| 1008 | { |
| 1009 | int i, j, len; |
| 1010 | INTFLOAT *ptr, *dst, *ptr1; |
| 1011 | INTFLOAT tmp[576]; |
| 1012 | |
| 1013 | if (g->block_type != 2) |
| 1014 | return; |
| 1015 | |
| 1016 | if (g->switch_point) { |
| 1017 | if (s->sample_rate_index != 8) |
| 1018 | ptr = g->sb_hybrid + 36; |
| 1019 | else |
| 1020 | ptr = g->sb_hybrid + 72; |
| 1021 | } else { |
| 1022 | ptr = g->sb_hybrid; |
| 1023 | } |
| 1024 | |
| 1025 | for (i = g->short_start; i < 13; i++) { |
| 1026 | len = band_size_short[s->sample_rate_index][i]; |
| 1027 | ptr1 = ptr; |
| 1028 | dst = tmp; |
| 1029 | for (j = len; j > 0; j--) { |
| 1030 | *dst++ = ptr[0*len]; |
| 1031 | *dst++ = ptr[1*len]; |
| 1032 | *dst++ = ptr[2*len]; |
| 1033 | ptr++; |
| 1034 | } |
| 1035 | ptr += 2 * len; |
| 1036 | memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | #define ISQRT2 FIXR(0.70710678118654752440) |
| 1041 | |
| 1042 | static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1) |
| 1043 | { |
| 1044 | int i, j, k, l; |
| 1045 | int sf_max, sf, len, non_zero_found; |
| 1046 | INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2; |
| 1047 | int non_zero_found_short[3]; |
| 1048 | |
| 1049 | /* intensity stereo */ |
| 1050 | if (s->mode_ext & MODE_EXT_I_STEREO) { |
| 1051 | if (!s->lsf) { |
| 1052 | is_tab = is_table; |
| 1053 | sf_max = 7; |
| 1054 | } else { |
| 1055 | is_tab = is_table_lsf[g1->scalefac_compress & 1]; |
| 1056 | sf_max = 16; |
| 1057 | } |
| 1058 | |
| 1059 | tab0 = g0->sb_hybrid + 576; |
| 1060 | tab1 = g1->sb_hybrid + 576; |
| 1061 | |
| 1062 | non_zero_found_short[0] = 0; |
| 1063 | non_zero_found_short[1] = 0; |
| 1064 | non_zero_found_short[2] = 0; |
| 1065 | k = (13 - g1->short_start) * 3 + g1->long_end - 3; |
| 1066 | for (i = 12; i >= g1->short_start; i--) { |
| 1067 | /* for last band, use previous scale factor */ |
| 1068 | if (i != 11) |
| 1069 | k -= 3; |
| 1070 | len = band_size_short[s->sample_rate_index][i]; |
| 1071 | for (l = 2; l >= 0; l--) { |
| 1072 | tab0 -= len; |
| 1073 | tab1 -= len; |
| 1074 | if (!non_zero_found_short[l]) { |
| 1075 | /* test if non zero band. if so, stop doing i-stereo */ |
| 1076 | for (j = 0; j < len; j++) { |
| 1077 | if (tab1[j] != 0) { |
| 1078 | non_zero_found_short[l] = 1; |
| 1079 | goto found1; |
| 1080 | } |
| 1081 | } |
| 1082 | sf = g1->scale_factors[k + l]; |
| 1083 | if (sf >= sf_max) |
| 1084 | goto found1; |
| 1085 | |
| 1086 | v1 = is_tab[0][sf]; |
| 1087 | v2 = is_tab[1][sf]; |
| 1088 | for (j = 0; j < len; j++) { |
| 1089 | tmp0 = tab0[j]; |
| 1090 | tab0[j] = MULLx(tmp0, v1, FRAC_BITS); |
| 1091 | tab1[j] = MULLx(tmp0, v2, FRAC_BITS); |
| 1092 | } |
| 1093 | } else { |
| 1094 | found1: |
| 1095 | if (s->mode_ext & MODE_EXT_MS_STEREO) { |
| 1096 | /* lower part of the spectrum : do ms stereo |
| 1097 | if enabled */ |
| 1098 | for (j = 0; j < len; j++) { |
| 1099 | tmp0 = tab0[j]; |
| 1100 | tmp1 = tab1[j]; |
| 1101 | tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); |
| 1102 | tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS); |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | non_zero_found = non_zero_found_short[0] | |
| 1110 | non_zero_found_short[1] | |
| 1111 | non_zero_found_short[2]; |
| 1112 | |
| 1113 | for (i = g1->long_end - 1;i >= 0;i--) { |
| 1114 | len = band_size_long[s->sample_rate_index][i]; |
| 1115 | tab0 -= len; |
| 1116 | tab1 -= len; |
| 1117 | /* test if non zero band. if so, stop doing i-stereo */ |
| 1118 | if (!non_zero_found) { |
| 1119 | for (j = 0; j < len; j++) { |
| 1120 | if (tab1[j] != 0) { |
| 1121 | non_zero_found = 1; |
| 1122 | goto found2; |
| 1123 | } |
| 1124 | } |
| 1125 | /* for last band, use previous scale factor */ |
| 1126 | k = (i == 21) ? 20 : i; |
| 1127 | sf = g1->scale_factors[k]; |
| 1128 | if (sf >= sf_max) |
| 1129 | goto found2; |
| 1130 | v1 = is_tab[0][sf]; |
| 1131 | v2 = is_tab[1][sf]; |
| 1132 | for (j = 0; j < len; j++) { |
| 1133 | tmp0 = tab0[j]; |
| 1134 | tab0[j] = MULLx(tmp0, v1, FRAC_BITS); |
| 1135 | tab1[j] = MULLx(tmp0, v2, FRAC_BITS); |
| 1136 | } |
| 1137 | } else { |
| 1138 | found2: |
| 1139 | if (s->mode_ext & MODE_EXT_MS_STEREO) { |
| 1140 | /* lower part of the spectrum : do ms stereo |
| 1141 | if enabled */ |
| 1142 | for (j = 0; j < len; j++) { |
| 1143 | tmp0 = tab0[j]; |
| 1144 | tmp1 = tab1[j]; |
| 1145 | tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); |
| 1146 | tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS); |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | } |
| 1151 | } else if (s->mode_ext & MODE_EXT_MS_STEREO) { |
| 1152 | /* ms stereo ONLY */ |
| 1153 | /* NOTE: the 1/sqrt(2) normalization factor is included in the |
| 1154 | global gain */ |
| 1155 | #if USE_FLOATS |
| 1156 | s->fdsp->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576); |
| 1157 | #else |
| 1158 | tab0 = g0->sb_hybrid; |
| 1159 | tab1 = g1->sb_hybrid; |
| 1160 | for (i = 0; i < 576; i++) { |
| 1161 | tmp0 = tab0[i]; |
| 1162 | tmp1 = tab1[i]; |
| 1163 | tab0[i] = tmp0 + tmp1; |
| 1164 | tab1[i] = tmp0 - tmp1; |
| 1165 | } |
| 1166 | #endif |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | #if USE_FLOATS |
| 1171 | #if HAVE_MIPSFPU |
| 1172 | # include "mips/compute_antialias_float.h" |
| 1173 | #endif /* HAVE_MIPSFPU */ |
| 1174 | #else |
| 1175 | #if HAVE_MIPSDSPR1 |
| 1176 | # include "mips/compute_antialias_fixed.h" |
| 1177 | #endif /* HAVE_MIPSDSPR1 */ |
| 1178 | #endif /* USE_FLOATS */ |
| 1179 | |
| 1180 | #ifndef compute_antialias |
| 1181 | #if USE_FLOATS |
| 1182 | #define AA(j) do { \ |
| 1183 | float tmp0 = ptr[-1-j]; \ |
| 1184 | float tmp1 = ptr[ j]; \ |
| 1185 | ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \ |
| 1186 | ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \ |
| 1187 | } while (0) |
| 1188 | #else |
| 1189 | #define AA(j) do { \ |
| 1190 | int tmp0 = ptr[-1-j]; \ |
| 1191 | int tmp1 = ptr[ j]; \ |
| 1192 | int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \ |
| 1193 | ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \ |
| 1194 | ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \ |
| 1195 | } while (0) |
| 1196 | #endif |
| 1197 | |
| 1198 | static void compute_antialias(MPADecodeContext *s, GranuleDef *g) |
| 1199 | { |
| 1200 | INTFLOAT *ptr; |
| 1201 | int n, i; |
| 1202 | |
| 1203 | /* we antialias only "long" bands */ |
| 1204 | if (g->block_type == 2) { |
| 1205 | if (!g->switch_point) |
| 1206 | return; |
| 1207 | /* XXX: check this for 8000Hz case */ |
| 1208 | n = 1; |
| 1209 | } else { |
| 1210 | n = SBLIMIT - 1; |
| 1211 | } |
| 1212 | |
| 1213 | ptr = g->sb_hybrid + 18; |
| 1214 | for (i = n; i > 0; i--) { |
| 1215 | AA(0); |
| 1216 | AA(1); |
| 1217 | AA(2); |
| 1218 | AA(3); |
| 1219 | AA(4); |
| 1220 | AA(5); |
| 1221 | AA(6); |
| 1222 | AA(7); |
| 1223 | |
| 1224 | ptr += 18; |
| 1225 | } |
| 1226 | } |
| 1227 | #endif /* compute_antialias */ |
| 1228 | |
| 1229 | static void compute_imdct(MPADecodeContext *s, GranuleDef *g, |
| 1230 | INTFLOAT *sb_samples, INTFLOAT *mdct_buf) |
| 1231 | { |
| 1232 | INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1; |
| 1233 | INTFLOAT out2[12]; |
| 1234 | int i, j, mdct_long_end, sblimit; |
| 1235 | |
| 1236 | /* find last non zero block */ |
| 1237 | ptr = g->sb_hybrid + 576; |
| 1238 | ptr1 = g->sb_hybrid + 2 * 18; |
| 1239 | while (ptr >= ptr1) { |
| 1240 | int32_t *p; |
| 1241 | ptr -= 6; |
| 1242 | p = (int32_t*)ptr; |
| 1243 | if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5]) |
| 1244 | break; |
| 1245 | } |
| 1246 | sblimit = ((ptr - g->sb_hybrid) / 18) + 1; |
| 1247 | |
| 1248 | if (g->block_type == 2) { |
| 1249 | /* XXX: check for 8000 Hz */ |
| 1250 | if (g->switch_point) |
| 1251 | mdct_long_end = 2; |
| 1252 | else |
| 1253 | mdct_long_end = 0; |
| 1254 | } else { |
| 1255 | mdct_long_end = sblimit; |
| 1256 | } |
| 1257 | |
| 1258 | s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid, |
| 1259 | mdct_long_end, g->switch_point, |
| 1260 | g->block_type); |
| 1261 | |
| 1262 | buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3); |
| 1263 | ptr = g->sb_hybrid + 18 * mdct_long_end; |
| 1264 | |
| 1265 | for (j = mdct_long_end; j < sblimit; j++) { |
| 1266 | /* select frequency inversion */ |
| 1267 | win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))]; |
| 1268 | out_ptr = sb_samples + j; |
| 1269 | |
| 1270 | for (i = 0; i < 6; i++) { |
| 1271 | *out_ptr = buf[4*i]; |
| 1272 | out_ptr += SBLIMIT; |
| 1273 | } |
| 1274 | imdct12(out2, ptr + 0); |
| 1275 | for (i = 0; i < 6; i++) { |
| 1276 | *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)]; |
| 1277 | buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1); |
| 1278 | out_ptr += SBLIMIT; |
| 1279 | } |
| 1280 | imdct12(out2, ptr + 1); |
| 1281 | for (i = 0; i < 6; i++) { |
| 1282 | *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)]; |
| 1283 | buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1); |
| 1284 | out_ptr += SBLIMIT; |
| 1285 | } |
| 1286 | imdct12(out2, ptr + 2); |
| 1287 | for (i = 0; i < 6; i++) { |
| 1288 | buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)]; |
| 1289 | buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1); |
| 1290 | buf[4*(i + 6*2)] = 0; |
| 1291 | } |
| 1292 | ptr += 18; |
| 1293 | buf += (j&3) != 3 ? 1 : (4*18-3); |
| 1294 | } |
| 1295 | /* zero bands */ |
| 1296 | for (j = sblimit; j < SBLIMIT; j++) { |
| 1297 | /* overlap */ |
| 1298 | out_ptr = sb_samples + j; |
| 1299 | for (i = 0; i < 18; i++) { |
| 1300 | *out_ptr = buf[4*i]; |
| 1301 | buf[4*i] = 0; |
| 1302 | out_ptr += SBLIMIT; |
| 1303 | } |
| 1304 | buf += (j&3) != 3 ? 1 : (4*18-3); |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | /* main layer3 decoding function */ |
| 1309 | static int mp_decode_layer3(MPADecodeContext *s) |
| 1310 | { |
| 1311 | int nb_granules, main_data_begin; |
| 1312 | int gr, ch, blocksplit_flag, i, j, k, n, bits_pos; |
| 1313 | GranuleDef *g; |
| 1314 | int16_t exponents[576]; //FIXME try INTFLOAT |
| 1315 | |
| 1316 | /* read side info */ |
| 1317 | if (s->lsf) { |
| 1318 | main_data_begin = get_bits(&s->gb, 8); |
| 1319 | skip_bits(&s->gb, s->nb_channels); |
| 1320 | nb_granules = 1; |
| 1321 | } else { |
| 1322 | main_data_begin = get_bits(&s->gb, 9); |
| 1323 | if (s->nb_channels == 2) |
| 1324 | skip_bits(&s->gb, 3); |
| 1325 | else |
| 1326 | skip_bits(&s->gb, 5); |
| 1327 | nb_granules = 2; |
| 1328 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 1329 | s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ |
| 1330 | s->granules[ch][1].scfsi = get_bits(&s->gb, 4); |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | for (gr = 0; gr < nb_granules; gr++) { |
| 1335 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 1336 | av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch); |
| 1337 | g = &s->granules[ch][gr]; |
| 1338 | g->part2_3_length = get_bits(&s->gb, 12); |
| 1339 | g->big_values = get_bits(&s->gb, 9); |
| 1340 | if (g->big_values > 288) { |
| 1341 | av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n"); |
| 1342 | return AVERROR_INVALIDDATA; |
| 1343 | } |
| 1344 | |
| 1345 | g->global_gain = get_bits(&s->gb, 8); |
| 1346 | /* if MS stereo only is selected, we precompute the |
| 1347 | 1/sqrt(2) renormalization factor */ |
| 1348 | if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == |
| 1349 | MODE_EXT_MS_STEREO) |
| 1350 | g->global_gain -= 2; |
| 1351 | if (s->lsf) |
| 1352 | g->scalefac_compress = get_bits(&s->gb, 9); |
| 1353 | else |
| 1354 | g->scalefac_compress = get_bits(&s->gb, 4); |
| 1355 | blocksplit_flag = get_bits1(&s->gb); |
| 1356 | if (blocksplit_flag) { |
| 1357 | g->block_type = get_bits(&s->gb, 2); |
| 1358 | if (g->block_type == 0) { |
| 1359 | av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n"); |
| 1360 | return AVERROR_INVALIDDATA; |
| 1361 | } |
| 1362 | g->switch_point = get_bits1(&s->gb); |
| 1363 | for (i = 0; i < 2; i++) |
| 1364 | g->table_select[i] = get_bits(&s->gb, 5); |
| 1365 | for (i = 0; i < 3; i++) |
| 1366 | g->subblock_gain[i] = get_bits(&s->gb, 3); |
| 1367 | init_short_region(s, g); |
| 1368 | } else { |
| 1369 | int region_address1, region_address2; |
| 1370 | g->block_type = 0; |
| 1371 | g->switch_point = 0; |
| 1372 | for (i = 0; i < 3; i++) |
| 1373 | g->table_select[i] = get_bits(&s->gb, 5); |
| 1374 | /* compute huffman coded region sizes */ |
| 1375 | region_address1 = get_bits(&s->gb, 4); |
| 1376 | region_address2 = get_bits(&s->gb, 3); |
| 1377 | av_dlog(s->avctx, "region1=%d region2=%d\n", |
| 1378 | region_address1, region_address2); |
| 1379 | init_long_region(s, g, region_address1, region_address2); |
| 1380 | } |
| 1381 | region_offset2size(g); |
| 1382 | compute_band_indexes(s, g); |
| 1383 | |
| 1384 | g->preflag = 0; |
| 1385 | if (!s->lsf) |
| 1386 | g->preflag = get_bits1(&s->gb); |
| 1387 | g->scalefac_scale = get_bits1(&s->gb); |
| 1388 | g->count1table_select = get_bits1(&s->gb); |
| 1389 | av_dlog(s->avctx, "block_type=%d switch_point=%d\n", |
| 1390 | g->block_type, g->switch_point); |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | if (!s->adu_mode) { |
| 1395 | int skip; |
| 1396 | const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3); |
| 1397 | int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES); |
| 1398 | av_assert1((get_bits_count(&s->gb) & 7) == 0); |
| 1399 | /* now we get bits from the main_data_begin offset */ |
| 1400 | av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n", |
| 1401 | main_data_begin, s->last_buf_size); |
| 1402 | |
| 1403 | memcpy(s->last_buf + s->last_buf_size, ptr, extrasize); |
| 1404 | s->in_gb = s->gb; |
| 1405 | init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8); |
| 1406 | #if !UNCHECKED_BITSTREAM_READER |
| 1407 | s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8; |
| 1408 | #endif |
| 1409 | s->last_buf_size <<= 3; |
| 1410 | for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) { |
| 1411 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 1412 | g = &s->granules[ch][gr]; |
| 1413 | s->last_buf_size += g->part2_3_length; |
| 1414 | memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid)); |
| 1415 | compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); |
| 1416 | } |
| 1417 | } |
| 1418 | skip = s->last_buf_size - 8 * main_data_begin; |
| 1419 | if (skip >= s->gb.size_in_bits && s->in_gb.buffer) { |
| 1420 | skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits); |
| 1421 | s->gb = s->in_gb; |
| 1422 | s->in_gb.buffer = NULL; |
| 1423 | } else { |
| 1424 | skip_bits_long(&s->gb, skip); |
| 1425 | } |
| 1426 | } else { |
| 1427 | gr = 0; |
| 1428 | } |
| 1429 | |
| 1430 | for (; gr < nb_granules; gr++) { |
| 1431 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 1432 | g = &s->granules[ch][gr]; |
| 1433 | bits_pos = get_bits_count(&s->gb); |
| 1434 | |
| 1435 | if (!s->lsf) { |
| 1436 | uint8_t *sc; |
| 1437 | int slen, slen1, slen2; |
| 1438 | |
| 1439 | /* MPEG1 scale factors */ |
| 1440 | slen1 = slen_table[0][g->scalefac_compress]; |
| 1441 | slen2 = slen_table[1][g->scalefac_compress]; |
| 1442 | av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2); |
| 1443 | if (g->block_type == 2) { |
| 1444 | n = g->switch_point ? 17 : 18; |
| 1445 | j = 0; |
| 1446 | if (slen1) { |
| 1447 | for (i = 0; i < n; i++) |
| 1448 | g->scale_factors[j++] = get_bits(&s->gb, slen1); |
| 1449 | } else { |
| 1450 | for (i = 0; i < n; i++) |
| 1451 | g->scale_factors[j++] = 0; |
| 1452 | } |
| 1453 | if (slen2) { |
| 1454 | for (i = 0; i < 18; i++) |
| 1455 | g->scale_factors[j++] = get_bits(&s->gb, slen2); |
| 1456 | for (i = 0; i < 3; i++) |
| 1457 | g->scale_factors[j++] = 0; |
| 1458 | } else { |
| 1459 | for (i = 0; i < 21; i++) |
| 1460 | g->scale_factors[j++] = 0; |
| 1461 | } |
| 1462 | } else { |
| 1463 | sc = s->granules[ch][0].scale_factors; |
| 1464 | j = 0; |
| 1465 | for (k = 0; k < 4; k++) { |
| 1466 | n = k == 0 ? 6 : 5; |
| 1467 | if ((g->scfsi & (0x8 >> k)) == 0) { |
| 1468 | slen = (k < 2) ? slen1 : slen2; |
| 1469 | if (slen) { |
| 1470 | for (i = 0; i < n; i++) |
| 1471 | g->scale_factors[j++] = get_bits(&s->gb, slen); |
| 1472 | } else { |
| 1473 | for (i = 0; i < n; i++) |
| 1474 | g->scale_factors[j++] = 0; |
| 1475 | } |
| 1476 | } else { |
| 1477 | /* simply copy from last granule */ |
| 1478 | for (i = 0; i < n; i++) { |
| 1479 | g->scale_factors[j] = sc[j]; |
| 1480 | j++; |
| 1481 | } |
| 1482 | } |
| 1483 | } |
| 1484 | g->scale_factors[j++] = 0; |
| 1485 | } |
| 1486 | } else { |
| 1487 | int tindex, tindex2, slen[4], sl, sf; |
| 1488 | |
| 1489 | /* LSF scale factors */ |
| 1490 | if (g->block_type == 2) |
| 1491 | tindex = g->switch_point ? 2 : 1; |
| 1492 | else |
| 1493 | tindex = 0; |
| 1494 | |
| 1495 | sf = g->scalefac_compress; |
| 1496 | if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { |
| 1497 | /* intensity stereo case */ |
| 1498 | sf >>= 1; |
| 1499 | if (sf < 180) { |
| 1500 | lsf_sf_expand(slen, sf, 6, 6, 0); |
| 1501 | tindex2 = 3; |
| 1502 | } else if (sf < 244) { |
| 1503 | lsf_sf_expand(slen, sf - 180, 4, 4, 0); |
| 1504 | tindex2 = 4; |
| 1505 | } else { |
| 1506 | lsf_sf_expand(slen, sf - 244, 3, 0, 0); |
| 1507 | tindex2 = 5; |
| 1508 | } |
| 1509 | } else { |
| 1510 | /* normal case */ |
| 1511 | if (sf < 400) { |
| 1512 | lsf_sf_expand(slen, sf, 5, 4, 4); |
| 1513 | tindex2 = 0; |
| 1514 | } else if (sf < 500) { |
| 1515 | lsf_sf_expand(slen, sf - 400, 5, 4, 0); |
| 1516 | tindex2 = 1; |
| 1517 | } else { |
| 1518 | lsf_sf_expand(slen, sf - 500, 3, 0, 0); |
| 1519 | tindex2 = 2; |
| 1520 | g->preflag = 1; |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | j = 0; |
| 1525 | for (k = 0; k < 4; k++) { |
| 1526 | n = lsf_nsf_table[tindex2][tindex][k]; |
| 1527 | sl = slen[k]; |
| 1528 | if (sl) { |
| 1529 | for (i = 0; i < n; i++) |
| 1530 | g->scale_factors[j++] = get_bits(&s->gb, sl); |
| 1531 | } else { |
| 1532 | for (i = 0; i < n; i++) |
| 1533 | g->scale_factors[j++] = 0; |
| 1534 | } |
| 1535 | } |
| 1536 | /* XXX: should compute exact size */ |
| 1537 | for (; j < 40; j++) |
| 1538 | g->scale_factors[j] = 0; |
| 1539 | } |
| 1540 | |
| 1541 | exponents_from_scale_factors(s, g, exponents); |
| 1542 | |
| 1543 | /* read Huffman coded residue */ |
| 1544 | huffman_decode(s, g, exponents, bits_pos + g->part2_3_length); |
| 1545 | } /* ch */ |
| 1546 | |
| 1547 | if (s->mode == MPA_JSTEREO) |
| 1548 | compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]); |
| 1549 | |
| 1550 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 1551 | g = &s->granules[ch][gr]; |
| 1552 | |
| 1553 | reorder_block(s, g); |
| 1554 | compute_antialias(s, g); |
| 1555 | compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); |
| 1556 | } |
| 1557 | } /* gr */ |
| 1558 | if (get_bits_count(&s->gb) < 0) |
| 1559 | skip_bits_long(&s->gb, -get_bits_count(&s->gb)); |
| 1560 | return nb_granules * 18; |
| 1561 | } |
| 1562 | |
| 1563 | static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples, |
| 1564 | const uint8_t *buf, int buf_size) |
| 1565 | { |
| 1566 | int i, nb_frames, ch, ret; |
| 1567 | OUT_INT *samples_ptr; |
| 1568 | |
| 1569 | init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8); |
| 1570 | |
| 1571 | /* skip error protection field */ |
| 1572 | if (s->error_protection) |
| 1573 | skip_bits(&s->gb, 16); |
| 1574 | |
| 1575 | switch(s->layer) { |
| 1576 | case 1: |
| 1577 | s->avctx->frame_size = 384; |
| 1578 | nb_frames = mp_decode_layer1(s); |
| 1579 | break; |
| 1580 | case 2: |
| 1581 | s->avctx->frame_size = 1152; |
| 1582 | nb_frames = mp_decode_layer2(s); |
| 1583 | break; |
| 1584 | case 3: |
| 1585 | s->avctx->frame_size = s->lsf ? 576 : 1152; |
| 1586 | default: |
| 1587 | nb_frames = mp_decode_layer3(s); |
| 1588 | |
| 1589 | s->last_buf_size=0; |
| 1590 | if (s->in_gb.buffer) { |
| 1591 | align_get_bits(&s->gb); |
| 1592 | i = get_bits_left(&s->gb)>>3; |
| 1593 | if (i >= 0 && i <= BACKSTEP_SIZE) { |
| 1594 | memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i); |
| 1595 | s->last_buf_size=i; |
| 1596 | } else |
| 1597 | av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i); |
| 1598 | s->gb = s->in_gb; |
| 1599 | s->in_gb.buffer = NULL; |
| 1600 | } |
| 1601 | |
| 1602 | align_get_bits(&s->gb); |
| 1603 | av_assert1((get_bits_count(&s->gb) & 7) == 0); |
| 1604 | i = get_bits_left(&s->gb) >> 3; |
| 1605 | |
| 1606 | if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) { |
| 1607 | if (i < 0) |
| 1608 | av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i); |
| 1609 | i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE); |
| 1610 | } |
| 1611 | av_assert1(i <= buf_size - HEADER_SIZE && i >= 0); |
| 1612 | memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i); |
| 1613 | s->last_buf_size += i; |
| 1614 | } |
| 1615 | |
| 1616 | if(nb_frames < 0) |
| 1617 | return nb_frames; |
| 1618 | |
| 1619 | /* get output buffer */ |
| 1620 | if (!samples) { |
| 1621 | av_assert0(s->frame); |
| 1622 | s->frame->nb_samples = s->avctx->frame_size; |
| 1623 | if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0) |
| 1624 | return ret; |
| 1625 | samples = (OUT_INT **)s->frame->extended_data; |
| 1626 | } |
| 1627 | |
| 1628 | /* apply the synthesis filter */ |
| 1629 | for (ch = 0; ch < s->nb_channels; ch++) { |
| 1630 | int sample_stride; |
| 1631 | if (s->avctx->sample_fmt == OUT_FMT_P) { |
| 1632 | samples_ptr = samples[ch]; |
| 1633 | sample_stride = 1; |
| 1634 | } else { |
| 1635 | samples_ptr = samples[0] + ch; |
| 1636 | sample_stride = s->nb_channels; |
| 1637 | } |
| 1638 | for (i = 0; i < nb_frames; i++) { |
| 1639 | RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch], |
| 1640 | &(s->synth_buf_offset[ch]), |
| 1641 | RENAME(ff_mpa_synth_window), |
| 1642 | &s->dither_state, samples_ptr, |
| 1643 | sample_stride, s->sb_samples[ch][i]); |
| 1644 | samples_ptr += 32 * sample_stride; |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels; |
| 1649 | } |
| 1650 | |
| 1651 | static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr, |
| 1652 | AVPacket *avpkt) |
| 1653 | { |
| 1654 | const uint8_t *buf = avpkt->data; |
| 1655 | int buf_size = avpkt->size; |
| 1656 | MPADecodeContext *s = avctx->priv_data; |
| 1657 | uint32_t header; |
| 1658 | int ret; |
| 1659 | |
| 1660 | while(buf_size && !*buf){ |
| 1661 | buf++; |
| 1662 | buf_size--; |
| 1663 | } |
| 1664 | |
| 1665 | if (buf_size < HEADER_SIZE) |
| 1666 | return AVERROR_INVALIDDATA; |
| 1667 | |
| 1668 | header = AV_RB32(buf); |
| 1669 | if (header>>8 == AV_RB32("TAG")>>8) { |
| 1670 | av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n"); |
| 1671 | return buf_size; |
| 1672 | } |
| 1673 | if (ff_mpa_check_header(header) < 0) { |
| 1674 | av_log(avctx, AV_LOG_ERROR, "Header missing\n"); |
| 1675 | return AVERROR_INVALIDDATA; |
| 1676 | } |
| 1677 | |
| 1678 | if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { |
| 1679 | /* free format: prepare to compute frame size */ |
| 1680 | s->frame_size = -1; |
| 1681 | return AVERROR_INVALIDDATA; |
| 1682 | } |
| 1683 | /* update codec info */ |
| 1684 | avctx->channels = s->nb_channels; |
| 1685 | avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO; |
| 1686 | if (!avctx->bit_rate) |
| 1687 | avctx->bit_rate = s->bit_rate; |
| 1688 | |
| 1689 | if (s->frame_size <= 0 || s->frame_size > buf_size) { |
| 1690 | av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); |
| 1691 | return AVERROR_INVALIDDATA; |
| 1692 | } else if (s->frame_size < buf_size) { |
| 1693 | av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n"); |
| 1694 | buf_size= s->frame_size; |
| 1695 | } |
| 1696 | |
| 1697 | s->frame = data; |
| 1698 | |
| 1699 | ret = mp_decode_frame(s, NULL, buf, buf_size); |
| 1700 | if (ret >= 0) { |
| 1701 | s->frame->nb_samples = avctx->frame_size; |
| 1702 | *got_frame_ptr = 1; |
| 1703 | avctx->sample_rate = s->sample_rate; |
| 1704 | //FIXME maybe move the other codec info stuff from above here too |
| 1705 | } else { |
| 1706 | av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n"); |
| 1707 | /* Only return an error if the bad frame makes up the whole packet or |
| 1708 | * the error is related to buffer management. |
| 1709 | * If there is more data in the packet, just consume the bad frame |
| 1710 | * instead of returning an error, which would discard the whole |
| 1711 | * packet. */ |
| 1712 | *got_frame_ptr = 0; |
| 1713 | if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA) |
| 1714 | return ret; |
| 1715 | } |
| 1716 | s->frame_size = 0; |
| 1717 | return buf_size; |
| 1718 | } |
| 1719 | |
| 1720 | static void mp_flush(MPADecodeContext *ctx) |
| 1721 | { |
| 1722 | memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf)); |
| 1723 | memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf)); |
| 1724 | ctx->last_buf_size = 0; |
| 1725 | ctx->dither_state = 0; |
| 1726 | } |
| 1727 | |
| 1728 | static void flush(AVCodecContext *avctx) |
| 1729 | { |
| 1730 | mp_flush(avctx->priv_data); |
| 1731 | } |
| 1732 | |
| 1733 | #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER |
| 1734 | static int decode_frame_adu(AVCodecContext *avctx, void *data, |
| 1735 | int *got_frame_ptr, AVPacket *avpkt) |
| 1736 | { |
| 1737 | const uint8_t *buf = avpkt->data; |
| 1738 | int buf_size = avpkt->size; |
| 1739 | MPADecodeContext *s = avctx->priv_data; |
| 1740 | uint32_t header; |
| 1741 | int len, ret; |
| 1742 | int av_unused out_size; |
| 1743 | |
| 1744 | len = buf_size; |
| 1745 | |
| 1746 | // Discard too short frames |
| 1747 | if (buf_size < HEADER_SIZE) { |
| 1748 | av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
| 1749 | return AVERROR_INVALIDDATA; |
| 1750 | } |
| 1751 | |
| 1752 | |
| 1753 | if (len > MPA_MAX_CODED_FRAME_SIZE) |
| 1754 | len = MPA_MAX_CODED_FRAME_SIZE; |
| 1755 | |
| 1756 | // Get header and restore sync word |
| 1757 | header = AV_RB32(buf) | 0xffe00000; |
| 1758 | |
| 1759 | if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame |
| 1760 | av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n"); |
| 1761 | return AVERROR_INVALIDDATA; |
| 1762 | } |
| 1763 | |
| 1764 | avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header); |
| 1765 | /* update codec info */ |
| 1766 | avctx->sample_rate = s->sample_rate; |
| 1767 | avctx->channels = s->nb_channels; |
| 1768 | avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO; |
| 1769 | if (!avctx->bit_rate) |
| 1770 | avctx->bit_rate = s->bit_rate; |
| 1771 | |
| 1772 | s->frame_size = len; |
| 1773 | |
| 1774 | s->frame = data; |
| 1775 | |
| 1776 | ret = mp_decode_frame(s, NULL, buf, buf_size); |
| 1777 | if (ret < 0) { |
| 1778 | av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n"); |
| 1779 | return ret; |
| 1780 | } |
| 1781 | |
| 1782 | *got_frame_ptr = 1; |
| 1783 | |
| 1784 | return buf_size; |
| 1785 | } |
| 1786 | #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */ |
| 1787 | |
| 1788 | #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER |
| 1789 | |
| 1790 | /** |
| 1791 | * Context for MP3On4 decoder |
| 1792 | */ |
| 1793 | typedef struct MP3On4DecodeContext { |
| 1794 | int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) |
| 1795 | int syncword; ///< syncword patch |
| 1796 | const uint8_t *coff; ///< channel offsets in output buffer |
| 1797 | MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance |
| 1798 | } MP3On4DecodeContext; |
| 1799 | |
| 1800 | #include "mpeg4audio.h" |
| 1801 | |
| 1802 | /* Next 3 arrays are indexed by channel config number (passed via codecdata) */ |
| 1803 | |
| 1804 | /* number of mp3 decoder instances */ |
| 1805 | static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 }; |
| 1806 | |
| 1807 | /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */ |
| 1808 | static const uint8_t chan_offset[8][5] = { |
| 1809 | { 0 }, |
| 1810 | { 0 }, // C |
| 1811 | { 0 }, // FLR |
| 1812 | { 2, 0 }, // C FLR |
| 1813 | { 2, 0, 3 }, // C FLR BS |
| 1814 | { 2, 0, 3 }, // C FLR BLRS |
| 1815 | { 2, 0, 4, 3 }, // C FLR BLRS LFE |
| 1816 | { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE |
| 1817 | }; |
| 1818 | |
| 1819 | /* mp3on4 channel layouts */ |
| 1820 | static const int16_t chan_layout[8] = { |
| 1821 | 0, |
| 1822 | AV_CH_LAYOUT_MONO, |
| 1823 | AV_CH_LAYOUT_STEREO, |
| 1824 | AV_CH_LAYOUT_SURROUND, |
| 1825 | AV_CH_LAYOUT_4POINT0, |
| 1826 | AV_CH_LAYOUT_5POINT0, |
| 1827 | AV_CH_LAYOUT_5POINT1, |
| 1828 | AV_CH_LAYOUT_7POINT1 |
| 1829 | }; |
| 1830 | |
| 1831 | static av_cold int decode_close_mp3on4(AVCodecContext * avctx) |
| 1832 | { |
| 1833 | MP3On4DecodeContext *s = avctx->priv_data; |
| 1834 | int i; |
| 1835 | |
| 1836 | for (i = 0; i < s->frames; i++) |
| 1837 | av_freep(&s->mp3decctx[i]); |
| 1838 | |
| 1839 | return 0; |
| 1840 | } |
| 1841 | |
| 1842 | |
| 1843 | static av_cold int decode_init_mp3on4(AVCodecContext * avctx) |
| 1844 | { |
| 1845 | MP3On4DecodeContext *s = avctx->priv_data; |
| 1846 | MPEG4AudioConfig cfg; |
| 1847 | int i; |
| 1848 | |
| 1849 | if ((avctx->extradata_size < 2) || !avctx->extradata) { |
| 1850 | av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n"); |
| 1851 | return AVERROR_INVALIDDATA; |
| 1852 | } |
| 1853 | |
| 1854 | avpriv_mpeg4audio_get_config(&cfg, avctx->extradata, |
| 1855 | avctx->extradata_size * 8, 1); |
| 1856 | if (!cfg.chan_config || cfg.chan_config > 7) { |
| 1857 | av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n"); |
| 1858 | return AVERROR_INVALIDDATA; |
| 1859 | } |
| 1860 | s->frames = mp3Frames[cfg.chan_config]; |
| 1861 | s->coff = chan_offset[cfg.chan_config]; |
| 1862 | avctx->channels = ff_mpeg4audio_channels[cfg.chan_config]; |
| 1863 | avctx->channel_layout = chan_layout[cfg.chan_config]; |
| 1864 | |
| 1865 | if (cfg.sample_rate < 16000) |
| 1866 | s->syncword = 0xffe00000; |
| 1867 | else |
| 1868 | s->syncword = 0xfff00000; |
| 1869 | |
| 1870 | /* Init the first mp3 decoder in standard way, so that all tables get builded |
| 1871 | * We replace avctx->priv_data with the context of the first decoder so that |
| 1872 | * decode_init() does not have to be changed. |
| 1873 | * Other decoders will be initialized here copying data from the first context |
| 1874 | */ |
| 1875 | // Allocate zeroed memory for the first decoder context |
| 1876 | s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); |
| 1877 | if (!s->mp3decctx[0]) |
| 1878 | goto alloc_fail; |
| 1879 | // Put decoder context in place to make init_decode() happy |
| 1880 | avctx->priv_data = s->mp3decctx[0]; |
| 1881 | decode_init(avctx); |
| 1882 | // Restore mp3on4 context pointer |
| 1883 | avctx->priv_data = s; |
| 1884 | s->mp3decctx[0]->adu_mode = 1; // Set adu mode |
| 1885 | |
| 1886 | /* Create a separate codec/context for each frame (first is already ok). |
| 1887 | * Each frame is 1 or 2 channels - up to 5 frames allowed |
| 1888 | */ |
| 1889 | for (i = 1; i < s->frames; i++) { |
| 1890 | s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext)); |
| 1891 | if (!s->mp3decctx[i]) |
| 1892 | goto alloc_fail; |
| 1893 | s->mp3decctx[i]->adu_mode = 1; |
| 1894 | s->mp3decctx[i]->avctx = avctx; |
| 1895 | s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp; |
| 1896 | } |
| 1897 | |
| 1898 | return 0; |
| 1899 | alloc_fail: |
| 1900 | decode_close_mp3on4(avctx); |
| 1901 | return AVERROR(ENOMEM); |
| 1902 | } |
| 1903 | |
| 1904 | |
| 1905 | static void flush_mp3on4(AVCodecContext *avctx) |
| 1906 | { |
| 1907 | int i; |
| 1908 | MP3On4DecodeContext *s = avctx->priv_data; |
| 1909 | |
| 1910 | for (i = 0; i < s->frames; i++) |
| 1911 | mp_flush(s->mp3decctx[i]); |
| 1912 | } |
| 1913 | |
| 1914 | |
| 1915 | static int decode_frame_mp3on4(AVCodecContext *avctx, void *data, |
| 1916 | int *got_frame_ptr, AVPacket *avpkt) |
| 1917 | { |
| 1918 | AVFrame *frame = data; |
| 1919 | const uint8_t *buf = avpkt->data; |
| 1920 | int buf_size = avpkt->size; |
| 1921 | MP3On4DecodeContext *s = avctx->priv_data; |
| 1922 | MPADecodeContext *m; |
| 1923 | int fsize, len = buf_size, out_size = 0; |
| 1924 | uint32_t header; |
| 1925 | OUT_INT **out_samples; |
| 1926 | OUT_INT *outptr[2]; |
| 1927 | int fr, ch, ret; |
| 1928 | |
| 1929 | /* get output buffer */ |
| 1930 | frame->nb_samples = MPA_FRAME_SIZE; |
| 1931 | if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| 1932 | return ret; |
| 1933 | out_samples = (OUT_INT **)frame->extended_data; |
| 1934 | |
| 1935 | // Discard too short frames |
| 1936 | if (buf_size < HEADER_SIZE) |
| 1937 | return AVERROR_INVALIDDATA; |
| 1938 | |
| 1939 | avctx->bit_rate = 0; |
| 1940 | |
| 1941 | ch = 0; |
| 1942 | for (fr = 0; fr < s->frames; fr++) { |
| 1943 | fsize = AV_RB16(buf) >> 4; |
| 1944 | fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); |
| 1945 | m = s->mp3decctx[fr]; |
| 1946 | av_assert1(m); |
| 1947 | |
| 1948 | if (fsize < HEADER_SIZE) { |
| 1949 | av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n"); |
| 1950 | return AVERROR_INVALIDDATA; |
| 1951 | } |
| 1952 | header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header |
| 1953 | |
| 1954 | if (ff_mpa_check_header(header) < 0) { |
| 1955 | av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n"); |
| 1956 | return AVERROR_INVALIDDATA; |
| 1957 | } |
| 1958 | |
| 1959 | avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header); |
| 1960 | |
| 1961 | if (ch + m->nb_channels > avctx->channels || |
| 1962 | s->coff[fr] + m->nb_channels > avctx->channels) { |
| 1963 | av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec " |
| 1964 | "channel count\n"); |
| 1965 | return AVERROR_INVALIDDATA; |
| 1966 | } |
| 1967 | ch += m->nb_channels; |
| 1968 | |
| 1969 | outptr[0] = out_samples[s->coff[fr]]; |
| 1970 | if (m->nb_channels > 1) |
| 1971 | outptr[1] = out_samples[s->coff[fr] + 1]; |
| 1972 | |
| 1973 | if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) { |
| 1974 | av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch); |
| 1975 | memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT)); |
| 1976 | if (m->nb_channels > 1) |
| 1977 | memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT)); |
| 1978 | ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT); |
| 1979 | } |
| 1980 | |
| 1981 | out_size += ret; |
| 1982 | buf += fsize; |
| 1983 | len -= fsize; |
| 1984 | |
| 1985 | avctx->bit_rate += m->bit_rate; |
| 1986 | } |
| 1987 | if (ch != avctx->channels) { |
| 1988 | av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n"); |
| 1989 | return AVERROR_INVALIDDATA; |
| 1990 | } |
| 1991 | |
| 1992 | /* update codec info */ |
| 1993 | avctx->sample_rate = s->mp3decctx[0]->sample_rate; |
| 1994 | |
| 1995 | frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT)); |
| 1996 | *got_frame_ptr = 1; |
| 1997 | |
| 1998 | return buf_size; |
| 1999 | } |
| 2000 | #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */ |