| 1 | /* |
| 2 | * Copyright (c) 1997-2003 by The XFree86 Project, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | * Except as contained in this notice, the name of the copyright holder(s) |
| 23 | * and author(s) shall not be used in advertising or otherwise to promote |
| 24 | * the sale, use or other dealings in this Software without prior written |
| 25 | * authorization from the copyright holder(s) and author(s). |
| 26 | */ |
| 27 | |
| 28 | /* |
| 29 | * LCM() and scanLineWidth() are: |
| 30 | * |
| 31 | * Copyright 1997 through 2004 by Marc Aurele La France (TSI @ UQV), tsi@xfree86.org |
| 32 | * |
| 33 | * Permission to use, copy, modify, distribute, and sell this software and its |
| 34 | * documentation for any purpose is hereby granted without fee, provided that |
| 35 | * the above copyright notice appear in all copies and that both that copyright |
| 36 | * notice and this permission notice appear in supporting documentation, and |
| 37 | * that the name of Marc Aurele La France not be used in advertising or |
| 38 | * publicity pertaining to distribution of the software without specific, |
| 39 | * written prior permission. Marc Aurele La France makes no representations |
| 40 | * about the suitability of this software for any purpose. It is provided |
| 41 | * "as-is" without express or implied warranty. |
| 42 | * |
| 43 | * MARC AURELE LA FRANCE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, |
| 44 | * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO |
| 45 | * EVENT SHALL MARC AURELE LA FRANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR |
| 46 | * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, |
| 47 | * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER |
| 48 | * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
| 49 | * PERFORMANCE OF THIS SOFTWARE. |
| 50 | * |
| 51 | * Copyright 1990,91,92,93 by Thomas Roell, Germany. |
| 52 | * Copyright 1991,92,93 by SGCS (Snitily Graphics Consulting Services), USA. |
| 53 | * |
| 54 | * Permission to use, copy, modify, distribute, and sell this software |
| 55 | * and its documentation for any purpose is hereby granted without fee, |
| 56 | * provided that the above copyright notice appear in all copies and |
| 57 | * that both that copyright notice and this permission notice appear |
| 58 | * in supporting documentation, and that the name of Thomas Roell nor |
| 59 | * SGCS be used in advertising or publicity pertaining to distribution |
| 60 | * of the software without specific, written prior permission. |
| 61 | * Thomas Roell nor SGCS makes no representations about the suitability |
| 62 | * of this software for any purpose. It is provided "as is" without |
| 63 | * express or implied warranty. |
| 64 | * |
| 65 | * THOMAS ROELL AND SGCS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS |
| 66 | * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| 67 | * FITNESS, IN NO EVENT SHALL THOMAS ROELL OR SGCS BE LIABLE FOR ANY |
| 68 | * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER |
| 69 | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF |
| 70 | * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 71 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 72 | */ |
| 73 | |
| 74 | /* |
| 75 | * Authors: Dirk Hohndel <hohndel@XFree86.Org> |
| 76 | * David Dawes <dawes@XFree86.Org> |
| 77 | * Marc La France <tsi@XFree86.Org> |
| 78 | * ... and others |
| 79 | * |
| 80 | * This file includes helper functions for mode related things. |
| 81 | */ |
| 82 | |
| 83 | #ifdef HAVE_XORG_CONFIG_H |
| 84 | #include <xorg-config.h> |
| 85 | #endif |
| 86 | |
| 87 | #include <X11/X.h> |
| 88 | #include "xf86Modes.h" |
| 89 | #include "os.h" |
| 90 | #include "servermd.h" |
| 91 | #include "globals.h" |
| 92 | #include "xf86.h" |
| 93 | #include "xf86Priv.h" |
| 94 | #include "edid.h" |
| 95 | |
| 96 | static void |
| 97 | printModeRejectMessage(int index, DisplayModePtr p, int status) |
| 98 | { |
| 99 | const char *type; |
| 100 | |
| 101 | if (p->type & M_T_BUILTIN) |
| 102 | type = "built-in "; |
| 103 | else if (p->type & M_T_DEFAULT) |
| 104 | type = "default "; |
| 105 | else if (p->type & M_T_DRIVER) |
| 106 | type = "driver "; |
| 107 | else |
| 108 | type = ""; |
| 109 | |
| 110 | xf86DrvMsg(index, X_INFO, "Not using %smode \"%s\" (%s)\n", type, p->name, |
| 111 | xf86ModeStatusToString(status)); |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * xf86GetNearestClock -- |
| 116 | * Find closest clock to given frequency (in kHz). This assumes the |
| 117 | * number of clocks is greater than zero. |
| 118 | */ |
| 119 | int |
| 120 | xf86GetNearestClock(ScrnInfoPtr scrp, int freq, Bool allowDiv2, |
| 121 | int DivFactor, int MulFactor, int *divider) |
| 122 | { |
| 123 | int nearestClock = 0, nearestDiv = 1; |
| 124 | int minimumGap = abs(freq - scrp->clock[0]); |
| 125 | int i, j, k, gap; |
| 126 | |
| 127 | if (allowDiv2) |
| 128 | k = 2; |
| 129 | else |
| 130 | k = 1; |
| 131 | |
| 132 | /* Must set this here in case the best match is scrp->clock[0] */ |
| 133 | if (divider != NULL) |
| 134 | *divider = 0; |
| 135 | |
| 136 | for (i = 0; i < scrp->numClocks; i++) { |
| 137 | for (j = 1; j <= k; j++) { |
| 138 | gap = abs((freq * j) - ((scrp->clock[i] * DivFactor) / MulFactor)); |
| 139 | if ((gap < minimumGap) || ((gap == minimumGap) && (j < nearestDiv))) { |
| 140 | minimumGap = gap; |
| 141 | nearestClock = i; |
| 142 | nearestDiv = j; |
| 143 | if (divider != NULL) |
| 144 | *divider = (j - 1) * V_CLKDIV2; |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | return nearestClock; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * xf86ModeStatusToString |
| 153 | * |
| 154 | * Convert a ModeStatus value to a printable message |
| 155 | */ |
| 156 | |
| 157 | const char * |
| 158 | xf86ModeStatusToString(ModeStatus status) |
| 159 | { |
| 160 | switch (status) { |
| 161 | case MODE_OK: |
| 162 | return "Mode OK"; |
| 163 | case MODE_HSYNC: |
| 164 | return "hsync out of range"; |
| 165 | case MODE_VSYNC: |
| 166 | return "vrefresh out of range"; |
| 167 | case MODE_H_ILLEGAL: |
| 168 | return "illegal horizontal timings"; |
| 169 | case MODE_V_ILLEGAL: |
| 170 | return "illegal vertical timings"; |
| 171 | case MODE_BAD_WIDTH: |
| 172 | return "width requires unsupported line pitch"; |
| 173 | case MODE_NOMODE: |
| 174 | return "no mode of this name"; |
| 175 | case MODE_NO_INTERLACE: |
| 176 | return "interlace mode not supported"; |
| 177 | case MODE_NO_DBLESCAN: |
| 178 | return "doublescan mode not supported"; |
| 179 | case MODE_NO_VSCAN: |
| 180 | return "multiscan mode not supported"; |
| 181 | case MODE_MEM: |
| 182 | return "insufficient memory for mode"; |
| 183 | case MODE_VIRTUAL_X: |
| 184 | return "width too large for virtual size"; |
| 185 | case MODE_VIRTUAL_Y: |
| 186 | return "height too large for virtual size"; |
| 187 | case MODE_MEM_VIRT: |
| 188 | return "insufficient memory given virtual size"; |
| 189 | case MODE_NOCLOCK: |
| 190 | return "no clock available for mode"; |
| 191 | case MODE_CLOCK_HIGH: |
| 192 | return "mode clock too high"; |
| 193 | case MODE_CLOCK_LOW: |
| 194 | return "mode clock too low"; |
| 195 | case MODE_CLOCK_RANGE: |
| 196 | return "bad mode clock/interlace/doublescan"; |
| 197 | case MODE_BAD_HVALUE: |
| 198 | return "horizontal timing out of range"; |
| 199 | case MODE_BAD_VVALUE: |
| 200 | return "vertical timing out of range"; |
| 201 | case MODE_BAD_VSCAN: |
| 202 | return "VScan value out of range"; |
| 203 | case MODE_HSYNC_NARROW: |
| 204 | return "horizontal sync too narrow"; |
| 205 | case MODE_HSYNC_WIDE: |
| 206 | return "horizontal sync too wide"; |
| 207 | case MODE_HBLANK_NARROW: |
| 208 | return "horizontal blanking too narrow"; |
| 209 | case MODE_HBLANK_WIDE: |
| 210 | return "horizontal blanking too wide"; |
| 211 | case MODE_VSYNC_NARROW: |
| 212 | return "vertical sync too narrow"; |
| 213 | case MODE_VSYNC_WIDE: |
| 214 | return "vertical sync too wide"; |
| 215 | case MODE_VBLANK_NARROW: |
| 216 | return "vertical blanking too narrow"; |
| 217 | case MODE_VBLANK_WIDE: |
| 218 | return "vertical blanking too wide"; |
| 219 | case MODE_PANEL: |
| 220 | return "exceeds panel dimensions"; |
| 221 | case MODE_INTERLACE_WIDTH: |
| 222 | return "width too large for interlaced mode"; |
| 223 | case MODE_ONE_WIDTH: |
| 224 | return "all modes must have the same width"; |
| 225 | case MODE_ONE_HEIGHT: |
| 226 | return "all modes must have the same height"; |
| 227 | case MODE_ONE_SIZE: |
| 228 | return "all modes must have the same resolution"; |
| 229 | case MODE_NO_REDUCED: |
| 230 | return "monitor doesn't support reduced blanking"; |
| 231 | case MODE_BANDWIDTH: |
| 232 | return "mode requires too much memory bandwidth"; |
| 233 | case MODE_BAD: |
| 234 | return "unknown reason"; |
| 235 | case MODE_ERROR: |
| 236 | return "internal error"; |
| 237 | default: |
| 238 | return "unknown"; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * xf86ShowClockRanges() -- Print the clock ranges allowed |
| 244 | * and the clock values scaled by ClockMulFactor and ClockDivFactor |
| 245 | */ |
| 246 | void |
| 247 | xf86ShowClockRanges(ScrnInfoPtr scrp, ClockRangePtr clockRanges) |
| 248 | { |
| 249 | ClockRangePtr cp; |
| 250 | int MulFactor = 1; |
| 251 | int DivFactor = 1; |
| 252 | int i, j; |
| 253 | int scaledClock; |
| 254 | |
| 255 | for (cp = clockRanges; cp != NULL; cp = cp->next) { |
| 256 | DivFactor = max(1, cp->ClockDivFactor); |
| 257 | MulFactor = max(1, cp->ClockMulFactor); |
| 258 | if (scrp->progClock) { |
| 259 | if (cp->minClock) { |
| 260 | if (cp->maxClock) { |
| 261 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 262 | "Clock range: %6.2f to %6.2f MHz\n", |
| 263 | (double) cp->minClock / 1000.0, |
| 264 | (double) cp->maxClock / 1000.0); |
| 265 | } |
| 266 | else { |
| 267 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 268 | "Minimum clock: %6.2f MHz\n", |
| 269 | (double) cp->minClock / 1000.0); |
| 270 | } |
| 271 | } |
| 272 | else { |
| 273 | if (cp->maxClock) { |
| 274 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 275 | "Maximum clock: %6.2f MHz\n", |
| 276 | (double) cp->maxClock / 1000.0); |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | else if (DivFactor > 1 || MulFactor > 1) { |
| 281 | j = 0; |
| 282 | for (i = 0; i < scrp->numClocks; i++) { |
| 283 | scaledClock = (scrp->clock[i] * DivFactor) / MulFactor; |
| 284 | if (scaledClock >= cp->minClock && scaledClock <= cp->maxClock) { |
| 285 | if ((j % 8) == 0) { |
| 286 | if (j > 0) |
| 287 | xf86ErrorF("\n"); |
| 288 | xf86DrvMsg(scrp->scrnIndex, X_INFO, "scaled clocks:"); |
| 289 | } |
| 290 | xf86ErrorF(" %6.2f", (double) scaledClock / 1000.0); |
| 291 | j++; |
| 292 | } |
| 293 | } |
| 294 | xf86ErrorF("\n"); |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | static Bool |
| 300 | modeInClockRange(ClockRangePtr cp, DisplayModePtr p) |
| 301 | { |
| 302 | return ((p->Clock >= cp->minClock) && |
| 303 | (p->Clock <= cp->maxClock) && |
| 304 | (cp->interlaceAllowed || !(p->Flags & V_INTERLACE)) && |
| 305 | (cp->doubleScanAllowed || |
| 306 | ((p->VScan <= 1) && !(p->Flags & V_DBLSCAN)))); |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * xf86FindClockRangeForMode() [... like the name says ...] |
| 311 | */ |
| 312 | static ClockRangePtr |
| 313 | xf86FindClockRangeForMode(ClockRangePtr clockRanges, DisplayModePtr p) |
| 314 | { |
| 315 | ClockRangePtr cp; |
| 316 | |
| 317 | for (cp = clockRanges;; cp = cp->next) |
| 318 | if (!cp || modeInClockRange(cp, p)) |
| 319 | return cp; |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * xf86HandleBuiltinMode() - handles built-in modes |
| 324 | */ |
| 325 | static ModeStatus |
| 326 | xf86HandleBuiltinMode(ScrnInfoPtr scrp, |
| 327 | DisplayModePtr p, |
| 328 | DisplayModePtr modep, |
| 329 | ClockRangePtr clockRanges, Bool allowDiv2) |
| 330 | { |
| 331 | ClockRangePtr cp; |
| 332 | int extraFlags = 0; |
| 333 | int MulFactor = 1; |
| 334 | int DivFactor = 1; |
| 335 | int clockIndex; |
| 336 | |
| 337 | /* Reject previously rejected modes */ |
| 338 | if (p->status != MODE_OK) |
| 339 | return p->status; |
| 340 | |
| 341 | /* Reject previously considered modes */ |
| 342 | if (p->prev) |
| 343 | return MODE_NOMODE; |
| 344 | |
| 345 | if ((p->type & M_T_CLOCK_C) == M_T_CLOCK_C) { |
| 346 | /* Check clock is in range */ |
| 347 | cp = xf86FindClockRangeForMode(clockRanges, p); |
| 348 | if (cp == NULL) { |
| 349 | modep->type = p->type; |
| 350 | p->status = MODE_CLOCK_RANGE; |
| 351 | return MODE_CLOCK_RANGE; |
| 352 | } |
| 353 | DivFactor = cp->ClockDivFactor; |
| 354 | MulFactor = cp->ClockMulFactor; |
| 355 | if (!scrp->progClock) { |
| 356 | clockIndex = xf86GetNearestClock(scrp, p->Clock, allowDiv2, |
| 357 | cp->ClockDivFactor, |
| 358 | cp->ClockMulFactor, &extraFlags); |
| 359 | modep->Clock = (scrp->clock[clockIndex] * DivFactor) |
| 360 | / MulFactor; |
| 361 | modep->ClockIndex = clockIndex; |
| 362 | modep->SynthClock = scrp->clock[clockIndex]; |
| 363 | if (extraFlags & V_CLKDIV2) { |
| 364 | modep->Clock /= 2; |
| 365 | modep->SynthClock /= 2; |
| 366 | } |
| 367 | } |
| 368 | else { |
| 369 | modep->Clock = p->Clock; |
| 370 | modep->ClockIndex = -1; |
| 371 | modep->SynthClock = (modep->Clock * MulFactor) |
| 372 | / DivFactor; |
| 373 | } |
| 374 | modep->PrivFlags = cp->PrivFlags; |
| 375 | } |
| 376 | else { |
| 377 | if (!scrp->progClock) { |
| 378 | modep->Clock = p->Clock; |
| 379 | modep->ClockIndex = p->ClockIndex; |
| 380 | modep->SynthClock = p->SynthClock; |
| 381 | } |
| 382 | else { |
| 383 | modep->Clock = p->Clock; |
| 384 | modep->ClockIndex = -1; |
| 385 | modep->SynthClock = p->SynthClock; |
| 386 | } |
| 387 | modep->PrivFlags = p->PrivFlags; |
| 388 | } |
| 389 | modep->type = p->type; |
| 390 | modep->HDisplay = p->HDisplay; |
| 391 | modep->HSyncStart = p->HSyncStart; |
| 392 | modep->HSyncEnd = p->HSyncEnd; |
| 393 | modep->HTotal = p->HTotal; |
| 394 | modep->HSkew = p->HSkew; |
| 395 | modep->VDisplay = p->VDisplay; |
| 396 | modep->VSyncStart = p->VSyncStart; |
| 397 | modep->VSyncEnd = p->VSyncEnd; |
| 398 | modep->VTotal = p->VTotal; |
| 399 | modep->VScan = p->VScan; |
| 400 | modep->Flags = p->Flags | extraFlags; |
| 401 | modep->CrtcHDisplay = p->CrtcHDisplay; |
| 402 | modep->CrtcHBlankStart = p->CrtcHBlankStart; |
| 403 | modep->CrtcHSyncStart = p->CrtcHSyncStart; |
| 404 | modep->CrtcHSyncEnd = p->CrtcHSyncEnd; |
| 405 | modep->CrtcHBlankEnd = p->CrtcHBlankEnd; |
| 406 | modep->CrtcHTotal = p->CrtcHTotal; |
| 407 | modep->CrtcHSkew = p->CrtcHSkew; |
| 408 | modep->CrtcVDisplay = p->CrtcVDisplay; |
| 409 | modep->CrtcVBlankStart = p->CrtcVBlankStart; |
| 410 | modep->CrtcVSyncStart = p->CrtcVSyncStart; |
| 411 | modep->CrtcVSyncEnd = p->CrtcVSyncEnd; |
| 412 | modep->CrtcVBlankEnd = p->CrtcVBlankEnd; |
| 413 | modep->CrtcVTotal = p->CrtcVTotal; |
| 414 | modep->CrtcHAdjusted = p->CrtcHAdjusted; |
| 415 | modep->CrtcVAdjusted = p->CrtcVAdjusted; |
| 416 | modep->HSync = p->HSync; |
| 417 | modep->VRefresh = p->VRefresh; |
| 418 | modep->Private = p->Private; |
| 419 | modep->PrivSize = p->PrivSize; |
| 420 | |
| 421 | p->prev = modep; |
| 422 | |
| 423 | return MODE_OK; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * xf86LookupMode |
| 428 | * |
| 429 | * This function returns a mode from the given list which matches the |
| 430 | * given name. When multiple modes with the same name are available, |
| 431 | * the method of picking the matching mode is determined by the |
| 432 | * strategy selected. |
| 433 | * |
| 434 | * This function takes the following parameters: |
| 435 | * scrp ScrnInfoPtr |
| 436 | * modep pointer to the returned mode, which must have the name |
| 437 | * field filled in. |
| 438 | * clockRanges a list of clock ranges. This is optional when all the |
| 439 | * modes are built-in modes. |
| 440 | * strategy how to decide which mode to use from multiple modes with |
| 441 | * the same name |
| 442 | * |
| 443 | * In addition, the following fields from the ScrnInfoRec are used: |
| 444 | * modePool the list of monitor modes compatible with the driver |
| 445 | * clocks a list of discrete clocks |
| 446 | * numClocks number of discrete clocks |
| 447 | * progClock clock is programmable |
| 448 | * |
| 449 | * If a mode was found, its values are filled in to the area pointed to |
| 450 | * by modep, If a mode was not found the return value indicates the |
| 451 | * reason. |
| 452 | */ |
| 453 | |
| 454 | ModeStatus |
| 455 | xf86LookupMode(ScrnInfoPtr scrp, DisplayModePtr modep, |
| 456 | ClockRangePtr clockRanges, LookupModeFlags strategy) |
| 457 | { |
| 458 | DisplayModePtr p, bestMode = NULL; |
| 459 | ClockRangePtr cp; |
| 460 | int i, k, gap, minimumGap = CLOCK_TOLERANCE + 1; |
| 461 | double refresh, bestRefresh = 0.0; |
| 462 | Bool found = FALSE; |
| 463 | int extraFlags = 0; |
| 464 | int clockIndex = -1; |
| 465 | int MulFactor = 1; |
| 466 | int DivFactor = 1; |
| 467 | int ModePrivFlags = 0; |
| 468 | ModeStatus status = MODE_NOMODE; |
| 469 | Bool allowDiv2 = (strategy & LOOKUP_CLKDIV2) != 0; |
| 470 | int n; |
| 471 | |
| 472 | const int types[] = { |
| 473 | M_T_BUILTIN | M_T_PREFERRED, |
| 474 | M_T_BUILTIN, |
| 475 | M_T_USERDEF | M_T_PREFERRED, |
| 476 | M_T_USERDEF, |
| 477 | M_T_DRIVER | M_T_PREFERRED, |
| 478 | M_T_DRIVER, |
| 479 | 0 |
| 480 | }; |
| 481 | const int ntypes = sizeof(types) / sizeof(int); |
| 482 | |
| 483 | strategy &= ~(LOOKUP_CLKDIV2 | LOOKUP_OPTIONAL_TOLERANCES); |
| 484 | |
| 485 | /* Some sanity checking */ |
| 486 | if (scrp == NULL || scrp->modePool == NULL || |
| 487 | (!scrp->progClock && scrp->numClocks == 0)) { |
| 488 | ErrorF("xf86LookupMode: called with invalid scrnInfoRec\n"); |
| 489 | return MODE_ERROR; |
| 490 | } |
| 491 | if (modep == NULL || modep->name == NULL) { |
| 492 | ErrorF("xf86LookupMode: called with invalid modep\n"); |
| 493 | return MODE_ERROR; |
| 494 | } |
| 495 | for (cp = clockRanges; cp != NULL; cp = cp->next) { |
| 496 | /* DivFactor and MulFactor must be > 0 */ |
| 497 | cp->ClockDivFactor = max(1, cp->ClockDivFactor); |
| 498 | cp->ClockMulFactor = max(1, cp->ClockMulFactor); |
| 499 | } |
| 500 | |
| 501 | /* Scan the mode pool for matching names */ |
| 502 | for (n = 0; n < ntypes; n++) { |
| 503 | int type = types[n]; |
| 504 | |
| 505 | for (p = scrp->modePool; p != NULL; p = p->next) { |
| 506 | |
| 507 | /* scan through the modes in the sort order above */ |
| 508 | if ((p->type & type) != type) |
| 509 | continue; |
| 510 | |
| 511 | if (strcmp(p->name, modep->name) == 0) { |
| 512 | |
| 513 | /* Skip over previously rejected modes */ |
| 514 | if (p->status != MODE_OK) { |
| 515 | if (!found) |
| 516 | status = p->status; |
| 517 | continue; |
| 518 | } |
| 519 | |
| 520 | /* Skip over previously considered modes */ |
| 521 | if (p->prev) |
| 522 | continue; |
| 523 | |
| 524 | if (p->type & M_T_BUILTIN) { |
| 525 | return xf86HandleBuiltinMode(scrp, p, modep, clockRanges, |
| 526 | allowDiv2); |
| 527 | } |
| 528 | |
| 529 | /* Check clock is in range */ |
| 530 | cp = xf86FindClockRangeForMode(clockRanges, p); |
| 531 | if (cp == NULL) { |
| 532 | /* |
| 533 | * XXX Could do more here to provide a more detailed |
| 534 | * reason for not finding a mode. |
| 535 | */ |
| 536 | p->status = MODE_CLOCK_RANGE; |
| 537 | if (!found) |
| 538 | status = MODE_CLOCK_RANGE; |
| 539 | continue; |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * If programmable clock and strategy is not |
| 544 | * LOOKUP_BEST_REFRESH, the required mode has been found, |
| 545 | * otherwise record the refresh and continue looking. |
| 546 | */ |
| 547 | if (scrp->progClock) { |
| 548 | found = TRUE; |
| 549 | if (strategy != LOOKUP_BEST_REFRESH) { |
| 550 | bestMode = p; |
| 551 | DivFactor = cp->ClockDivFactor; |
| 552 | MulFactor = cp->ClockMulFactor; |
| 553 | ModePrivFlags = cp->PrivFlags; |
| 554 | break; |
| 555 | } |
| 556 | refresh = xf86ModeVRefresh(p); |
| 557 | if (p->Flags & V_INTERLACE) |
| 558 | refresh /= INTERLACE_REFRESH_WEIGHT; |
| 559 | if (refresh > bestRefresh) { |
| 560 | bestMode = p; |
| 561 | DivFactor = cp->ClockDivFactor; |
| 562 | MulFactor = cp->ClockMulFactor; |
| 563 | ModePrivFlags = cp->PrivFlags; |
| 564 | bestRefresh = refresh; |
| 565 | } |
| 566 | continue; |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * Clock is in range, so if it is not a programmable clock, find |
| 571 | * a matching clock. |
| 572 | */ |
| 573 | |
| 574 | i = xf86GetNearestClock(scrp, p->Clock, allowDiv2, |
| 575 | cp->ClockDivFactor, cp->ClockMulFactor, |
| 576 | &k); |
| 577 | /* |
| 578 | * If the clock is too far from the requested clock, this |
| 579 | * mode is no good. |
| 580 | */ |
| 581 | if (k & V_CLKDIV2) |
| 582 | gap = abs((p->Clock * 2) - |
| 583 | ((scrp->clock[i] * cp->ClockDivFactor) / |
| 584 | cp->ClockMulFactor)); |
| 585 | else |
| 586 | gap = abs(p->Clock - |
| 587 | ((scrp->clock[i] * cp->ClockDivFactor) / |
| 588 | cp->ClockMulFactor)); |
| 589 | if (gap > minimumGap) { |
| 590 | p->status = MODE_NOCLOCK; |
| 591 | if (!found) |
| 592 | status = MODE_NOCLOCK; |
| 593 | continue; |
| 594 | } |
| 595 | found = TRUE; |
| 596 | |
| 597 | if (strategy == LOOKUP_BEST_REFRESH) { |
| 598 | refresh = xf86ModeVRefresh(p); |
| 599 | if (p->Flags & V_INTERLACE) |
| 600 | refresh /= INTERLACE_REFRESH_WEIGHT; |
| 601 | if (refresh > bestRefresh) { |
| 602 | bestMode = p; |
| 603 | DivFactor = cp->ClockDivFactor; |
| 604 | MulFactor = cp->ClockMulFactor; |
| 605 | ModePrivFlags = cp->PrivFlags; |
| 606 | extraFlags = k; |
| 607 | clockIndex = i; |
| 608 | bestRefresh = refresh; |
| 609 | } |
| 610 | continue; |
| 611 | } |
| 612 | if (strategy == LOOKUP_CLOSEST_CLOCK) { |
| 613 | if (gap < minimumGap) { |
| 614 | bestMode = p; |
| 615 | DivFactor = cp->ClockDivFactor; |
| 616 | MulFactor = cp->ClockMulFactor; |
| 617 | ModePrivFlags = cp->PrivFlags; |
| 618 | extraFlags = k; |
| 619 | clockIndex = i; |
| 620 | minimumGap = gap; |
| 621 | } |
| 622 | continue; |
| 623 | } |
| 624 | /* |
| 625 | * If strategy is neither LOOKUP_BEST_REFRESH or |
| 626 | * LOOKUP_CLOSEST_CLOCK the required mode has been found. |
| 627 | */ |
| 628 | bestMode = p; |
| 629 | DivFactor = cp->ClockDivFactor; |
| 630 | MulFactor = cp->ClockMulFactor; |
| 631 | ModePrivFlags = cp->PrivFlags; |
| 632 | extraFlags = k; |
| 633 | clockIndex = i; |
| 634 | break; |
| 635 | } |
| 636 | } |
| 637 | if (found) |
| 638 | break; |
| 639 | } |
| 640 | if (!found || bestMode == NULL) |
| 641 | return status; |
| 642 | |
| 643 | /* Fill in the mode parameters */ |
| 644 | if (scrp->progClock) { |
| 645 | modep->Clock = bestMode->Clock; |
| 646 | modep->ClockIndex = -1; |
| 647 | modep->SynthClock = (modep->Clock * MulFactor) / DivFactor; |
| 648 | } |
| 649 | else { |
| 650 | modep->Clock = (scrp->clock[clockIndex] * DivFactor) / MulFactor; |
| 651 | modep->ClockIndex = clockIndex; |
| 652 | modep->SynthClock = scrp->clock[clockIndex]; |
| 653 | if (extraFlags & V_CLKDIV2) { |
| 654 | modep->Clock /= 2; |
| 655 | modep->SynthClock /= 2; |
| 656 | } |
| 657 | } |
| 658 | modep->type = bestMode->type; |
| 659 | modep->PrivFlags = ModePrivFlags; |
| 660 | modep->HDisplay = bestMode->HDisplay; |
| 661 | modep->HSyncStart = bestMode->HSyncStart; |
| 662 | modep->HSyncEnd = bestMode->HSyncEnd; |
| 663 | modep->HTotal = bestMode->HTotal; |
| 664 | modep->HSkew = bestMode->HSkew; |
| 665 | modep->VDisplay = bestMode->VDisplay; |
| 666 | modep->VSyncStart = bestMode->VSyncStart; |
| 667 | modep->VSyncEnd = bestMode->VSyncEnd; |
| 668 | modep->VTotal = bestMode->VTotal; |
| 669 | modep->VScan = bestMode->VScan; |
| 670 | modep->Flags = bestMode->Flags | extraFlags; |
| 671 | modep->CrtcHDisplay = bestMode->CrtcHDisplay; |
| 672 | modep->CrtcHBlankStart = bestMode->CrtcHBlankStart; |
| 673 | modep->CrtcHSyncStart = bestMode->CrtcHSyncStart; |
| 674 | modep->CrtcHSyncEnd = bestMode->CrtcHSyncEnd; |
| 675 | modep->CrtcHBlankEnd = bestMode->CrtcHBlankEnd; |
| 676 | modep->CrtcHTotal = bestMode->CrtcHTotal; |
| 677 | modep->CrtcHSkew = bestMode->CrtcHSkew; |
| 678 | modep->CrtcVDisplay = bestMode->CrtcVDisplay; |
| 679 | modep->CrtcVBlankStart = bestMode->CrtcVBlankStart; |
| 680 | modep->CrtcVSyncStart = bestMode->CrtcVSyncStart; |
| 681 | modep->CrtcVSyncEnd = bestMode->CrtcVSyncEnd; |
| 682 | modep->CrtcVBlankEnd = bestMode->CrtcVBlankEnd; |
| 683 | modep->CrtcVTotal = bestMode->CrtcVTotal; |
| 684 | modep->CrtcHAdjusted = bestMode->CrtcHAdjusted; |
| 685 | modep->CrtcVAdjusted = bestMode->CrtcVAdjusted; |
| 686 | modep->HSync = bestMode->HSync; |
| 687 | modep->VRefresh = bestMode->VRefresh; |
| 688 | modep->Private = bestMode->Private; |
| 689 | modep->PrivSize = bestMode->PrivSize; |
| 690 | |
| 691 | bestMode->prev = modep; |
| 692 | |
| 693 | return MODE_OK; |
| 694 | } |
| 695 | |
| 696 | /* |
| 697 | * xf86CheckModeForMonitor |
| 698 | * |
| 699 | * This function takes a mode and monitor description, and determines |
| 700 | * if the mode is valid for the monitor. |
| 701 | */ |
| 702 | ModeStatus |
| 703 | xf86CheckModeForMonitor(DisplayModePtr mode, MonPtr monitor) |
| 704 | { |
| 705 | int i; |
| 706 | |
| 707 | /* Sanity checks */ |
| 708 | if (mode == NULL || monitor == NULL) { |
| 709 | ErrorF("xf86CheckModeForMonitor: called with invalid parameters\n"); |
| 710 | return MODE_ERROR; |
| 711 | } |
| 712 | |
| 713 | DebugF("xf86CheckModeForMonitor(%p %s, %p %s)\n", |
| 714 | mode, mode->name, monitor, monitor->id); |
| 715 | |
| 716 | /* Some basic mode validity checks */ |
| 717 | if (0 >= mode->HDisplay || mode->HDisplay > mode->HSyncStart || |
| 718 | mode->HSyncStart >= mode->HSyncEnd || mode->HSyncEnd >= mode->HTotal) |
| 719 | return MODE_H_ILLEGAL; |
| 720 | |
| 721 | if (0 >= mode->VDisplay || mode->VDisplay > mode->VSyncStart || |
| 722 | mode->VSyncStart >= mode->VSyncEnd || mode->VSyncEnd >= mode->VTotal) |
| 723 | return MODE_V_ILLEGAL; |
| 724 | |
| 725 | if (monitor->nHsync > 0) { |
| 726 | /* Check hsync against the allowed ranges */ |
| 727 | float hsync = xf86ModeHSync(mode); |
| 728 | |
| 729 | for (i = 0; i < monitor->nHsync; i++) |
| 730 | if ((hsync > monitor->hsync[i].lo * (1.0 - SYNC_TOLERANCE)) && |
| 731 | (hsync < monitor->hsync[i].hi * (1.0 + SYNC_TOLERANCE))) |
| 732 | break; |
| 733 | |
| 734 | /* Now see whether we ran out of sync ranges without finding a match */ |
| 735 | if (i == monitor->nHsync) |
| 736 | return MODE_HSYNC; |
| 737 | } |
| 738 | |
| 739 | if (monitor->nVrefresh > 0) { |
| 740 | /* Check vrefresh against the allowed ranges */ |
| 741 | float vrefrsh = xf86ModeVRefresh(mode); |
| 742 | |
| 743 | for (i = 0; i < monitor->nVrefresh; i++) |
| 744 | if ((vrefrsh > monitor->vrefresh[i].lo * (1.0 - SYNC_TOLERANCE)) && |
| 745 | (vrefrsh < monitor->vrefresh[i].hi * (1.0 + SYNC_TOLERANCE))) |
| 746 | break; |
| 747 | |
| 748 | /* Now see whether we ran out of refresh ranges without finding a match */ |
| 749 | if (i == monitor->nVrefresh) |
| 750 | return MODE_VSYNC; |
| 751 | } |
| 752 | |
| 753 | /* Force interlaced modes to have an odd VTotal */ |
| 754 | if (mode->Flags & V_INTERLACE) |
| 755 | mode->CrtcVTotal = mode->VTotal |= 1; |
| 756 | |
| 757 | /* |
| 758 | * This code stops cvt -r modes, and only cvt -r modes, from hitting 15y+ |
| 759 | * old CRTs which might, when there is a lot of solar flare activity and |
| 760 | * when the celestial bodies are unfavourably aligned, implode trying to |
| 761 | * sync to it. It's called "Protecting the user from doing anything stupid". |
| 762 | * -- libv |
| 763 | */ |
| 764 | |
| 765 | if (xf86ModeIsReduced(mode)) { |
| 766 | if (!monitor->reducedblanking && !(mode->type & M_T_DRIVER)) |
| 767 | return MODE_NO_REDUCED; |
| 768 | } |
| 769 | |
| 770 | if ((monitor->maxPixClock) && (mode->Clock > monitor->maxPixClock)) |
| 771 | return MODE_CLOCK_HIGH; |
| 772 | |
| 773 | return MODE_OK; |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * xf86CheckModeSize |
| 778 | * |
| 779 | * An internal routine to check if a mode fits in video memory. This tries to |
| 780 | * avoid overflows that would otherwise occur when video memory size is greater |
| 781 | * than 256MB. |
| 782 | */ |
| 783 | static Bool |
| 784 | xf86CheckModeSize(ScrnInfoPtr scrp, int w, int x, int y) |
| 785 | { |
| 786 | int bpp = scrp->fbFormat.bitsPerPixel, pad = scrp->fbFormat.scanlinePad; |
| 787 | int lineWidth, lastWidth; |
| 788 | |
| 789 | if (scrp->depth == 4) |
| 790 | pad *= 4; /* 4 planes */ |
| 791 | |
| 792 | /* Sanity check */ |
| 793 | if ((w < 0) || (x < 0) || (y <= 0)) |
| 794 | return FALSE; |
| 795 | |
| 796 | lineWidth = (((w * bpp) + pad - 1) / pad) * pad; |
| 797 | lastWidth = x * bpp; |
| 798 | |
| 799 | /* |
| 800 | * At this point, we need to compare |
| 801 | * |
| 802 | * (lineWidth * (y - 1)) + lastWidth |
| 803 | * |
| 804 | * against |
| 805 | * |
| 806 | * scrp->videoRam * (1024 * 8) |
| 807 | * |
| 808 | * These are bit quantities. To avoid overflows, do the comparison in |
| 809 | * terms of BITMAP_SCANLINE_PAD units. This assumes BITMAP_SCANLINE_PAD |
| 810 | * is a power of 2. We currently use 32, which limits us to a video |
| 811 | * memory size of 8GB. |
| 812 | */ |
| 813 | |
| 814 | lineWidth = (lineWidth + (BITMAP_SCANLINE_PAD - 1)) / BITMAP_SCANLINE_PAD; |
| 815 | lastWidth = (lastWidth + (BITMAP_SCANLINE_PAD - 1)) / BITMAP_SCANLINE_PAD; |
| 816 | |
| 817 | if ((lineWidth * (y - 1) + lastWidth) > |
| 818 | (scrp->videoRam * ((1024 * 8) / BITMAP_SCANLINE_PAD))) |
| 819 | return FALSE; |
| 820 | |
| 821 | return TRUE; |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * xf86InitialCheckModeForDriver |
| 826 | * |
| 827 | * This function checks if a mode satisfies a driver's initial requirements: |
| 828 | * - mode size fits within the available pixel area (memory) |
| 829 | * - width lies within the range of supported line pitches |
| 830 | * - mode size fits within virtual size (if fixed) |
| 831 | * - horizontal timings are in range |
| 832 | * |
| 833 | * This function takes the following parameters: |
| 834 | * scrp ScrnInfoPtr |
| 835 | * mode mode to check |
| 836 | * maxPitch (optional) maximum line pitch |
| 837 | * virtualX (optional) virtual width requested |
| 838 | * virtualY (optional) virtual height requested |
| 839 | * |
| 840 | * In addition, the following fields from the ScrnInfoRec are used: |
| 841 | * monitor pointer to structure for monitor section |
| 842 | * fbFormat pixel format for the framebuffer |
| 843 | * videoRam video memory size (in kB) |
| 844 | * maxHValue maximum horizontal timing value |
| 845 | * maxVValue maximum vertical timing value |
| 846 | */ |
| 847 | |
| 848 | ModeStatus |
| 849 | xf86InitialCheckModeForDriver(ScrnInfoPtr scrp, DisplayModePtr mode, |
| 850 | ClockRangePtr clockRanges, |
| 851 | LookupModeFlags strategy, |
| 852 | int maxPitch, int virtualX, int virtualY) |
| 853 | { |
| 854 | ClockRangePtr cp; |
| 855 | ModeStatus status; |
| 856 | Bool allowDiv2 = (strategy & LOOKUP_CLKDIV2) != 0; |
| 857 | int i, needDiv2; |
| 858 | |
| 859 | /* Sanity checks */ |
| 860 | if (!scrp || !mode || !clockRanges) { |
| 861 | ErrorF("xf86InitialCheckModeForDriver: " |
| 862 | "called with invalid parameters\n"); |
| 863 | return MODE_ERROR; |
| 864 | } |
| 865 | |
| 866 | DebugF("xf86InitialCheckModeForDriver(%p, %p %s, %p, 0x%x, %d, %d, %d)\n", |
| 867 | scrp, mode, mode->name, clockRanges, strategy, maxPitch, virtualX, |
| 868 | virtualY); |
| 869 | |
| 870 | /* Some basic mode validity checks */ |
| 871 | if (0 >= mode->HDisplay || mode->HDisplay > mode->HSyncStart || |
| 872 | mode->HSyncStart >= mode->HSyncEnd || mode->HSyncEnd >= mode->HTotal) |
| 873 | return MODE_H_ILLEGAL; |
| 874 | |
| 875 | if (0 >= mode->VDisplay || mode->VDisplay > mode->VSyncStart || |
| 876 | mode->VSyncStart >= mode->VSyncEnd || mode->VSyncEnd >= mode->VTotal) |
| 877 | return MODE_V_ILLEGAL; |
| 878 | |
| 879 | if (!xf86CheckModeSize(scrp, mode->HDisplay, mode->HDisplay, |
| 880 | mode->VDisplay)) |
| 881 | return MODE_MEM; |
| 882 | |
| 883 | if (maxPitch > 0 && mode->HDisplay > maxPitch) |
| 884 | return MODE_BAD_WIDTH; |
| 885 | |
| 886 | if (virtualX > 0 && mode->HDisplay > virtualX) |
| 887 | return MODE_VIRTUAL_X; |
| 888 | |
| 889 | if (virtualY > 0 && mode->VDisplay > virtualY) |
| 890 | return MODE_VIRTUAL_Y; |
| 891 | |
| 892 | if (scrp->maxHValue > 0 && mode->HTotal > scrp->maxHValue) |
| 893 | return MODE_BAD_HVALUE; |
| 894 | |
| 895 | if (scrp->maxVValue > 0 && mode->VTotal > scrp->maxVValue) |
| 896 | return MODE_BAD_VVALUE; |
| 897 | |
| 898 | /* |
| 899 | * The use of the DisplayModeRec's Crtc* and SynthClock elements below is |
| 900 | * provisional, in that they are later reused by the driver at mode-set |
| 901 | * time. Here, they are temporarily enlisted to contain the mode timings |
| 902 | * as seen by the CRT or panel (rather than the CRTC). The driver's |
| 903 | * ValidMode() is allowed to modify these so it can deal with such things |
| 904 | * as mode stretching and/or centering. The driver should >NOT< modify the |
| 905 | * user-supplied values as these are reported back when mode validation is |
| 906 | * said and done. |
| 907 | */ |
| 908 | /* |
| 909 | * NOTE: We (ab)use the mode->Crtc* values here to store timing |
| 910 | * information for the calculation of Hsync and Vrefresh. Before |
| 911 | * these values are calculated the driver is given the opportunity |
| 912 | * to either set these HSync and VRefresh itself or modify the timing |
| 913 | * values. |
| 914 | * The difference to the final calculation is small but imortand: |
| 915 | * here we pass the flag INTERLACE_HALVE_V regardless if the driver |
| 916 | * sets it or not. This way our calculation of VRefresh has the same |
| 917 | * effect as if we do if (flags & V_INTERLACE) refresh *= 2.0 |
| 918 | * This dual use of the mode->Crtc* values will certainly create |
| 919 | * confusion and is bad software design. However since it's part of |
| 920 | * the driver API it's hard to change. |
| 921 | */ |
| 922 | |
| 923 | if (scrp->ValidMode) { |
| 924 | |
| 925 | xf86SetModeCrtc(mode, INTERLACE_HALVE_V); |
| 926 | |
| 927 | cp = xf86FindClockRangeForMode(clockRanges, mode); |
| 928 | if (!cp) |
| 929 | return MODE_CLOCK_RANGE; |
| 930 | |
| 931 | if (cp->ClockMulFactor < 1) |
| 932 | cp->ClockMulFactor = 1; |
| 933 | if (cp->ClockDivFactor < 1) |
| 934 | cp->ClockDivFactor = 1; |
| 935 | |
| 936 | /* |
| 937 | * XXX The effect of clock dividers and multipliers on the monitor's |
| 938 | * pixel clock needs to be verified. |
| 939 | */ |
| 940 | if (scrp->progClock) { |
| 941 | mode->SynthClock = mode->Clock; |
| 942 | } |
| 943 | else { |
| 944 | i = xf86GetNearestClock(scrp, mode->Clock, allowDiv2, |
| 945 | cp->ClockDivFactor, cp->ClockMulFactor, |
| 946 | &needDiv2); |
| 947 | mode->SynthClock = (scrp->clock[i] * cp->ClockDivFactor) / |
| 948 | cp->ClockMulFactor; |
| 949 | if (needDiv2 & V_CLKDIV2) |
| 950 | mode->SynthClock /= 2; |
| 951 | } |
| 952 | |
| 953 | status = (*scrp->ValidMode) (scrp, mode, FALSE, |
| 954 | MODECHECK_INITIAL); |
| 955 | if (status != MODE_OK) |
| 956 | return status; |
| 957 | |
| 958 | if (mode->HSync <= 0.0) |
| 959 | mode->HSync = (float) mode->SynthClock / (float) mode->CrtcHTotal; |
| 960 | if (mode->VRefresh <= 0.0) |
| 961 | mode->VRefresh = (mode->SynthClock * 1000.0) |
| 962 | / (mode->CrtcHTotal * mode->CrtcVTotal); |
| 963 | } |
| 964 | |
| 965 | mode->HSync = xf86ModeHSync(mode); |
| 966 | mode->VRefresh = xf86ModeVRefresh(mode); |
| 967 | |
| 968 | /* Assume it is OK */ |
| 969 | return MODE_OK; |
| 970 | } |
| 971 | |
| 972 | /* |
| 973 | * xf86CheckModeForDriver |
| 974 | * |
| 975 | * This function is for checking modes while the server is running (for |
| 976 | * use mainly by the VidMode extension). |
| 977 | * |
| 978 | * This function checks if a mode satisfies a driver's requirements: |
| 979 | * - width lies within the line pitch |
| 980 | * - mode size fits within virtual size |
| 981 | * - horizontal/vertical timings are in range |
| 982 | * |
| 983 | * This function takes the following parameters: |
| 984 | * scrp ScrnInfoPtr |
| 985 | * mode mode to check |
| 986 | * flags not (currently) used |
| 987 | * |
| 988 | * In addition, the following fields from the ScrnInfoRec are used: |
| 989 | * maxHValue maximum horizontal timing value |
| 990 | * maxVValue maximum vertical timing value |
| 991 | * virtualX virtual width |
| 992 | * virtualY virtual height |
| 993 | * clockRanges allowable clock ranges |
| 994 | */ |
| 995 | |
| 996 | ModeStatus |
| 997 | xf86CheckModeForDriver(ScrnInfoPtr scrp, DisplayModePtr mode, int flags) |
| 998 | { |
| 999 | ClockRangePtr cp; |
| 1000 | int i, k, gap, minimumGap = CLOCK_TOLERANCE + 1; |
| 1001 | int extraFlags = 0; |
| 1002 | int clockIndex = -1; |
| 1003 | int MulFactor = 1; |
| 1004 | int DivFactor = 1; |
| 1005 | int ModePrivFlags = 0; |
| 1006 | ModeStatus status = MODE_NOMODE; |
| 1007 | |
| 1008 | /* Some sanity checking */ |
| 1009 | if (scrp == NULL || (!scrp->progClock && scrp->numClocks == 0)) { |
| 1010 | ErrorF("xf86CheckModeForDriver: called with invalid scrnInfoRec\n"); |
| 1011 | return MODE_ERROR; |
| 1012 | } |
| 1013 | if (mode == NULL) { |
| 1014 | ErrorF("xf86CheckModeForDriver: called with invalid modep\n"); |
| 1015 | return MODE_ERROR; |
| 1016 | } |
| 1017 | |
| 1018 | /* Check the mode size */ |
| 1019 | if (mode->HDisplay > scrp->virtualX) |
| 1020 | return MODE_VIRTUAL_X; |
| 1021 | |
| 1022 | if (mode->VDisplay > scrp->virtualY) |
| 1023 | return MODE_VIRTUAL_Y; |
| 1024 | |
| 1025 | if (scrp->maxHValue > 0 && mode->HTotal > scrp->maxHValue) |
| 1026 | return MODE_BAD_HVALUE; |
| 1027 | |
| 1028 | if (scrp->maxVValue > 0 && mode->VTotal > scrp->maxVValue) |
| 1029 | return MODE_BAD_VVALUE; |
| 1030 | |
| 1031 | for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) { |
| 1032 | /* DivFactor and MulFactor must be > 0 */ |
| 1033 | cp->ClockDivFactor = max(1, cp->ClockDivFactor); |
| 1034 | cp->ClockMulFactor = max(1, cp->ClockMulFactor); |
| 1035 | } |
| 1036 | |
| 1037 | if (scrp->progClock) { |
| 1038 | /* Check clock is in range */ |
| 1039 | for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) { |
| 1040 | if (modeInClockRange(cp, mode)) |
| 1041 | break; |
| 1042 | } |
| 1043 | if (cp == NULL) { |
| 1044 | return MODE_CLOCK_RANGE; |
| 1045 | } |
| 1046 | /* |
| 1047 | * If programmable clock the required mode has been found |
| 1048 | */ |
| 1049 | DivFactor = cp->ClockDivFactor; |
| 1050 | MulFactor = cp->ClockMulFactor; |
| 1051 | ModePrivFlags = cp->PrivFlags; |
| 1052 | } |
| 1053 | else { |
| 1054 | status = MODE_CLOCK_RANGE; |
| 1055 | /* Check clock is in range */ |
| 1056 | for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) { |
| 1057 | if (modeInClockRange(cp, mode)) { |
| 1058 | /* |
| 1059 | * Clock is in range, so if it is not a programmable clock, |
| 1060 | * find a matching clock. |
| 1061 | */ |
| 1062 | |
| 1063 | i = xf86GetNearestClock(scrp, mode->Clock, 0, |
| 1064 | cp->ClockDivFactor, cp->ClockMulFactor, |
| 1065 | &k); |
| 1066 | /* |
| 1067 | * If the clock is too far from the requested clock, this |
| 1068 | * mode is no good. |
| 1069 | */ |
| 1070 | if (k & V_CLKDIV2) |
| 1071 | gap = abs((mode->Clock * 2) - |
| 1072 | ((scrp->clock[i] * cp->ClockDivFactor) / |
| 1073 | cp->ClockMulFactor)); |
| 1074 | else |
| 1075 | gap = abs(mode->Clock - |
| 1076 | ((scrp->clock[i] * cp->ClockDivFactor) / |
| 1077 | cp->ClockMulFactor)); |
| 1078 | if (gap > minimumGap) { |
| 1079 | status = MODE_NOCLOCK; |
| 1080 | continue; |
| 1081 | } |
| 1082 | |
| 1083 | DivFactor = cp->ClockDivFactor; |
| 1084 | MulFactor = cp->ClockMulFactor; |
| 1085 | ModePrivFlags = cp->PrivFlags; |
| 1086 | extraFlags = k; |
| 1087 | clockIndex = i; |
| 1088 | break; |
| 1089 | } |
| 1090 | } |
| 1091 | if (cp == NULL) |
| 1092 | return status; |
| 1093 | } |
| 1094 | |
| 1095 | /* Fill in the mode parameters */ |
| 1096 | if (scrp->progClock) { |
| 1097 | mode->ClockIndex = -1; |
| 1098 | mode->SynthClock = (mode->Clock * MulFactor) / DivFactor; |
| 1099 | } |
| 1100 | else { |
| 1101 | mode->Clock = (scrp->clock[clockIndex] * DivFactor) / MulFactor; |
| 1102 | mode->ClockIndex = clockIndex; |
| 1103 | mode->SynthClock = scrp->clock[clockIndex]; |
| 1104 | if (extraFlags & V_CLKDIV2) { |
| 1105 | mode->Clock /= 2; |
| 1106 | mode->SynthClock /= 2; |
| 1107 | } |
| 1108 | } |
| 1109 | mode->PrivFlags = ModePrivFlags; |
| 1110 | |
| 1111 | return MODE_OK; |
| 1112 | } |
| 1113 | |
| 1114 | static int |
| 1115 | inferVirtualSize(ScrnInfoPtr scrp, DisplayModePtr modes, int *vx, int *vy) |
| 1116 | { |
| 1117 | float aspect = 0.0; |
| 1118 | MonPtr mon = scrp->monitor; |
| 1119 | xf86MonPtr DDC; |
| 1120 | int x = 0, y = 0; |
| 1121 | DisplayModePtr mode; |
| 1122 | |
| 1123 | if (!mon) |
| 1124 | return 0; |
| 1125 | DDC = mon->DDC; |
| 1126 | |
| 1127 | if (DDC && DDC->ver.revision >= 4) { |
| 1128 | /* For 1.4, we might actually get native pixel format. How novel. */ |
| 1129 | if (PREFERRED_TIMING_MODE(DDC->features.msc)) { |
| 1130 | for (mode = modes; mode; mode = mode->next) { |
| 1131 | if (mode->type & (M_T_DRIVER | M_T_PREFERRED)) { |
| 1132 | x = mode->HDisplay; |
| 1133 | y = mode->VDisplay; |
| 1134 | goto found; |
| 1135 | } |
| 1136 | } |
| 1137 | } |
| 1138 | /* |
| 1139 | * Even if we don't, we might get aspect ratio from extra CVT info |
| 1140 | * or from the monitor size fields. TODO. |
| 1141 | */ |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | * Technically this triggers if either is zero. That wasn't legal |
| 1146 | * before EDID 1.4, but right now we'll get that wrong. TODO. |
| 1147 | */ |
| 1148 | if (!aspect) { |
| 1149 | if (!mon->widthmm || !mon->heightmm) |
| 1150 | aspect = 4.0 / 3.0; |
| 1151 | else |
| 1152 | aspect = (float) mon->widthmm / (float) mon->heightmm; |
| 1153 | } |
| 1154 | |
| 1155 | /* find the largest M_T_DRIVER mode with that aspect ratio */ |
| 1156 | for (mode = modes; mode; mode = mode->next) { |
| 1157 | float mode_aspect, metaspect; |
| 1158 | |
| 1159 | if (!(mode->type & (M_T_DRIVER | M_T_USERDEF))) |
| 1160 | continue; |
| 1161 | mode_aspect = (float) mode->HDisplay / (float) mode->VDisplay; |
| 1162 | metaspect = aspect / mode_aspect; |
| 1163 | /* 5% slop or so, since we only get size in centimeters */ |
| 1164 | if (fabs(1.0 - metaspect) < 0.05) { |
| 1165 | if ((mode->HDisplay > x) && (mode->VDisplay > y)) { |
| 1166 | x = mode->HDisplay; |
| 1167 | y = mode->VDisplay; |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | if (!x || !y) { |
| 1173 | xf86DrvMsg(scrp->scrnIndex, X_WARNING, |
| 1174 | "Unable to estimate virtual size\n"); |
| 1175 | return 0; |
| 1176 | } |
| 1177 | |
| 1178 | found: |
| 1179 | *vx = x; |
| 1180 | *vy = y; |
| 1181 | |
| 1182 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 1183 | "Estimated virtual size for aspect ratio %.4f is %dx%d\n", |
| 1184 | aspect, *vx, *vy); |
| 1185 | |
| 1186 | return 1; |
| 1187 | } |
| 1188 | |
| 1189 | /* Least common multiple */ |
| 1190 | static unsigned int |
| 1191 | LCM(unsigned int x, unsigned int y) |
| 1192 | { |
| 1193 | unsigned int m = x, n = y, o; |
| 1194 | |
| 1195 | while ((o = m % n)) { |
| 1196 | m = n; |
| 1197 | n = o; |
| 1198 | } |
| 1199 | |
| 1200 | return (x / n) * y; |
| 1201 | } |
| 1202 | |
| 1203 | /* |
| 1204 | * Given various screen attributes, determine the minimum scanline width such |
| 1205 | * that each scanline is server and DDX padded and any pixels with imbedded |
| 1206 | * bank boundaries are off-screen. This function returns -1 if such a width |
| 1207 | * cannot exist. |
| 1208 | */ |
| 1209 | static int |
| 1210 | scanLineWidth(unsigned int xsize, /* pixels */ |
| 1211 | unsigned int ysize, /* pixels */ |
| 1212 | unsigned int width, /* pixels */ |
| 1213 | unsigned long BankSize, /* char's */ |
| 1214 | PixmapFormatRec * pBankFormat, unsigned int nWidthUnit /* bits */ |
| 1215 | ) |
| 1216 | { |
| 1217 | unsigned long nBitsPerBank, nBitsPerScanline, nBitsPerScanlinePadUnit; |
| 1218 | unsigned long minBitsPerScanline, maxBitsPerScanline; |
| 1219 | |
| 1220 | /* Sanity checks */ |
| 1221 | |
| 1222 | if (!nWidthUnit || !pBankFormat) |
| 1223 | return -1; |
| 1224 | |
| 1225 | nBitsPerBank = BankSize * 8; |
| 1226 | if (nBitsPerBank % pBankFormat->scanlinePad) |
| 1227 | return -1; |
| 1228 | |
| 1229 | if (xsize > width) |
| 1230 | width = xsize; |
| 1231 | nBitsPerScanlinePadUnit = LCM(pBankFormat->scanlinePad, nWidthUnit); |
| 1232 | nBitsPerScanline = |
| 1233 | (((width * pBankFormat->bitsPerPixel) + nBitsPerScanlinePadUnit - 1) / |
| 1234 | nBitsPerScanlinePadUnit) * nBitsPerScanlinePadUnit; |
| 1235 | width = nBitsPerScanline / pBankFormat->bitsPerPixel; |
| 1236 | |
| 1237 | if (!xsize || !(nBitsPerBank % pBankFormat->bitsPerPixel)) |
| 1238 | return (int) width; |
| 1239 | |
| 1240 | /* |
| 1241 | * Scanlines will be server-pad aligned at this point. They will also be |
| 1242 | * a multiple of nWidthUnit bits long. Ensure that pixels with imbedded |
| 1243 | * bank boundaries are off-screen. |
| 1244 | * |
| 1245 | * It seems reasonable to limit total frame buffer size to 1/16 of the |
| 1246 | * theoretical maximum address space size. On a machine with 32-bit |
| 1247 | * addresses (to 8-bit quantities) this turns out to be 256MB. Not only |
| 1248 | * does this provide a simple limiting condition for the loops below, but |
| 1249 | * it also prevents unsigned long wraparounds. |
| 1250 | */ |
| 1251 | if (!ysize) |
| 1252 | return -1; |
| 1253 | |
| 1254 | minBitsPerScanline = xsize * pBankFormat->bitsPerPixel; |
| 1255 | if (minBitsPerScanline > nBitsPerBank) |
| 1256 | return -1; |
| 1257 | |
| 1258 | if (ysize == 1) |
| 1259 | return (int) width; |
| 1260 | |
| 1261 | maxBitsPerScanline = |
| 1262 | (((unsigned long) (-1) >> 1) - minBitsPerScanline) / (ysize - 1); |
| 1263 | while (nBitsPerScanline <= maxBitsPerScanline) { |
| 1264 | unsigned long BankBase, BankUnit; |
| 1265 | |
| 1266 | BankUnit = ((nBitsPerBank + nBitsPerScanline - 1) / nBitsPerBank) * |
| 1267 | nBitsPerBank; |
| 1268 | if (!(BankUnit % nBitsPerScanline)) |
| 1269 | return (int) width; |
| 1270 | |
| 1271 | for (BankBase = BankUnit;; BankBase += nBitsPerBank) { |
| 1272 | unsigned long x, y; |
| 1273 | |
| 1274 | y = BankBase / nBitsPerScanline; |
| 1275 | if (y >= ysize) |
| 1276 | return (int) width; |
| 1277 | |
| 1278 | x = BankBase % nBitsPerScanline; |
| 1279 | if (!(x % pBankFormat->bitsPerPixel)) |
| 1280 | continue; |
| 1281 | |
| 1282 | if (x < minBitsPerScanline) { |
| 1283 | /* |
| 1284 | * Skip ahead certain widths by dividing the excess scanline |
| 1285 | * amongst the y's. |
| 1286 | */ |
| 1287 | y *= nBitsPerScanlinePadUnit; |
| 1288 | nBitsPerScanline += ((x + y - 1) / y) * nBitsPerScanlinePadUnit; |
| 1289 | width = nBitsPerScanline / pBankFormat->bitsPerPixel; |
| 1290 | break; |
| 1291 | } |
| 1292 | |
| 1293 | if (BankBase != BankUnit) |
| 1294 | continue; |
| 1295 | |
| 1296 | if (!(nBitsPerScanline % x)) |
| 1297 | return (int) width; |
| 1298 | |
| 1299 | BankBase = ((nBitsPerScanline - minBitsPerScanline) / |
| 1300 | (nBitsPerScanline - x)) * BankUnit; |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | return -1; |
| 1305 | } |
| 1306 | |
| 1307 | /* |
| 1308 | * xf86ValidateModes |
| 1309 | * |
| 1310 | * This function takes a set of mode names, modes and limiting conditions, |
| 1311 | * and selects a set of modes and parameters based on those conditions. |
| 1312 | * |
| 1313 | * This function takes the following parameters: |
| 1314 | * scrp ScrnInfoPtr |
| 1315 | * availModes the list of modes available for the monitor |
| 1316 | * modeNames (optional) list of mode names that the screen is requesting |
| 1317 | * clockRanges a list of clock ranges |
| 1318 | * linePitches (optional) a list of line pitches |
| 1319 | * minPitch (optional) minimum line pitch (in pixels) |
| 1320 | * maxPitch (optional) maximum line pitch (in pixels) |
| 1321 | * pitchInc (mandatory) pitch increment (in bits) |
| 1322 | * minHeight (optional) minimum virtual height (in pixels) |
| 1323 | * maxHeight (optional) maximum virtual height (in pixels) |
| 1324 | * virtualX (optional) virtual width requested (in pixels) |
| 1325 | * virtualY (optional) virtual height requested (in pixels) |
| 1326 | * apertureSize size of video aperture (in bytes) |
| 1327 | * strategy how to decide which mode to use from multiple modes with |
| 1328 | * the same name |
| 1329 | * |
| 1330 | * In addition, the following fields from the ScrnInfoRec are used: |
| 1331 | * clocks a list of discrete clocks |
| 1332 | * numClocks number of discrete clocks |
| 1333 | * progClock clock is programmable |
| 1334 | * monitor pointer to structure for monitor section |
| 1335 | * fbFormat format of the framebuffer |
| 1336 | * videoRam video memory size |
| 1337 | * maxHValue maximum horizontal timing value |
| 1338 | * maxVValue maximum vertical timing value |
| 1339 | * xInc horizontal timing increment (defaults to 8 pixels) |
| 1340 | * |
| 1341 | * The function fills in the following ScrnInfoRec fields: |
| 1342 | * modePool A subset of the modes available to the monitor which |
| 1343 | * are compatible with the driver. |
| 1344 | * modes one mode entry for each of the requested modes, with the |
| 1345 | * status field filled in to indicate if the mode has been |
| 1346 | * accepted or not. |
| 1347 | * virtualX the resulting virtual width |
| 1348 | * virtualY the resulting virtual height |
| 1349 | * displayWidth the resulting line pitch |
| 1350 | * |
| 1351 | * The function's return value is the number of matching modes found, or -1 |
| 1352 | * if an unrecoverable error was encountered. |
| 1353 | */ |
| 1354 | |
| 1355 | int |
| 1356 | xf86ValidateModes(ScrnInfoPtr scrp, DisplayModePtr availModes, |
| 1357 | char **modeNames, ClockRangePtr clockRanges, |
| 1358 | int *linePitches, int minPitch, int maxPitch, int pitchInc, |
| 1359 | int minHeight, int maxHeight, int virtualX, int virtualY, |
| 1360 | int apertureSize, LookupModeFlags strategy) |
| 1361 | { |
| 1362 | DisplayModePtr p, q, r, new, last, *endp; |
| 1363 | int i, numModes = 0; |
| 1364 | ModeStatus status; |
| 1365 | int linePitch = -1, virtX = 0, virtY = 0; |
| 1366 | int newLinePitch, newVirtX, newVirtY; |
| 1367 | int modeSize; /* in pixels */ |
| 1368 | Bool validateAllDefaultModes = FALSE; |
| 1369 | Bool userModes = FALSE; |
| 1370 | int saveType; |
| 1371 | PixmapFormatRec *BankFormat; |
| 1372 | ClockRangePtr cp; |
| 1373 | int numTimings = 0; |
| 1374 | range hsync[MAX_HSYNC]; |
| 1375 | range vrefresh[MAX_VREFRESH]; |
| 1376 | Bool inferred_virtual = FALSE; |
| 1377 | |
| 1378 | DebugF |
| 1379 | ("xf86ValidateModes(%p, %p, %p, %p,\n\t\t %p, %d, %d, %d, %d, %d, %d, %d, %d, 0x%x)\n", |
| 1380 | scrp, availModes, modeNames, clockRanges, linePitches, minPitch, |
| 1381 | maxPitch, pitchInc, minHeight, maxHeight, virtualX, virtualY, |
| 1382 | apertureSize, strategy); |
| 1383 | |
| 1384 | /* Some sanity checking */ |
| 1385 | if (scrp == NULL || scrp->name == NULL || !scrp->monitor || |
| 1386 | (!scrp->progClock && scrp->numClocks == 0)) { |
| 1387 | ErrorF("xf86ValidateModes: called with invalid scrnInfoRec\n"); |
| 1388 | return -1; |
| 1389 | } |
| 1390 | if (linePitches != NULL && linePitches[0] <= 0) { |
| 1391 | ErrorF("xf86ValidateModes: called with invalid linePitches\n"); |
| 1392 | return -1; |
| 1393 | } |
| 1394 | if (pitchInc <= 0) { |
| 1395 | ErrorF("xf86ValidateModes: called with invalid pitchInc\n"); |
| 1396 | return -1; |
| 1397 | } |
| 1398 | if ((virtualX > 0) != (virtualY > 0)) { |
| 1399 | ErrorF("xf86ValidateModes: called with invalid virtual resolution\n"); |
| 1400 | return -1; |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * If requested by the driver, allow missing hsync and/or vrefresh ranges |
| 1405 | * in the monitor section. |
| 1406 | */ |
| 1407 | if (strategy & LOOKUP_OPTIONAL_TOLERANCES) { |
| 1408 | strategy &= ~LOOKUP_OPTIONAL_TOLERANCES; |
| 1409 | } |
| 1410 | else { |
| 1411 | const char *type = ""; |
| 1412 | Bool specified = FALSE; |
| 1413 | |
| 1414 | if (scrp->monitor->nHsync <= 0) { |
| 1415 | if (numTimings > 0) { |
| 1416 | scrp->monitor->nHsync = numTimings; |
| 1417 | for (i = 0; i < numTimings; i++) { |
| 1418 | scrp->monitor->hsync[i].lo = hsync[i].lo; |
| 1419 | scrp->monitor->hsync[i].hi = hsync[i].hi; |
| 1420 | } |
| 1421 | } |
| 1422 | else { |
| 1423 | scrp->monitor->hsync[0].lo = 31.5; |
| 1424 | scrp->monitor->hsync[0].hi = 48.0; |
| 1425 | scrp->monitor->nHsync = 1; |
| 1426 | } |
| 1427 | type = "default "; |
| 1428 | } |
| 1429 | else { |
| 1430 | specified = TRUE; |
| 1431 | } |
| 1432 | for (i = 0; i < scrp->monitor->nHsync; i++) { |
| 1433 | if (scrp->monitor->hsync[i].lo == scrp->monitor->hsync[i].hi) |
| 1434 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 1435 | "%s: Using %shsync value of %.2f kHz\n", |
| 1436 | scrp->monitor->id, type, scrp->monitor->hsync[i].lo); |
| 1437 | else |
| 1438 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 1439 | "%s: Using %shsync range of %.2f-%.2f kHz\n", |
| 1440 | scrp->monitor->id, type, |
| 1441 | scrp->monitor->hsync[i].lo, |
| 1442 | scrp->monitor->hsync[i].hi); |
| 1443 | } |
| 1444 | |
| 1445 | type = ""; |
| 1446 | if (scrp->monitor->nVrefresh <= 0) { |
| 1447 | if (numTimings > 0) { |
| 1448 | scrp->monitor->nVrefresh = numTimings; |
| 1449 | for (i = 0; i < numTimings; i++) { |
| 1450 | scrp->monitor->vrefresh[i].lo = vrefresh[i].lo; |
| 1451 | scrp->monitor->vrefresh[i].hi = vrefresh[i].hi; |
| 1452 | } |
| 1453 | } |
| 1454 | else { |
| 1455 | scrp->monitor->vrefresh[0].lo = 50; |
| 1456 | scrp->monitor->vrefresh[0].hi = 70; |
| 1457 | scrp->monitor->nVrefresh = 1; |
| 1458 | } |
| 1459 | type = "default "; |
| 1460 | } |
| 1461 | else { |
| 1462 | specified = TRUE; |
| 1463 | } |
| 1464 | for (i = 0; i < scrp->monitor->nVrefresh; i++) { |
| 1465 | if (scrp->monitor->vrefresh[i].lo == scrp->monitor->vrefresh[i].hi) |
| 1466 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 1467 | "%s: Using %svrefresh value of %.2f Hz\n", |
| 1468 | scrp->monitor->id, type, |
| 1469 | scrp->monitor->vrefresh[i].lo); |
| 1470 | else |
| 1471 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 1472 | "%s: Using %svrefresh range of %.2f-%.2f Hz\n", |
| 1473 | scrp->monitor->id, type, |
| 1474 | scrp->monitor->vrefresh[i].lo, |
| 1475 | scrp->monitor->vrefresh[i].hi); |
| 1476 | } |
| 1477 | |
| 1478 | type = ""; |
| 1479 | if (!scrp->monitor->maxPixClock && !specified) { |
| 1480 | type = "default "; |
| 1481 | scrp->monitor->maxPixClock = 65000.0; |
| 1482 | } |
| 1483 | if (scrp->monitor->maxPixClock) { |
| 1484 | xf86DrvMsg(scrp->scrnIndex, X_INFO, |
| 1485 | "%s: Using %smaximum pixel clock of %.2f MHz\n", |
| 1486 | scrp->monitor->id, type, |
| 1487 | (float) scrp->monitor->maxPixClock / 1000.0); |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | /* |
| 1492 | * Store the clockRanges for later use by the VidMode extension. |
| 1493 | */ |
| 1494 | nt_list_for_each_entry(cp, clockRanges, next) { |
| 1495 | ClockRangePtr newCR = xnfalloc(sizeof(ClockRange)); |
| 1496 | memcpy(newCR, cp, sizeof(ClockRange)); |
| 1497 | newCR->next = NULL; |
| 1498 | if (scrp->clockRanges == NULL) |
| 1499 | scrp->clockRanges = newCR; |
| 1500 | else |
| 1501 | nt_list_append(newCR, scrp->clockRanges, ClockRange, next); |
| 1502 | } |
| 1503 | |
| 1504 | /* Determine which pixmap format to pass to scanLineWidth() */ |
| 1505 | if (scrp->depth > 4) |
| 1506 | BankFormat = &scrp->fbFormat; |
| 1507 | else |
| 1508 | BankFormat = xf86GetPixFormat(scrp, 1); /* >not< scrp->depth! */ |
| 1509 | |
| 1510 | if (scrp->xInc <= 0) |
| 1511 | scrp->xInc = 8; /* Suitable for VGA and others */ |
| 1512 | |
| 1513 | #define _VIRTUALX(x) ((((x) + scrp->xInc - 1) / scrp->xInc) * scrp->xInc) |
| 1514 | |
| 1515 | /* |
| 1516 | * Determine maxPitch if it wasn't given explicitly. Note linePitches |
| 1517 | * always takes precedence if is non-NULL. In that case the minPitch and |
| 1518 | * maxPitch values passed are ignored. |
| 1519 | */ |
| 1520 | if (linePitches) { |
| 1521 | minPitch = maxPitch = linePitches[0]; |
| 1522 | for (i = 1; linePitches[i] > 0; i++) { |
| 1523 | if (linePitches[i] > maxPitch) |
| 1524 | maxPitch = linePitches[i]; |
| 1525 | if (linePitches[i] < minPitch) |
| 1526 | minPitch = linePitches[i]; |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | /* Initial check of virtual size against other constraints */ |
| 1531 | scrp->virtualFrom = X_PROBED; |
| 1532 | /* |
| 1533 | * Initialise virtX and virtY if the values are fixed. |
| 1534 | */ |
| 1535 | if (virtualY > 0) { |
| 1536 | if (maxHeight > 0 && virtualY > maxHeight) { |
| 1537 | xf86DrvMsg(scrp->scrnIndex, X_ERROR, |
| 1538 | "Virtual height (%d) is too large for the hardware " |
| 1539 | "(max %d)\n", virtualY, maxHeight); |
| 1540 | return -1; |
| 1541 | } |
| 1542 | |
| 1543 | if (minHeight > 0 && virtualY < minHeight) { |
| 1544 | xf86DrvMsg(scrp->scrnIndex, X_ERROR, |
| 1545 | "Virtual height (%d) is too small for the hardware " |
| 1546 | "(min %d)\n", virtualY, minHeight); |
| 1547 | return -1; |
| 1548 | } |
| 1549 | |
| 1550 | virtualX = _VIRTUALX(virtualX); |
| 1551 | if (linePitches != NULL) { |
| 1552 | for (i = 0; linePitches[i] != 0; i++) { |
| 1553 | if ((linePitches[i] >= virtualX) && |
| 1554 | (linePitches[i] == |
| 1555 | scanLineWidth(virtualX, virtualY, linePitches[i], |
| 1556 | apertureSize, BankFormat, pitchInc))) { |
| 1557 | linePitch = linePitches[i]; |
| 1558 | break; |
| 1559 | } |
| 1560 | } |
| 1561 | } |
| 1562 | else { |
| 1563 | linePitch = scanLineWidth(virtualX, virtualY, minPitch, |
| 1564 | apertureSize, BankFormat, pitchInc); |
| 1565 | } |
| 1566 | |
| 1567 | if ((linePitch < minPitch) || (linePitch > maxPitch)) { |
| 1568 | xf86DrvMsg(scrp->scrnIndex, X_ERROR, |
| 1569 | "Virtual width (%d) is too large for the hardware " |
| 1570 | "(max %d)\n", virtualX, maxPitch); |
| 1571 | return -1; |
| 1572 | } |
| 1573 | |
| 1574 | if (!xf86CheckModeSize(scrp, linePitch, virtualX, virtualY)) { |
| 1575 | xf86DrvMsg(scrp->scrnIndex, X_ERROR, |
| 1576 | "Virtual size (%dx%d) (pitch %d) exceeds video memory\n", |
| 1577 | virtualX, virtualY, linePitch); |
| 1578 | return -1; |
| 1579 | } |
| 1580 | |
| 1581 | virtX = virtualX; |
| 1582 | virtY = virtualY; |
| 1583 | scrp->virtualFrom = X_CONFIG; |
| 1584 | } |
| 1585 | else if (!modeNames || !*modeNames) { |
| 1586 | /* No virtual size given in the config, try to infer */ |
| 1587 | /* XXX this doesn't take m{in,ax}Pitch into account; oh well */ |
| 1588 | inferred_virtual = inferVirtualSize(scrp, availModes, &virtX, &virtY); |
| 1589 | if (inferred_virtual) |
| 1590 | linePitch = scanLineWidth(virtX, virtY, minPitch, apertureSize, |
| 1591 | BankFormat, pitchInc); |
| 1592 | } |
| 1593 | |
| 1594 | /* Print clock ranges and scaled clocks */ |
| 1595 | xf86ShowClockRanges(scrp, clockRanges); |
| 1596 | |
| 1597 | /* |
| 1598 | * If scrp->modePool hasn't been setup yet, set it up now. This allows the |
| 1599 | * modes that the driver definitely can't use to be weeded out early. Note |
| 1600 | * that a modePool mode's prev field is used to hold a pointer to the |
| 1601 | * member of the scrp->modes list for which a match was considered. |
| 1602 | */ |
| 1603 | if (scrp->modePool == NULL) { |
| 1604 | q = NULL; |
| 1605 | for (p = availModes; p != NULL; p = p->next) { |
| 1606 | status = xf86InitialCheckModeForDriver(scrp, p, clockRanges, |
| 1607 | strategy, maxPitch, |
| 1608 | virtX, virtY); |
| 1609 | |
| 1610 | if (status == MODE_OK) { |
| 1611 | status = xf86CheckModeForMonitor(p, scrp->monitor); |
| 1612 | } |
| 1613 | |
| 1614 | if (status == MODE_OK) { |
| 1615 | new = xnfalloc(sizeof(DisplayModeRec)); |
| 1616 | *new = *p; |
| 1617 | new->next = NULL; |
| 1618 | if (!q) { |
| 1619 | scrp->modePool = new; |
| 1620 | } |
| 1621 | else { |
| 1622 | q->next = new; |
| 1623 | } |
| 1624 | new->prev = NULL; |
| 1625 | q = new; |
| 1626 | q->name = xnfstrdup(p->name); |
| 1627 | q->status = MODE_OK; |
| 1628 | } |
| 1629 | else { |
| 1630 | printModeRejectMessage(scrp->scrnIndex, p, status); |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | if (scrp->modePool == NULL) { |
| 1635 | xf86DrvMsg(scrp->scrnIndex, X_WARNING, "Mode pool is empty\n"); |
| 1636 | return 0; |
| 1637 | } |
| 1638 | } |
| 1639 | else { |
| 1640 | for (p = scrp->modePool; p != NULL; p = p->next) { |
| 1641 | p->prev = NULL; |
| 1642 | p->status = MODE_OK; |
| 1643 | } |
| 1644 | } |
| 1645 | |
| 1646 | /* |
| 1647 | * Allocate one entry in scrp->modes for each named mode. |
| 1648 | */ |
| 1649 | while (scrp->modes) |
| 1650 | xf86DeleteMode(&scrp->modes, scrp->modes); |
| 1651 | endp = &scrp->modes; |
| 1652 | last = NULL; |
| 1653 | if (modeNames != NULL) { |
| 1654 | for (i = 0; modeNames[i] != NULL; i++) { |
| 1655 | userModes = TRUE; |
| 1656 | new = xnfcalloc(1, sizeof(DisplayModeRec)); |
| 1657 | new->prev = last; |
| 1658 | new->type = M_T_USERDEF; |
| 1659 | new->name = xnfstrdup(modeNames[i]); |
| 1660 | if (new->prev) |
| 1661 | new->prev->next = new; |
| 1662 | *endp = last = new; |
| 1663 | endp = &new->next; |
| 1664 | } |
| 1665 | } |
| 1666 | |
| 1667 | /* Lookup each mode */ |
| 1668 | #ifdef RANDR |
| 1669 | if (!xf86Info.disableRandR |
| 1670 | #ifdef PANORAMIX |
| 1671 | && noPanoramiXExtension |
| 1672 | #endif |
| 1673 | ) |
| 1674 | validateAllDefaultModes = TRUE; |
| 1675 | #endif |
| 1676 | |
| 1677 | for (p = scrp->modes;; p = p->next) { |
| 1678 | Bool repeat; |
| 1679 | |
| 1680 | /* |
| 1681 | * If the supplied mode names don't produce a valid mode, scan through |
| 1682 | * unconsidered modePool members until one survives validation. This |
| 1683 | * is done in decreasing order by mode pixel area. |
| 1684 | */ |
| 1685 | |
| 1686 | if (p == NULL) { |
| 1687 | if ((numModes > 0) && !validateAllDefaultModes) |
| 1688 | break; |
| 1689 | |
| 1690 | validateAllDefaultModes = TRUE; |
| 1691 | r = NULL; |
| 1692 | modeSize = 0; |
| 1693 | for (q = scrp->modePool; q != NULL; q = q->next) { |
| 1694 | if ((q->prev == NULL) && (q->status == MODE_OK)) { |
| 1695 | /* |
| 1696 | * Deal with the case where this mode wasn't considered |
| 1697 | * because of a builtin mode of the same name. |
| 1698 | */ |
| 1699 | for (p = scrp->modes; p != NULL; p = p->next) { |
| 1700 | if ((p->status != MODE_OK) && !strcmp(p->name, q->name)) |
| 1701 | break; |
| 1702 | } |
| 1703 | |
| 1704 | if (p != NULL) |
| 1705 | q->prev = p; |
| 1706 | else { |
| 1707 | /* |
| 1708 | * A quick check to not allow default modes with |
| 1709 | * horizontal timing parameters that CRTs may have |
| 1710 | * problems with. |
| 1711 | */ |
| 1712 | if (!scrp->monitor->reducedblanking && |
| 1713 | (q->type & M_T_DEFAULT) && |
| 1714 | ((double) q->HTotal / (double) q->HDisplay) < 1.15) |
| 1715 | continue; |
| 1716 | |
| 1717 | if (modeSize < (q->HDisplay * q->VDisplay)) { |
| 1718 | r = q; |
| 1719 | modeSize = q->HDisplay * q->VDisplay; |
| 1720 | } |
| 1721 | } |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | if (r == NULL) |
| 1726 | break; |
| 1727 | |
| 1728 | p = xnfcalloc(1, sizeof(DisplayModeRec)); |
| 1729 | p->prev = last; |
| 1730 | p->name = xnfstrdup(r->name); |
| 1731 | if (!userModes) |
| 1732 | p->type = M_T_USERDEF; |
| 1733 | if (p->prev) |
| 1734 | p->prev->next = p; |
| 1735 | *endp = last = p; |
| 1736 | endp = &p->next; |
| 1737 | } |
| 1738 | |
| 1739 | repeat = FALSE; |
| 1740 | lookupNext: |
| 1741 | if (repeat && ((status = p->status) != MODE_OK)) |
| 1742 | printModeRejectMessage(scrp->scrnIndex, p, status); |
| 1743 | saveType = p->type; |
| 1744 | status = xf86LookupMode(scrp, p, clockRanges, strategy); |
| 1745 | if (repeat && status == MODE_NOMODE) |
| 1746 | continue; |
| 1747 | if (status != MODE_OK) |
| 1748 | printModeRejectMessage(scrp->scrnIndex, p, status); |
| 1749 | if (status == MODE_ERROR) { |
| 1750 | ErrorF("xf86ValidateModes: " |
| 1751 | "unexpected result from xf86LookupMode()\n"); |
| 1752 | return -1; |
| 1753 | } |
| 1754 | if (status != MODE_OK) { |
| 1755 | if (p->status == MODE_OK) |
| 1756 | p->status = status; |
| 1757 | continue; |
| 1758 | } |
| 1759 | p->type |= saveType; |
| 1760 | repeat = TRUE; |
| 1761 | |
| 1762 | newLinePitch = linePitch; |
| 1763 | newVirtX = virtX; |
| 1764 | newVirtY = virtY; |
| 1765 | |
| 1766 | /* |
| 1767 | * Don't let non-user defined modes increase the virtual size |
| 1768 | */ |
| 1769 | if (!(p->type & M_T_USERDEF) && (numModes > 0)) { |
| 1770 | if (p->HDisplay > virtX) { |
| 1771 | p->status = MODE_VIRTUAL_X; |
| 1772 | goto lookupNext; |
| 1773 | } |
| 1774 | if (p->VDisplay > virtY) { |
| 1775 | p->status = MODE_VIRTUAL_Y; |
| 1776 | goto lookupNext; |
| 1777 | } |
| 1778 | } |
| 1779 | /* |
| 1780 | * Adjust virtual width and height if the mode is too large for the |
| 1781 | * current values and if they are not fixed. |
| 1782 | */ |
| 1783 | if (virtualX <= 0 && p->HDisplay > newVirtX) |
| 1784 | newVirtX = _VIRTUALX(p->HDisplay); |
| 1785 | if (virtualY <= 0 && p->VDisplay > newVirtY) { |
| 1786 | if (maxHeight > 0 && p->VDisplay > maxHeight) { |
| 1787 | p->status = MODE_VIRTUAL_Y; /* ? */ |
| 1788 | goto lookupNext; |
| 1789 | } |
| 1790 | newVirtY = p->VDisplay; |
| 1791 | } |
| 1792 | |
| 1793 | /* |
| 1794 | * If virtual resolution is to be increased, revalidate it. |
| 1795 | */ |
| 1796 | if ((virtX != newVirtX) || (virtY != newVirtY)) { |
| 1797 | if (linePitches != NULL) { |
| 1798 | newLinePitch = -1; |
| 1799 | for (i = 0; linePitches[i] != 0; i++) { |
| 1800 | if ((linePitches[i] >= newVirtX) && |
| 1801 | (linePitches[i] >= linePitch) && |
| 1802 | (linePitches[i] == |
| 1803 | scanLineWidth(newVirtX, newVirtY, linePitches[i], |
| 1804 | apertureSize, BankFormat, pitchInc))) { |
| 1805 | newLinePitch = linePitches[i]; |
| 1806 | break; |
| 1807 | } |
| 1808 | } |
| 1809 | } |
| 1810 | else { |
| 1811 | if (linePitch < minPitch) |
| 1812 | linePitch = minPitch; |
| 1813 | newLinePitch = scanLineWidth(newVirtX, newVirtY, linePitch, |
| 1814 | apertureSize, BankFormat, |
| 1815 | pitchInc); |
| 1816 | } |
| 1817 | if ((newLinePitch < minPitch) || (newLinePitch > maxPitch)) { |
| 1818 | p->status = MODE_BAD_WIDTH; |
| 1819 | goto lookupNext; |
| 1820 | } |
| 1821 | |
| 1822 | /* |
| 1823 | * Check that the pixel area required by the new virtual height |
| 1824 | * and line pitch isn't too large. |
| 1825 | */ |
| 1826 | if (!xf86CheckModeSize(scrp, newLinePitch, newVirtX, newVirtY)) { |
| 1827 | p->status = MODE_MEM_VIRT; |
| 1828 | goto lookupNext; |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | if (scrp->ValidMode) { |
| 1833 | /* |
| 1834 | * Give the driver a final say, passing it the proposed virtual |
| 1835 | * geometry. |
| 1836 | */ |
| 1837 | scrp->virtualX = newVirtX; |
| 1838 | scrp->virtualY = newVirtY; |
| 1839 | scrp->displayWidth = newLinePitch; |
| 1840 | p->status = (scrp->ValidMode) (scrp, p, FALSE, |
| 1841 | MODECHECK_FINAL); |
| 1842 | |
| 1843 | if (p->status != MODE_OK) { |
| 1844 | goto lookupNext; |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | /* Mode has passed all the tests */ |
| 1849 | virtX = newVirtX; |
| 1850 | virtY = newVirtY; |
| 1851 | linePitch = newLinePitch; |
| 1852 | p->status = MODE_OK; |
| 1853 | numModes++; |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * If we estimated the virtual size above, we may have filtered away all |
| 1858 | * the modes that maximally match that size; scan again to find out and |
| 1859 | * fix up if so. |
| 1860 | */ |
| 1861 | if (inferred_virtual) { |
| 1862 | int vx = 0, vy = 0; |
| 1863 | |
| 1864 | for (p = scrp->modes; p; p = p->next) { |
| 1865 | if (p->HDisplay > vx && p->VDisplay > vy) { |
| 1866 | vx = p->HDisplay; |
| 1867 | vy = p->VDisplay; |
| 1868 | } |
| 1869 | } |
| 1870 | if (vx < virtX || vy < virtY) { |
| 1871 | const int types[] = { |
| 1872 | M_T_BUILTIN | M_T_PREFERRED, |
| 1873 | M_T_BUILTIN, |
| 1874 | M_T_DRIVER | M_T_PREFERRED, |
| 1875 | M_T_DRIVER, |
| 1876 | 0 |
| 1877 | }; |
| 1878 | const int ntypes = sizeof(types) / sizeof(int); |
| 1879 | int n; |
| 1880 | |
| 1881 | /* |
| 1882 | * We did not find the estimated virtual size. So now we want to |
| 1883 | * find the largest mode available, but we want to search in the |
| 1884 | * modes in the order of "types" listed above. |
| 1885 | */ |
| 1886 | for (n = 0; n < ntypes; n++) { |
| 1887 | int type = types[n]; |
| 1888 | |
| 1889 | vx = 0; |
| 1890 | vy = 0; |
| 1891 | for (p = scrp->modes; p; p = p->next) { |
| 1892 | /* scan through the modes in the sort order above */ |
| 1893 | if ((p->type & type) != type) |
| 1894 | continue; |
| 1895 | if (p->HDisplay > vx && p->VDisplay > vy) { |
| 1896 | vx = p->HDisplay; |
| 1897 | vy = p->VDisplay; |
| 1898 | } |
| 1899 | } |
| 1900 | if (vx && vy) |
| 1901 | /* Found one */ |
| 1902 | break; |
| 1903 | } |
| 1904 | xf86DrvMsg(scrp->scrnIndex, X_WARNING, |
| 1905 | "Shrinking virtual size estimate from %dx%d to %dx%d\n", |
| 1906 | virtX, virtY, vx, vy); |
| 1907 | virtX = _VIRTUALX(vx); |
| 1908 | virtY = vy; |
| 1909 | for (p = scrp->modes; p; p = p->next) { |
| 1910 | if (numModes > 0) { |
| 1911 | if (p->HDisplay > virtX) |
| 1912 | p->status = MODE_VIRTUAL_X; |
| 1913 | if (p->VDisplay > virtY) |
| 1914 | p->status = MODE_VIRTUAL_Y; |
| 1915 | if (p->status != MODE_OK) { |
| 1916 | numModes--; |
| 1917 | printModeRejectMessage(scrp->scrnIndex, p, p->status); |
| 1918 | } |
| 1919 | } |
| 1920 | } |
| 1921 | if (linePitches != NULL) { |
| 1922 | for (i = 0; linePitches[i] != 0; i++) { |
| 1923 | if ((linePitches[i] >= virtX) && |
| 1924 | (linePitches[i] == |
| 1925 | scanLineWidth(virtX, virtY, linePitches[i], |
| 1926 | apertureSize, BankFormat, pitchInc))) { |
| 1927 | linePitch = linePitches[i]; |
| 1928 | break; |
| 1929 | } |
| 1930 | } |
| 1931 | } |
| 1932 | else { |
| 1933 | linePitch = scanLineWidth(virtX, virtY, minPitch, |
| 1934 | apertureSize, BankFormat, pitchInc); |
| 1935 | } |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | /* Update the ScrnInfoRec parameters */ |
| 1940 | |
| 1941 | scrp->virtualX = virtX; |
| 1942 | scrp->virtualY = virtY; |
| 1943 | scrp->displayWidth = linePitch; |
| 1944 | |
| 1945 | if (numModes <= 0) |
| 1946 | return 0; |
| 1947 | |
| 1948 | /* Make the mode list into a circular list by joining up the ends */ |
| 1949 | p = scrp->modes; |
| 1950 | while (p->next != NULL) |
| 1951 | p = p->next; |
| 1952 | /* p is now the last mode on the list */ |
| 1953 | p->next = scrp->modes; |
| 1954 | scrp->modes->prev = p; |
| 1955 | |
| 1956 | if (minHeight > 0 && virtY < minHeight) { |
| 1957 | xf86DrvMsg(scrp->scrnIndex, X_ERROR, |
| 1958 | "Virtual height (%d) is too small for the hardware " |
| 1959 | "(min %d)\n", virtY, minHeight); |
| 1960 | return -1; |
| 1961 | } |
| 1962 | |
| 1963 | return numModes; |
| 1964 | } |
| 1965 | |
| 1966 | /* |
| 1967 | * xf86DeleteMode |
| 1968 | * |
| 1969 | * This function removes a mode from a list of modes. |
| 1970 | * |
| 1971 | * There are different types of mode lists: |
| 1972 | * |
| 1973 | * - singly linked linear lists, ending in NULL |
| 1974 | * - doubly linked linear lists, starting and ending in NULL |
| 1975 | * - doubly linked circular lists |
| 1976 | * |
| 1977 | */ |
| 1978 | |
| 1979 | void |
| 1980 | xf86DeleteMode(DisplayModePtr * modeList, DisplayModePtr mode) |
| 1981 | { |
| 1982 | /* Catch the easy/insane cases */ |
| 1983 | if (modeList == NULL || *modeList == NULL || mode == NULL) |
| 1984 | return; |
| 1985 | |
| 1986 | /* If the mode is at the start of the list, move the start of the list */ |
| 1987 | if (*modeList == mode) |
| 1988 | *modeList = mode->next; |
| 1989 | |
| 1990 | /* If mode is the only one on the list, set the list to NULL */ |
| 1991 | if ((mode == mode->prev) && (mode == mode->next)) { |
| 1992 | *modeList = NULL; |
| 1993 | } |
| 1994 | else { |
| 1995 | if ((mode->prev != NULL) && (mode->prev->next == mode)) |
| 1996 | mode->prev->next = mode->next; |
| 1997 | if ((mode->next != NULL) && (mode->next->prev == mode)) |
| 1998 | mode->next->prev = mode->prev; |
| 1999 | } |
| 2000 | |
| 2001 | free(mode->name); |
| 2002 | free(mode); |
| 2003 | } |
| 2004 | |
| 2005 | /* |
| 2006 | * xf86PruneDriverModes |
| 2007 | * |
| 2008 | * Remove modes from the driver's mode list which have been marked as |
| 2009 | * invalid. |
| 2010 | */ |
| 2011 | |
| 2012 | void |
| 2013 | xf86PruneDriverModes(ScrnInfoPtr scrp) |
| 2014 | { |
| 2015 | DisplayModePtr first, p, n; |
| 2016 | |
| 2017 | p = scrp->modes; |
| 2018 | if (p == NULL) |
| 2019 | return; |
| 2020 | |
| 2021 | do { |
| 2022 | if (!(first = scrp->modes)) |
| 2023 | return; |
| 2024 | n = p->next; |
| 2025 | if (p->status != MODE_OK) { |
| 2026 | xf86DeleteMode(&(scrp->modes), p); |
| 2027 | } |
| 2028 | p = n; |
| 2029 | } while (p != NULL && p != first); |
| 2030 | |
| 2031 | /* modePool is no longer needed, turf it */ |
| 2032 | while (scrp->modePool) { |
| 2033 | /* |
| 2034 | * A modePool mode's prev field is used to hold a pointer to the |
| 2035 | * member of the scrp->modes list for which a match was considered. |
| 2036 | * Clear that pointer first, otherwise xf86DeleteMode might get |
| 2037 | * confused |
| 2038 | */ |
| 2039 | scrp->modePool->prev = NULL; |
| 2040 | xf86DeleteMode(&scrp->modePool, scrp->modePool); |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | /* |
| 2045 | * xf86SetCrtcForModes |
| 2046 | * |
| 2047 | * Goes through the screen's mode list, and initialises the Crtc |
| 2048 | * parameters for each mode. The initialisation includes adjustments |
| 2049 | * for interlaced and double scan modes. |
| 2050 | */ |
| 2051 | void |
| 2052 | xf86SetCrtcForModes(ScrnInfoPtr scrp, int adjustFlags) |
| 2053 | { |
| 2054 | DisplayModePtr p; |
| 2055 | |
| 2056 | /* |
| 2057 | * Store adjustFlags for use with the VidMode extension. There is an |
| 2058 | * implicit assumption here that SetCrtcForModes is called once. |
| 2059 | */ |
| 2060 | scrp->adjustFlags = adjustFlags; |
| 2061 | |
| 2062 | p = scrp->modes; |
| 2063 | if (p == NULL) |
| 2064 | return; |
| 2065 | |
| 2066 | do { |
| 2067 | xf86SetModeCrtc(p, adjustFlags); |
| 2068 | DebugF("%sMode %s: %d (%d) %d %d (%d) %d %d (%d) %d %d (%d) %d\n", |
| 2069 | (p->type & M_T_DEFAULT) ? "Default " : "", |
| 2070 | p->name, p->CrtcHDisplay, p->CrtcHBlankStart, |
| 2071 | p->CrtcHSyncStart, p->CrtcHSyncEnd, p->CrtcHBlankEnd, |
| 2072 | p->CrtcHTotal, p->CrtcVDisplay, p->CrtcVBlankStart, |
| 2073 | p->CrtcVSyncStart, p->CrtcVSyncEnd, p->CrtcVBlankEnd, |
| 2074 | p->CrtcVTotal); |
| 2075 | p = p->next; |
| 2076 | } while (p != NULL && p != scrp->modes); |
| 2077 | } |
| 2078 | |
| 2079 | void |
| 2080 | xf86PrintModes(ScrnInfoPtr scrp) |
| 2081 | { |
| 2082 | DisplayModePtr p; |
| 2083 | float hsync, refresh = 0; |
| 2084 | const char *desc, *desc2, *prefix, *uprefix; |
| 2085 | |
| 2086 | if (scrp == NULL) |
| 2087 | return; |
| 2088 | |
| 2089 | xf86DrvMsg(scrp->scrnIndex, scrp->virtualFrom, "Virtual size is %dx%d " |
| 2090 | "(pitch %d)\n", scrp->virtualX, scrp->virtualY, |
| 2091 | scrp->displayWidth); |
| 2092 | |
| 2093 | p = scrp->modes; |
| 2094 | if (p == NULL) |
| 2095 | return; |
| 2096 | |
| 2097 | do { |
| 2098 | desc = desc2 = ""; |
| 2099 | hsync = xf86ModeHSync(p); |
| 2100 | refresh = xf86ModeVRefresh(p); |
| 2101 | if (p->Flags & V_INTERLACE) { |
| 2102 | desc = " (I)"; |
| 2103 | } |
| 2104 | if (p->Flags & V_DBLSCAN) { |
| 2105 | desc = " (D)"; |
| 2106 | } |
| 2107 | if (p->VScan > 1) { |
| 2108 | desc2 = " (VScan)"; |
| 2109 | } |
| 2110 | if (p->type & M_T_BUILTIN) |
| 2111 | prefix = "Built-in mode"; |
| 2112 | else if (p->type & M_T_DEFAULT) |
| 2113 | prefix = "Default mode"; |
| 2114 | else if (p->type & M_T_DRIVER) |
| 2115 | prefix = "Driver mode"; |
| 2116 | else |
| 2117 | prefix = "Mode"; |
| 2118 | if (p->type & M_T_USERDEF) |
| 2119 | uprefix = "*"; |
| 2120 | else |
| 2121 | uprefix = " "; |
| 2122 | if (hsync == 0 || refresh == 0) { |
| 2123 | if (p->name) |
| 2124 | xf86DrvMsg(scrp->scrnIndex, X_CONFIG, |
| 2125 | "%s%s \"%s\"\n", uprefix, prefix, p->name); |
| 2126 | else |
| 2127 | xf86DrvMsg(scrp->scrnIndex, X_PROBED, |
| 2128 | "%s%s %dx%d (unnamed)\n", |
| 2129 | uprefix, prefix, p->HDisplay, p->VDisplay); |
| 2130 | } |
| 2131 | else if (p->Clock == p->SynthClock) { |
| 2132 | xf86DrvMsg(scrp->scrnIndex, X_CONFIG, |
| 2133 | "%s%s \"%s\": %.1f MHz, %.1f kHz, %.1f Hz%s%s\n", |
| 2134 | uprefix, prefix, p->name, p->Clock / 1000.0, |
| 2135 | hsync, refresh, desc, desc2); |
| 2136 | } |
| 2137 | else { |
| 2138 | xf86DrvMsg(scrp->scrnIndex, X_CONFIG, |
| 2139 | "%s%s \"%s\": %.1f MHz (scaled from %.1f MHz), " |
| 2140 | "%.1f kHz, %.1f Hz%s%s\n", |
| 2141 | uprefix, prefix, p->name, p->Clock / 1000.0, |
| 2142 | p->SynthClock / 1000.0, hsync, refresh, desc, desc2); |
| 2143 | } |
| 2144 | if (hsync != 0 && refresh != 0) |
| 2145 | xf86PrintModeline(scrp->scrnIndex, p); |
| 2146 | p = p->next; |
| 2147 | } while (p != NULL && p != scrp->modes); |
| 2148 | } |