Imported Debian version 2.5.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / aacsbr.c
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "aacsbr_tablegen.h"
34 #include "fft.h"
35 #include "aacps.h"
36 #include "sbrdsp.h"
37 #include "libavutil/internal.h"
38 #include "libavutil/libm.h"
39 #include "libavutil/avassert.h"
40
41 #include <stdint.h>
42 #include <float.h>
43 #include <math.h>
44
45 #define ENVELOPE_ADJUSTMENT_OFFSET 2
46 #define NOISE_FLOOR_OFFSET 6.0f
47
48 #if ARCH_MIPS
49 #include "mips/aacsbr_mips.h"
50 #endif /* ARCH_MIPS */
51
52 /**
53 * SBR VLC tables
54 */
55 enum {
56 T_HUFFMAN_ENV_1_5DB,
57 F_HUFFMAN_ENV_1_5DB,
58 T_HUFFMAN_ENV_BAL_1_5DB,
59 F_HUFFMAN_ENV_BAL_1_5DB,
60 T_HUFFMAN_ENV_3_0DB,
61 F_HUFFMAN_ENV_3_0DB,
62 T_HUFFMAN_ENV_BAL_3_0DB,
63 F_HUFFMAN_ENV_BAL_3_0DB,
64 T_HUFFMAN_NOISE_3_0DB,
65 T_HUFFMAN_NOISE_BAL_3_0DB,
66 };
67
68 /**
69 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
70 */
71 enum {
72 FIXFIX,
73 FIXVAR,
74 VARFIX,
75 VARVAR,
76 };
77
78 enum {
79 EXTENSION_ID_PS = 2,
80 };
81
82 static VLC vlc_sbr[10];
83 static const int8_t vlc_sbr_lav[10] =
84 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
85
86 #define SBR_INIT_VLC_STATIC(num, size) \
87 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
88 sbr_tmp[num].sbr_bits , 1, 1, \
89 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
90 size)
91
92 #define SBR_VLC_ROW(name) \
93 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
94
95 static void aacsbr_func_ptr_init(AACSBRContext *c);
96
97 av_cold void ff_aac_sbr_init(void)
98 {
99 static const struct {
100 const void *sbr_codes, *sbr_bits;
101 const unsigned int table_size, elem_size;
102 } sbr_tmp[] = {
103 SBR_VLC_ROW(t_huffman_env_1_5dB),
104 SBR_VLC_ROW(f_huffman_env_1_5dB),
105 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
106 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
107 SBR_VLC_ROW(t_huffman_env_3_0dB),
108 SBR_VLC_ROW(f_huffman_env_3_0dB),
109 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
110 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
111 SBR_VLC_ROW(t_huffman_noise_3_0dB),
112 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
113 };
114
115 // SBR VLC table initialization
116 SBR_INIT_VLC_STATIC(0, 1098);
117 SBR_INIT_VLC_STATIC(1, 1092);
118 SBR_INIT_VLC_STATIC(2, 768);
119 SBR_INIT_VLC_STATIC(3, 1026);
120 SBR_INIT_VLC_STATIC(4, 1058);
121 SBR_INIT_VLC_STATIC(5, 1052);
122 SBR_INIT_VLC_STATIC(6, 544);
123 SBR_INIT_VLC_STATIC(7, 544);
124 SBR_INIT_VLC_STATIC(8, 592);
125 SBR_INIT_VLC_STATIC(9, 512);
126
127 aacsbr_tableinit();
128
129 ff_ps_init();
130 }
131
132 /** Places SBR in pure upsampling mode. */
133 static void sbr_turnoff(SpectralBandReplication *sbr) {
134 sbr->start = 0;
135 // Init defults used in pure upsampling mode
136 sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
137 sbr->m[1] = 0;
138 // Reset values for first SBR header
139 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
140 memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
141 }
142
143 av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
144 {
145 if(sbr->mdct.mdct_bits)
146 return;
147 sbr->kx[0] = sbr->kx[1];
148 sbr_turnoff(sbr);
149 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
150 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
151 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
152 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
153 * and scale back down at synthesis. */
154 ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
155 ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
156 ff_ps_ctx_init(&sbr->ps);
157 ff_sbrdsp_init(&sbr->dsp);
158 aacsbr_func_ptr_init(&sbr->c);
159 }
160
161 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
162 {
163 ff_mdct_end(&sbr->mdct);
164 ff_mdct_end(&sbr->mdct_ana);
165 }
166
167 static int qsort_comparison_function_int16(const void *a, const void *b)
168 {
169 return *(const int16_t *)a - *(const int16_t *)b;
170 }
171
172 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
173 {
174 int i;
175 for (i = 0; i <= last_el; i++)
176 if (table[i] == needle)
177 return 1;
178 return 0;
179 }
180
181 /// Limiter Frequency Band Table (14496-3 sp04 p198)
182 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
183 {
184 int k;
185 if (sbr->bs_limiter_bands > 0) {
186 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
187 1.18509277094158210129f, //2^(0.49/2)
188 1.11987160404675912501f }; //2^(0.49/3)
189 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
190 int16_t patch_borders[7];
191 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
192
193 patch_borders[0] = sbr->kx[1];
194 for (k = 1; k <= sbr->num_patches; k++)
195 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
196
197 memcpy(sbr->f_tablelim, sbr->f_tablelow,
198 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
199 if (sbr->num_patches > 1)
200 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
201 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
202
203 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
204 sizeof(sbr->f_tablelim[0]),
205 qsort_comparison_function_int16);
206
207 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
208 while (out < sbr->f_tablelim + sbr->n_lim) {
209 if (*in >= *out * lim_bands_per_octave_warped) {
210 *++out = *in++;
211 } else if (*in == *out ||
212 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
213 in++;
214 sbr->n_lim--;
215 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
216 *out = *in++;
217 sbr->n_lim--;
218 } else {
219 *++out = *in++;
220 }
221 }
222 } else {
223 sbr->f_tablelim[0] = sbr->f_tablelow[0];
224 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
225 sbr->n_lim = 1;
226 }
227 }
228
229 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
230 {
231 unsigned int cnt = get_bits_count(gb);
232 uint8_t bs_header_extra_1;
233 uint8_t bs_header_extra_2;
234 int old_bs_limiter_bands = sbr->bs_limiter_bands;
235 SpectrumParameters old_spectrum_params;
236
237 sbr->start = 1;
238
239 // Save last spectrum parameters variables to compare to new ones
240 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
241
242 sbr->bs_amp_res_header = get_bits1(gb);
243 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
244 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
245 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
246 skip_bits(gb, 2); // bs_reserved
247
248 bs_header_extra_1 = get_bits1(gb);
249 bs_header_extra_2 = get_bits1(gb);
250
251 if (bs_header_extra_1) {
252 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
253 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
254 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
255 } else {
256 sbr->spectrum_params.bs_freq_scale = 2;
257 sbr->spectrum_params.bs_alter_scale = 1;
258 sbr->spectrum_params.bs_noise_bands = 2;
259 }
260
261 // Check if spectrum parameters changed
262 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
263 sbr->reset = 1;
264
265 if (bs_header_extra_2) {
266 sbr->bs_limiter_bands = get_bits(gb, 2);
267 sbr->bs_limiter_gains = get_bits(gb, 2);
268 sbr->bs_interpol_freq = get_bits1(gb);
269 sbr->bs_smoothing_mode = get_bits1(gb);
270 } else {
271 sbr->bs_limiter_bands = 2;
272 sbr->bs_limiter_gains = 2;
273 sbr->bs_interpol_freq = 1;
274 sbr->bs_smoothing_mode = 1;
275 }
276
277 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
278 sbr_make_f_tablelim(sbr);
279
280 return get_bits_count(gb) - cnt;
281 }
282
283 static int array_min_int16(const int16_t *array, int nel)
284 {
285 int i, min = array[0];
286 for (i = 1; i < nel; i++)
287 min = FFMIN(array[i], min);
288 return min;
289 }
290
291 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
292 {
293 int k, previous, present;
294 float base, prod;
295
296 base = powf((float)stop / start, 1.0f / num_bands);
297 prod = start;
298 previous = start;
299
300 for (k = 0; k < num_bands-1; k++) {
301 prod *= base;
302 present = lrintf(prod);
303 bands[k] = present - previous;
304 previous = present;
305 }
306 bands[num_bands-1] = stop - previous;
307 }
308
309 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
310 {
311 // Requirements (14496-3 sp04 p205)
312 if (n_master <= 0) {
313 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
314 return -1;
315 }
316 if (bs_xover_band >= n_master) {
317 av_log(avctx, AV_LOG_ERROR,
318 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
319 bs_xover_band);
320 return -1;
321 }
322 return 0;
323 }
324
325 /// Master Frequency Band Table (14496-3 sp04 p194)
326 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
327 SpectrumParameters *spectrum)
328 {
329 unsigned int temp, max_qmf_subbands = 0;
330 unsigned int start_min, stop_min;
331 int k;
332 const int8_t *sbr_offset_ptr;
333 int16_t stop_dk[13];
334
335 if (sbr->sample_rate < 32000) {
336 temp = 3000;
337 } else if (sbr->sample_rate < 64000) {
338 temp = 4000;
339 } else
340 temp = 5000;
341
342 switch (sbr->sample_rate) {
343 case 16000:
344 sbr_offset_ptr = sbr_offset[0];
345 break;
346 case 22050:
347 sbr_offset_ptr = sbr_offset[1];
348 break;
349 case 24000:
350 sbr_offset_ptr = sbr_offset[2];
351 break;
352 case 32000:
353 sbr_offset_ptr = sbr_offset[3];
354 break;
355 case 44100: case 48000: case 64000:
356 sbr_offset_ptr = sbr_offset[4];
357 break;
358 case 88200: case 96000: case 128000: case 176400: case 192000:
359 sbr_offset_ptr = sbr_offset[5];
360 break;
361 default:
362 av_log(ac->avctx, AV_LOG_ERROR,
363 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
364 return -1;
365 }
366
367 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
368 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
369
370 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
371
372 if (spectrum->bs_stop_freq < 14) {
373 sbr->k[2] = stop_min;
374 make_bands(stop_dk, stop_min, 64, 13);
375 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
376 for (k = 0; k < spectrum->bs_stop_freq; k++)
377 sbr->k[2] += stop_dk[k];
378 } else if (spectrum->bs_stop_freq == 14) {
379 sbr->k[2] = 2*sbr->k[0];
380 } else if (spectrum->bs_stop_freq == 15) {
381 sbr->k[2] = 3*sbr->k[0];
382 } else {
383 av_log(ac->avctx, AV_LOG_ERROR,
384 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
385 return -1;
386 }
387 sbr->k[2] = FFMIN(64, sbr->k[2]);
388
389 // Requirements (14496-3 sp04 p205)
390 if (sbr->sample_rate <= 32000) {
391 max_qmf_subbands = 48;
392 } else if (sbr->sample_rate == 44100) {
393 max_qmf_subbands = 35;
394 } else if (sbr->sample_rate >= 48000)
395 max_qmf_subbands = 32;
396 else
397 av_assert0(0);
398
399 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
400 av_log(ac->avctx, AV_LOG_ERROR,
401 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
402 return -1;
403 }
404
405 if (!spectrum->bs_freq_scale) {
406 int dk, k2diff;
407
408 dk = spectrum->bs_alter_scale + 1;
409 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
410 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
411 return -1;
412
413 for (k = 1; k <= sbr->n_master; k++)
414 sbr->f_master[k] = dk;
415
416 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
417 if (k2diff < 0) {
418 sbr->f_master[1]--;
419 sbr->f_master[2]-= (k2diff < -1);
420 } else if (k2diff) {
421 sbr->f_master[sbr->n_master]++;
422 }
423
424 sbr->f_master[0] = sbr->k[0];
425 for (k = 1; k <= sbr->n_master; k++)
426 sbr->f_master[k] += sbr->f_master[k - 1];
427
428 } else {
429 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
430 int two_regions, num_bands_0;
431 int vdk0_max, vdk1_min;
432 int16_t vk0[49];
433
434 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
435 two_regions = 1;
436 sbr->k[1] = 2 * sbr->k[0];
437 } else {
438 two_regions = 0;
439 sbr->k[1] = sbr->k[2];
440 }
441
442 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
443
444 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
445 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
446 return -1;
447 }
448
449 vk0[0] = 0;
450
451 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
452
453 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
454 vdk0_max = vk0[num_bands_0];
455
456 vk0[0] = sbr->k[0];
457 for (k = 1; k <= num_bands_0; k++) {
458 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
459 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
460 return -1;
461 }
462 vk0[k] += vk0[k-1];
463 }
464
465 if (two_regions) {
466 int16_t vk1[49];
467 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
468 : 1.0f; // bs_alter_scale = {0,1}
469 int num_bands_1 = lrintf(half_bands * invwarp *
470 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
471
472 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
473
474 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
475
476 if (vdk1_min < vdk0_max) {
477 int change;
478 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
479 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
480 vk1[1] += change;
481 vk1[num_bands_1] -= change;
482 }
483
484 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
485
486 vk1[0] = sbr->k[1];
487 for (k = 1; k <= num_bands_1; k++) {
488 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
489 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
490 return -1;
491 }
492 vk1[k] += vk1[k-1];
493 }
494
495 sbr->n_master = num_bands_0 + num_bands_1;
496 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
497 return -1;
498 memcpy(&sbr->f_master[0], vk0,
499 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
500 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
501 num_bands_1 * sizeof(sbr->f_master[0]));
502
503 } else {
504 sbr->n_master = num_bands_0;
505 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
506 return -1;
507 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
508 }
509 }
510
511 return 0;
512 }
513
514 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
515 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
516 {
517 int i, k, sb = 0;
518 int msb = sbr->k[0];
519 int usb = sbr->kx[1];
520 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
521
522 sbr->num_patches = 0;
523
524 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
525 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
526 } else
527 k = sbr->n_master;
528
529 do {
530 int odd = 0;
531 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
532 sb = sbr->f_master[i];
533 odd = (sb + sbr->k[0]) & 1;
534 }
535
536 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
537 // After this check the final number of patches can still be six which is
538 // illegal however the Coding Technologies decoder check stream has a final
539 // count of 6 patches
540 if (sbr->num_patches > 5) {
541 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
542 return -1;
543 }
544
545 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
546 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
547
548 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
549 usb = sb;
550 msb = sb;
551 sbr->num_patches++;
552 } else
553 msb = sbr->kx[1];
554
555 if (sbr->f_master[k] - sb < 3)
556 k = sbr->n_master;
557 } while (sb != sbr->kx[1] + sbr->m[1]);
558
559 if (sbr->num_patches > 1 &&
560 sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
561 sbr->num_patches--;
562
563 return 0;
564 }
565
566 /// Derived Frequency Band Tables (14496-3 sp04 p197)
567 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
568 {
569 int k, temp;
570
571 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
572 sbr->n[0] = (sbr->n[1] + 1) >> 1;
573
574 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
575 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
576 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
577 sbr->kx[1] = sbr->f_tablehigh[0];
578
579 // Requirements (14496-3 sp04 p205)
580 if (sbr->kx[1] + sbr->m[1] > 64) {
581 av_log(ac->avctx, AV_LOG_ERROR,
582 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
583 return -1;
584 }
585 if (sbr->kx[1] > 32) {
586 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
587 return -1;
588 }
589
590 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
591 temp = sbr->n[1] & 1;
592 for (k = 1; k <= sbr->n[0]; k++)
593 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
594
595 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
596 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
597 if (sbr->n_q > 5) {
598 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
599 return -1;
600 }
601
602 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
603 temp = 0;
604 for (k = 1; k <= sbr->n_q; k++) {
605 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
606 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
607 }
608
609 if (sbr_hf_calc_npatches(ac, sbr) < 0)
610 return -1;
611
612 sbr_make_f_tablelim(sbr);
613
614 sbr->data[0].f_indexnoise = 0;
615 sbr->data[1].f_indexnoise = 0;
616
617 return 0;
618 }
619
620 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
621 int elements)
622 {
623 int i;
624 for (i = 0; i < elements; i++) {
625 vec[i] = get_bits1(gb);
626 }
627 }
628
629 /** ceil(log2(index+1)) */
630 static const int8_t ceil_log2[] = {
631 0, 1, 2, 2, 3, 3,
632 };
633
634 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
635 GetBitContext *gb, SBRData *ch_data)
636 {
637 int i;
638 unsigned bs_pointer = 0;
639 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
640 int abs_bord_trail = 16;
641 int num_rel_lead, num_rel_trail;
642 unsigned bs_num_env_old = ch_data->bs_num_env;
643
644 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
645 ch_data->bs_amp_res = sbr->bs_amp_res_header;
646 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
647
648 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
649 case FIXFIX:
650 ch_data->bs_num_env = 1 << get_bits(gb, 2);
651 num_rel_lead = ch_data->bs_num_env - 1;
652 if (ch_data->bs_num_env == 1)
653 ch_data->bs_amp_res = 0;
654
655 if (ch_data->bs_num_env > 4) {
656 av_log(ac->avctx, AV_LOG_ERROR,
657 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
658 ch_data->bs_num_env);
659 return -1;
660 }
661
662 ch_data->t_env[0] = 0;
663 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
664
665 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
666 ch_data->bs_num_env;
667 for (i = 0; i < num_rel_lead; i++)
668 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
669
670 ch_data->bs_freq_res[1] = get_bits1(gb);
671 for (i = 1; i < ch_data->bs_num_env; i++)
672 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
673 break;
674 case FIXVAR:
675 abs_bord_trail += get_bits(gb, 2);
676 num_rel_trail = get_bits(gb, 2);
677 ch_data->bs_num_env = num_rel_trail + 1;
678 ch_data->t_env[0] = 0;
679 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
680
681 for (i = 0; i < num_rel_trail; i++)
682 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
683 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
684
685 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
686
687 for (i = 0; i < ch_data->bs_num_env; i++)
688 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
689 break;
690 case VARFIX:
691 ch_data->t_env[0] = get_bits(gb, 2);
692 num_rel_lead = get_bits(gb, 2);
693 ch_data->bs_num_env = num_rel_lead + 1;
694 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
695
696 for (i = 0; i < num_rel_lead; i++)
697 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
698
699 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
700
701 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
702 break;
703 case VARVAR:
704 ch_data->t_env[0] = get_bits(gb, 2);
705 abs_bord_trail += get_bits(gb, 2);
706 num_rel_lead = get_bits(gb, 2);
707 num_rel_trail = get_bits(gb, 2);
708 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
709
710 if (ch_data->bs_num_env > 5) {
711 av_log(ac->avctx, AV_LOG_ERROR,
712 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
713 ch_data->bs_num_env);
714 return -1;
715 }
716
717 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
718
719 for (i = 0; i < num_rel_lead; i++)
720 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
721 for (i = 0; i < num_rel_trail; i++)
722 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
723 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
724
725 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
726
727 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
728 break;
729 }
730
731 if (bs_pointer > ch_data->bs_num_env + 1) {
732 av_log(ac->avctx, AV_LOG_ERROR,
733 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
734 bs_pointer);
735 return -1;
736 }
737
738 for (i = 1; i <= ch_data->bs_num_env; i++) {
739 if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
740 av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
741 return -1;
742 }
743 }
744
745 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
746
747 ch_data->t_q[0] = ch_data->t_env[0];
748 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
749 if (ch_data->bs_num_noise > 1) {
750 unsigned int idx;
751 if (ch_data->bs_frame_class == FIXFIX) {
752 idx = ch_data->bs_num_env >> 1;
753 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
754 idx = ch_data->bs_num_env - FFMAX((int)bs_pointer - 1, 1);
755 } else { // VARFIX
756 if (!bs_pointer)
757 idx = 1;
758 else if (bs_pointer == 1)
759 idx = ch_data->bs_num_env - 1;
760 else // bs_pointer > 1
761 idx = bs_pointer - 1;
762 }
763 ch_data->t_q[1] = ch_data->t_env[idx];
764 }
765
766 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
767 ch_data->e_a[1] = -1;
768 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
769 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
770 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
771 ch_data->e_a[1] = bs_pointer - 1;
772
773 return 0;
774 }
775
776 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
777 //These variables are saved from the previous frame rather than copied
778 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
779 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
780 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
781
782 //These variables are read from the bitstream and therefore copied
783 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
784 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
785 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
786 dst->bs_num_env = src->bs_num_env;
787 dst->bs_amp_res = src->bs_amp_res;
788 dst->bs_num_noise = src->bs_num_noise;
789 dst->bs_frame_class = src->bs_frame_class;
790 dst->e_a[1] = src->e_a[1];
791 }
792
793 /// Read how the envelope and noise floor data is delta coded
794 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
795 SBRData *ch_data)
796 {
797 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
798 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
799 }
800
801 /// Read inverse filtering data
802 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
803 SBRData *ch_data)
804 {
805 int i;
806
807 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
808 for (i = 0; i < sbr->n_q; i++)
809 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
810 }
811
812 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
813 SBRData *ch_data, int ch)
814 {
815 int bits;
816 int i, j, k;
817 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
818 int t_lav, f_lav;
819 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
820 const int odd = sbr->n[1] & 1;
821
822 if (sbr->bs_coupling && ch) {
823 if (ch_data->bs_amp_res) {
824 bits = 5;
825 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
826 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
827 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
828 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
829 } else {
830 bits = 6;
831 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
832 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
833 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
834 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
835 }
836 } else {
837 if (ch_data->bs_amp_res) {
838 bits = 6;
839 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
840 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
841 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
842 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
843 } else {
844 bits = 7;
845 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
846 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
847 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
848 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
849 }
850 }
851
852 for (i = 0; i < ch_data->bs_num_env; i++) {
853 if (ch_data->bs_df_env[i]) {
854 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
855 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
856 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
857 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
858 } else if (ch_data->bs_freq_res[i + 1]) {
859 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
860 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
861 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
862 }
863 } else {
864 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
865 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
866 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
867 }
868 }
869 } else {
870 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
871 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
872 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
873 }
874 }
875
876 //assign 0th elements of env_facs from last elements
877 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
878 sizeof(ch_data->env_facs[0]));
879 }
880
881 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
882 SBRData *ch_data, int ch)
883 {
884 int i, j;
885 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
886 int t_lav, f_lav;
887 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
888
889 if (sbr->bs_coupling && ch) {
890 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
891 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
892 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
893 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
894 } else {
895 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
896 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
897 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
898 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
899 }
900
901 for (i = 0; i < ch_data->bs_num_noise; i++) {
902 if (ch_data->bs_df_noise[i]) {
903 for (j = 0; j < sbr->n_q; j++)
904 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
905 } else {
906 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
907 for (j = 1; j < sbr->n_q; j++)
908 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
909 }
910 }
911
912 //assign 0th elements of noise_facs from last elements
913 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
914 sizeof(ch_data->noise_facs[0]));
915 }
916
917 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
918 GetBitContext *gb,
919 int bs_extension_id, int *num_bits_left)
920 {
921 switch (bs_extension_id) {
922 case EXTENSION_ID_PS:
923 if (!ac->oc[1].m4ac.ps) {
924 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
925 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
926 *num_bits_left = 0;
927 } else {
928 #if 1
929 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
930 ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
931 #else
932 avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
933 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
934 *num_bits_left = 0;
935 #endif
936 }
937 break;
938 default:
939 // some files contain 0-padding
940 if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
941 avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
942 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
943 *num_bits_left = 0;
944 break;
945 }
946 }
947
948 static int read_sbr_single_channel_element(AACContext *ac,
949 SpectralBandReplication *sbr,
950 GetBitContext *gb)
951 {
952 if (get_bits1(gb)) // bs_data_extra
953 skip_bits(gb, 4); // bs_reserved
954
955 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
956 return -1;
957 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
958 read_sbr_invf(sbr, gb, &sbr->data[0]);
959 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
960 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
961
962 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
963 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
964
965 return 0;
966 }
967
968 static int read_sbr_channel_pair_element(AACContext *ac,
969 SpectralBandReplication *sbr,
970 GetBitContext *gb)
971 {
972 if (get_bits1(gb)) // bs_data_extra
973 skip_bits(gb, 8); // bs_reserved
974
975 if ((sbr->bs_coupling = get_bits1(gb))) {
976 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
977 return -1;
978 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
979 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
980 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
981 read_sbr_invf(sbr, gb, &sbr->data[0]);
982 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
983 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
984 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
985 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
986 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
987 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
988 } else {
989 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
990 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
991 return -1;
992 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
993 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
994 read_sbr_invf(sbr, gb, &sbr->data[0]);
995 read_sbr_invf(sbr, gb, &sbr->data[1]);
996 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
997 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
998 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
999 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1000 }
1001
1002 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1003 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1004 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1005 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1006
1007 return 0;
1008 }
1009
1010 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1011 GetBitContext *gb, int id_aac)
1012 {
1013 unsigned int cnt = get_bits_count(gb);
1014
1015 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1016 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1017 sbr_turnoff(sbr);
1018 return get_bits_count(gb) - cnt;
1019 }
1020 } else if (id_aac == TYPE_CPE) {
1021 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1022 sbr_turnoff(sbr);
1023 return get_bits_count(gb) - cnt;
1024 }
1025 } else {
1026 av_log(ac->avctx, AV_LOG_ERROR,
1027 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1028 sbr_turnoff(sbr);
1029 return get_bits_count(gb) - cnt;
1030 }
1031 if (get_bits1(gb)) { // bs_extended_data
1032 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1033 if (num_bits_left == 15)
1034 num_bits_left += get_bits(gb, 8); // bs_esc_count
1035
1036 num_bits_left <<= 3;
1037 while (num_bits_left > 7) {
1038 num_bits_left -= 2;
1039 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1040 }
1041 if (num_bits_left < 0) {
1042 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1043 }
1044 if (num_bits_left > 0)
1045 skip_bits(gb, num_bits_left);
1046 }
1047
1048 return get_bits_count(gb) - cnt;
1049 }
1050
1051 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1052 {
1053 int err;
1054 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1055 if (err >= 0)
1056 err = sbr_make_f_derived(ac, sbr);
1057 if (err < 0) {
1058 av_log(ac->avctx, AV_LOG_ERROR,
1059 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1060 sbr_turnoff(sbr);
1061 }
1062 }
1063
1064 /**
1065 * Decode Spectral Band Replication extension data; reference: table 4.55.
1066 *
1067 * @param crc flag indicating the presence of CRC checksum
1068 * @param cnt length of TYPE_FIL syntactic element in bytes
1069 *
1070 * @return Returns number of bytes consumed from the TYPE_FIL element.
1071 */
1072 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1073 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1074 {
1075 unsigned int num_sbr_bits = 0, num_align_bits;
1076 unsigned bytes_read;
1077 GetBitContext gbc = *gb_host, *gb = &gbc;
1078 skip_bits_long(gb_host, cnt*8 - 4);
1079
1080 sbr->reset = 0;
1081
1082 if (!sbr->sample_rate)
1083 sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1084 if (!ac->oc[1].m4ac.ext_sample_rate)
1085 ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1086
1087 if (crc) {
1088 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1089 num_sbr_bits += 10;
1090 }
1091
1092 //Save some state from the previous frame.
1093 sbr->kx[0] = sbr->kx[1];
1094 sbr->m[0] = sbr->m[1];
1095 sbr->kx_and_m_pushed = 1;
1096
1097 num_sbr_bits++;
1098 if (get_bits1(gb)) // bs_header_flag
1099 num_sbr_bits += read_sbr_header(sbr, gb);
1100
1101 if (sbr->reset)
1102 sbr_reset(ac, sbr);
1103
1104 if (sbr->start)
1105 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1106
1107 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1108 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1109
1110 if (bytes_read > cnt) {
1111 av_log(ac->avctx, AV_LOG_ERROR,
1112 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1113 }
1114 return cnt;
1115 }
1116
1117 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1118 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1119 {
1120 int k, e;
1121 int ch;
1122
1123 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1124 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1125 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1126 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1127 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1128 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1129 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1130 float fac;
1131 if (temp1 > 1E20) {
1132 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1133 temp1 = 1;
1134 }
1135 fac = temp1 / (1.0f + temp2);
1136 sbr->data[0].env_facs[e][k] = fac;
1137 sbr->data[1].env_facs[e][k] = fac * temp2;
1138 }
1139 }
1140 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1141 for (k = 0; k < sbr->n_q; k++) {
1142 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1143 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1144 float fac;
1145 if (temp1 > 1E20) {
1146 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1147 temp1 = 1;
1148 }
1149 fac = temp1 / (1.0f + temp2);
1150 sbr->data[0].noise_facs[e][k] = fac;
1151 sbr->data[1].noise_facs[e][k] = fac * temp2;
1152 }
1153 }
1154 } else { // SCE or one non-coupled CPE
1155 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1156 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1157 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1158 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
1159 sbr->data[ch].env_facs[e][k] =
1160 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1161 if (sbr->data[ch].env_facs[e][k] > 1E20) {
1162 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1163 sbr->data[ch].env_facs[e][k] = 1;
1164 }
1165 }
1166
1167 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1168 for (k = 0; k < sbr->n_q; k++)
1169 sbr->data[ch].noise_facs[e][k] =
1170 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1171 }
1172 }
1173 }
1174
1175 /**
1176 * Analysis QMF Bank (14496-3 sp04 p206)
1177 *
1178 * @param x pointer to the beginning of the first sample window
1179 * @param W array of complex-valued samples split into subbands
1180 */
1181 #ifndef sbr_qmf_analysis
1182 static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1183 SBRDSPContext *sbrdsp, const float *in, float *x,
1184 float z[320], float W[2][32][32][2], int buf_idx)
1185 {
1186 int i;
1187 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1188 memcpy(x+288, in, 1024*sizeof(x[0]));
1189 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1190 // are not supported
1191 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1192 sbrdsp->sum64x5(z);
1193 sbrdsp->qmf_pre_shuffle(z);
1194 mdct->imdct_half(mdct, z, z+64);
1195 sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1196 x += 32;
1197 }
1198 }
1199 #endif
1200
1201 /**
1202 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1203 * (14496-3 sp04 p206)
1204 */
1205 #ifndef sbr_qmf_synthesis
1206 static void sbr_qmf_synthesis(FFTContext *mdct,
1207 SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1208 float *out, float X[2][38][64],
1209 float mdct_buf[2][64],
1210 float *v0, int *v_off, const unsigned int div)
1211 {
1212 int i, n;
1213 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1214 const int step = 128 >> div;
1215 float *v;
1216 for (i = 0; i < 32; i++) {
1217 if (*v_off < step) {
1218 int saved_samples = (1280 - 128) >> div;
1219 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1220 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1221 } else {
1222 *v_off -= step;
1223 }
1224 v = v0 + *v_off;
1225 if (div) {
1226 for (n = 0; n < 32; n++) {
1227 X[0][i][ n] = -X[0][i][n];
1228 X[0][i][32+n] = X[1][i][31-n];
1229 }
1230 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1231 sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1232 } else {
1233 sbrdsp->neg_odd_64(X[1][i]);
1234 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1235 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1236 sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1237 }
1238 dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1239 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1240 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1241 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1242 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1243 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1244 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1245 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1246 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1247 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1248 out += 64 >> div;
1249 }
1250 }
1251 #endif
1252
1253 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1254 * (14496-3 sp04 p214)
1255 * Warning: This routine does not seem numerically stable.
1256 */
1257 static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
1258 float (*alpha0)[2], float (*alpha1)[2],
1259 const float X_low[32][40][2], int k0)
1260 {
1261 int k;
1262 for (k = 0; k < k0; k++) {
1263 LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1264 float dk;
1265
1266 dsp->autocorrelate(X_low[k], phi);
1267
1268 dk = phi[2][1][0] * phi[1][0][0] -
1269 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1270
1271 if (!dk) {
1272 alpha1[k][0] = 0;
1273 alpha1[k][1] = 0;
1274 } else {
1275 float temp_real, temp_im;
1276 temp_real = phi[0][0][0] * phi[1][1][0] -
1277 phi[0][0][1] * phi[1][1][1] -
1278 phi[0][1][0] * phi[1][0][0];
1279 temp_im = phi[0][0][0] * phi[1][1][1] +
1280 phi[0][0][1] * phi[1][1][0] -
1281 phi[0][1][1] * phi[1][0][0];
1282
1283 alpha1[k][0] = temp_real / dk;
1284 alpha1[k][1] = temp_im / dk;
1285 }
1286
1287 if (!phi[1][0][0]) {
1288 alpha0[k][0] = 0;
1289 alpha0[k][1] = 0;
1290 } else {
1291 float temp_real, temp_im;
1292 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1293 alpha1[k][1] * phi[1][1][1];
1294 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1295 alpha1[k][0] * phi[1][1][1];
1296
1297 alpha0[k][0] = -temp_real / phi[1][0][0];
1298 alpha0[k][1] = -temp_im / phi[1][0][0];
1299 }
1300
1301 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1302 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1303 alpha1[k][0] = 0;
1304 alpha1[k][1] = 0;
1305 alpha0[k][0] = 0;
1306 alpha0[k][1] = 0;
1307 }
1308 }
1309 }
1310
1311 /// Chirp Factors (14496-3 sp04 p214)
1312 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1313 {
1314 int i;
1315 float new_bw;
1316 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1317
1318 for (i = 0; i < sbr->n_q; i++) {
1319 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1320 new_bw = 0.6f;
1321 } else
1322 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1323
1324 if (new_bw < ch_data->bw_array[i]) {
1325 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1326 } else
1327 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1328 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1329 }
1330 }
1331
1332 /// Generate the subband filtered lowband
1333 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1334 float X_low[32][40][2], const float W[2][32][32][2],
1335 int buf_idx)
1336 {
1337 int i, k;
1338 const int t_HFGen = 8;
1339 const int i_f = 32;
1340 memset(X_low, 0, 32*sizeof(*X_low));
1341 for (k = 0; k < sbr->kx[1]; k++) {
1342 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1343 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1344 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1345 }
1346 }
1347 buf_idx = 1-buf_idx;
1348 for (k = 0; k < sbr->kx[0]; k++) {
1349 for (i = 0; i < t_HFGen; i++) {
1350 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1351 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1352 }
1353 }
1354 return 0;
1355 }
1356
1357 /// High Frequency Generator (14496-3 sp04 p215)
1358 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1359 float X_high[64][40][2], const float X_low[32][40][2],
1360 const float (*alpha0)[2], const float (*alpha1)[2],
1361 const float bw_array[5], const uint8_t *t_env,
1362 int bs_num_env)
1363 {
1364 int j, x;
1365 int g = 0;
1366 int k = sbr->kx[1];
1367 for (j = 0; j < sbr->num_patches; j++) {
1368 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1369 const int p = sbr->patch_start_subband[j] + x;
1370 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1371 g++;
1372 g--;
1373
1374 if (g < 0) {
1375 av_log(ac->avctx, AV_LOG_ERROR,
1376 "ERROR : no subband found for frequency %d\n", k);
1377 return -1;
1378 }
1379
1380 sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1381 X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1382 alpha0[p], alpha1[p], bw_array[g],
1383 2 * t_env[0], 2 * t_env[bs_num_env]);
1384 }
1385 }
1386 if (k < sbr->m[1] + sbr->kx[1])
1387 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1388
1389 return 0;
1390 }
1391
1392 /// Generate the subband filtered lowband
1393 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1394 const float Y0[38][64][2], const float Y1[38][64][2],
1395 const float X_low[32][40][2], int ch)
1396 {
1397 int k, i;
1398 const int i_f = 32;
1399 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1400 memset(X, 0, 2*sizeof(*X));
1401 for (k = 0; k < sbr->kx[0]; k++) {
1402 for (i = 0; i < i_Temp; i++) {
1403 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1404 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1405 }
1406 }
1407 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1408 for (i = 0; i < i_Temp; i++) {
1409 X[0][i][k] = Y0[i + i_f][k][0];
1410 X[1][i][k] = Y0[i + i_f][k][1];
1411 }
1412 }
1413
1414 for (k = 0; k < sbr->kx[1]; k++) {
1415 for (i = i_Temp; i < 38; i++) {
1416 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1417 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1418 }
1419 }
1420 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1421 for (i = i_Temp; i < i_f; i++) {
1422 X[0][i][k] = Y1[i][k][0];
1423 X[1][i][k] = Y1[i][k][1];
1424 }
1425 }
1426 return 0;
1427 }
1428
1429 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1430 * (14496-3 sp04 p217)
1431 */
1432 static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1433 SBRData *ch_data, int e_a[2])
1434 {
1435 int e, i, m;
1436
1437 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1438 for (e = 0; e < ch_data->bs_num_env; e++) {
1439 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1440 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1441 int k;
1442
1443 if (sbr->kx[1] != table[0]) {
1444 av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1445 "Derived frequency tables were not regenerated.\n");
1446 sbr_turnoff(sbr);
1447 return AVERROR_BUG;
1448 }
1449 for (i = 0; i < ilim; i++)
1450 for (m = table[i]; m < table[i + 1]; m++)
1451 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1452
1453 // ch_data->bs_num_noise > 1 => 2 noise floors
1454 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1455 for (i = 0; i < sbr->n_q; i++)
1456 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1457 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1458
1459 for (i = 0; i < sbr->n[1]; i++) {
1460 if (ch_data->bs_add_harmonic_flag) {
1461 const unsigned int m_midpoint =
1462 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1463
1464 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1465 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1466 }
1467 }
1468
1469 for (i = 0; i < ilim; i++) {
1470 int additional_sinusoid_present = 0;
1471 for (m = table[i]; m < table[i + 1]; m++) {
1472 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1473 additional_sinusoid_present = 1;
1474 break;
1475 }
1476 }
1477 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1478 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1479 }
1480 }
1481
1482 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1483 return 0;
1484 }
1485
1486 /// Estimation of current envelope (14496-3 sp04 p218)
1487 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1488 SpectralBandReplication *sbr, SBRData *ch_data)
1489 {
1490 int e, m;
1491 int kx1 = sbr->kx[1];
1492
1493 if (sbr->bs_interpol_freq) {
1494 for (e = 0; e < ch_data->bs_num_env; e++) {
1495 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1496 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1497 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1498
1499 for (m = 0; m < sbr->m[1]; m++) {
1500 float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1501 e_curr[e][m] = sum * recip_env_size;
1502 }
1503 }
1504 } else {
1505 int k, p;
1506
1507 for (e = 0; e < ch_data->bs_num_env; e++) {
1508 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1509 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1510 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1511 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1512
1513 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1514 float sum = 0.0f;
1515 const int den = env_size * (table[p + 1] - table[p]);
1516
1517 for (k = table[p]; k < table[p + 1]; k++) {
1518 sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1519 }
1520 sum /= den;
1521 for (k = table[p]; k < table[p + 1]; k++) {
1522 e_curr[e][k - kx1] = sum;
1523 }
1524 }
1525 }
1526 }
1527 }
1528
1529 /**
1530 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1531 * and Calculation of gain (14496-3 sp04 p219)
1532 */
1533 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1534 SBRData *ch_data, const int e_a[2])
1535 {
1536 int e, k, m;
1537 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1538 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1539
1540 for (e = 0; e < ch_data->bs_num_env; e++) {
1541 int delta = !((e == e_a[1]) || (e == e_a[0]));
1542 for (k = 0; k < sbr->n_lim; k++) {
1543 float gain_boost, gain_max;
1544 float sum[2] = { 0.0f, 0.0f };
1545 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1546 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1547 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1548 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1549 if (!sbr->s_mapped[e][m]) {
1550 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1551 ((1.0f + sbr->e_curr[e][m]) *
1552 (1.0f + sbr->q_mapped[e][m] * delta)));
1553 } else {
1554 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1555 ((1.0f + sbr->e_curr[e][m]) *
1556 (1.0f + sbr->q_mapped[e][m])));
1557 }
1558 }
1559 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1560 sum[0] += sbr->e_origmapped[e][m];
1561 sum[1] += sbr->e_curr[e][m];
1562 }
1563 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1564 gain_max = FFMIN(100000.f, gain_max);
1565 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1566 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1567 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1568 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1569 }
1570 sum[0] = sum[1] = 0.0f;
1571 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1572 sum[0] += sbr->e_origmapped[e][m];
1573 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1574 + sbr->s_m[e][m] * sbr->s_m[e][m]
1575 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1576 }
1577 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1578 gain_boost = FFMIN(1.584893192f, gain_boost);
1579 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1580 sbr->gain[e][m] *= gain_boost;
1581 sbr->q_m[e][m] *= gain_boost;
1582 sbr->s_m[e][m] *= gain_boost;
1583 }
1584 }
1585 }
1586 }
1587
1588 /// Assembling HF Signals (14496-3 sp04 p220)
1589 static void sbr_hf_assemble(float Y1[38][64][2],
1590 const float X_high[64][40][2],
1591 SpectralBandReplication *sbr, SBRData *ch_data,
1592 const int e_a[2])
1593 {
1594 int e, i, j, m;
1595 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1596 const int kx = sbr->kx[1];
1597 const int m_max = sbr->m[1];
1598 static const float h_smooth[5] = {
1599 0.33333333333333,
1600 0.30150283239582,
1601 0.21816949906249,
1602 0.11516383427084,
1603 0.03183050093751,
1604 };
1605 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1606 int indexnoise = ch_data->f_indexnoise;
1607 int indexsine = ch_data->f_indexsine;
1608
1609 if (sbr->reset) {
1610 for (i = 0; i < h_SL; i++) {
1611 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1612 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1613 }
1614 } else if (h_SL) {
1615 for (i = 0; i < 4; i++) {
1616 memcpy(g_temp[i + 2 * ch_data->t_env[0]],
1617 g_temp[i + 2 * ch_data->t_env_num_env_old],
1618 sizeof(g_temp[0]));
1619 memcpy(q_temp[i + 2 * ch_data->t_env[0]],
1620 q_temp[i + 2 * ch_data->t_env_num_env_old],
1621 sizeof(q_temp[0]));
1622 }
1623 }
1624
1625 for (e = 0; e < ch_data->bs_num_env; e++) {
1626 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1627 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1628 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1629 }
1630 }
1631
1632 for (e = 0; e < ch_data->bs_num_env; e++) {
1633 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1634 LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1635 LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1636 float *g_filt, *q_filt;
1637
1638 if (h_SL && e != e_a[0] && e != e_a[1]) {
1639 g_filt = g_filt_tab;
1640 q_filt = q_filt_tab;
1641 for (m = 0; m < m_max; m++) {
1642 const int idx1 = i + h_SL;
1643 g_filt[m] = 0.0f;
1644 q_filt[m] = 0.0f;
1645 for (j = 0; j <= h_SL; j++) {
1646 g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1647 q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1648 }
1649 }
1650 } else {
1651 g_filt = g_temp[i + h_SL];
1652 q_filt = q_temp[i];
1653 }
1654
1655 sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1656 i + ENVELOPE_ADJUSTMENT_OFFSET);
1657
1658 if (e != e_a[0] && e != e_a[1]) {
1659 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1660 q_filt, indexnoise,
1661 kx, m_max);
1662 } else {
1663 int idx = indexsine&1;
1664 int A = (1-((indexsine+(kx & 1))&2));
1665 int B = (A^(-idx)) + idx;
1666 float *out = &Y1[i][kx][idx];
1667 float *in = sbr->s_m[e];
1668 for (m = 0; m+1 < m_max; m+=2) {
1669 out[2*m ] += in[m ] * A;
1670 out[2*m+2] += in[m+1] * B;
1671 }
1672 if(m_max&1)
1673 out[2*m ] += in[m ] * A;
1674 }
1675 indexnoise = (indexnoise + m_max) & 0x1ff;
1676 indexsine = (indexsine + 1) & 3;
1677 }
1678 }
1679 ch_data->f_indexnoise = indexnoise;
1680 ch_data->f_indexsine = indexsine;
1681 }
1682
1683 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1684 float* L, float* R)
1685 {
1686 int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1687 int ch;
1688 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1689 int err;
1690
1691 if (!sbr->kx_and_m_pushed) {
1692 sbr->kx[0] = sbr->kx[1];
1693 sbr->m[0] = sbr->m[1];
1694 } else {
1695 sbr->kx_and_m_pushed = 0;
1696 }
1697
1698 if (sbr->start) {
1699 sbr_dequant(sbr, id_aac);
1700 }
1701 for (ch = 0; ch < nch; ch++) {
1702 /* decode channel */
1703 sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1704 (float*)sbr->qmf_filter_scratch,
1705 sbr->data[ch].W, sbr->data[ch].Ypos);
1706 sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1707 (const float (*)[32][32][2]) sbr->data[ch].W,
1708 sbr->data[ch].Ypos);
1709 sbr->data[ch].Ypos ^= 1;
1710 if (sbr->start) {
1711 sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1712 (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
1713 sbr_chirp(sbr, &sbr->data[ch]);
1714 sbr_hf_gen(ac, sbr, sbr->X_high,
1715 (const float (*)[40][2]) sbr->X_low,
1716 (const float (*)[2]) sbr->alpha0,
1717 (const float (*)[2]) sbr->alpha1,
1718 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1719 sbr->data[ch].bs_num_env);
1720
1721 // hf_adj
1722 err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1723 if (!err) {
1724 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1725 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1726 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1727 (const float (*)[40][2]) sbr->X_high,
1728 sbr, &sbr->data[ch],
1729 sbr->data[ch].e_a);
1730 }
1731 }
1732
1733 /* synthesis */
1734 sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1735 (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1736 (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1737 (const float (*)[40][2]) sbr->X_low, ch);
1738 }
1739
1740 if (ac->oc[1].m4ac.ps == 1) {
1741 if (sbr->ps.start) {
1742 ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1743 } else {
1744 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1745 }
1746 nch = 2;
1747 }
1748
1749 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1750 L, sbr->X[0], sbr->qmf_filter_scratch,
1751 sbr->data[0].synthesis_filterbank_samples,
1752 &sbr->data[0].synthesis_filterbank_samples_offset,
1753 downsampled);
1754 if (nch == 2)
1755 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1756 R, sbr->X[1], sbr->qmf_filter_scratch,
1757 sbr->data[1].synthesis_filterbank_samples,
1758 &sbr->data[1].synthesis_filterbank_samples_offset,
1759 downsampled);
1760 }
1761
1762 static void aacsbr_func_ptr_init(AACSBRContext *c)
1763 {
1764 c->sbr_lf_gen = sbr_lf_gen;
1765 c->sbr_hf_assemble = sbr_hf_assemble;
1766 c->sbr_x_gen = sbr_x_gen;
1767 c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1768
1769 if(ARCH_MIPS)
1770 ff_aacsbr_func_ptr_init_mips(c);
1771 }