Imported Debian version 2.5.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / adpcmenc.c
1 /*
2 * Copyright (c) 2001-2003 The FFmpeg Project
3 *
4 * first version by Francois Revol (revol@free.fr)
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 * by Mike Melanson (melanson@pcisys.net)
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 #include "avcodec.h"
26 #include "put_bits.h"
27 #include "bytestream.h"
28 #include "adpcm.h"
29 #include "adpcm_data.h"
30 #include "internal.h"
31
32 /**
33 * @file
34 * ADPCM encoders
35 * See ADPCM decoder reference documents for codec information.
36 */
37
38 typedef struct TrellisPath {
39 int nibble;
40 int prev;
41 } TrellisPath;
42
43 typedef struct TrellisNode {
44 uint32_t ssd;
45 int path;
46 int sample1;
47 int sample2;
48 int step;
49 } TrellisNode;
50
51 typedef struct ADPCMEncodeContext {
52 ADPCMChannelStatus status[6];
53 TrellisPath *paths;
54 TrellisNode *node_buf;
55 TrellisNode **nodep_buf;
56 uint8_t *trellis_hash;
57 } ADPCMEncodeContext;
58
59 #define FREEZE_INTERVAL 128
60
61 static av_cold int adpcm_encode_close(AVCodecContext *avctx);
62
63 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
64 {
65 ADPCMEncodeContext *s = avctx->priv_data;
66 uint8_t *extradata;
67 int i;
68 int ret = AVERROR(ENOMEM);
69
70 if (avctx->channels > 2) {
71 av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
72 return AVERROR(EINVAL);
73 }
74
75 if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
76 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
77 return AVERROR(EINVAL);
78 }
79
80 if (avctx->trellis) {
81 int frontier = 1 << avctx->trellis;
82 int max_paths = frontier * FREEZE_INTERVAL;
83 FF_ALLOC_OR_GOTO(avctx, s->paths,
84 max_paths * sizeof(*s->paths), error);
85 FF_ALLOC_OR_GOTO(avctx, s->node_buf,
86 2 * frontier * sizeof(*s->node_buf), error);
87 FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
88 2 * frontier * sizeof(*s->nodep_buf), error);
89 FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
90 65536 * sizeof(*s->trellis_hash), error);
91 }
92
93 avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
94
95 switch (avctx->codec->id) {
96 case AV_CODEC_ID_ADPCM_IMA_WAV:
97 /* each 16 bits sample gives one nibble
98 and we have 4 bytes per channel overhead */
99 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
100 (4 * avctx->channels) + 1;
101 /* seems frame_size isn't taken into account...
102 have to buffer the samples :-( */
103 avctx->block_align = BLKSIZE;
104 avctx->bits_per_coded_sample = 4;
105 break;
106 case AV_CODEC_ID_ADPCM_IMA_QT:
107 avctx->frame_size = 64;
108 avctx->block_align = 34 * avctx->channels;
109 break;
110 case AV_CODEC_ID_ADPCM_MS:
111 /* each 16 bits sample gives one nibble
112 and we have 7 bytes per channel overhead */
113 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
114 avctx->bits_per_coded_sample = 4;
115 avctx->block_align = BLKSIZE;
116 if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
117 goto error;
118 avctx->extradata_size = 32;
119 extradata = avctx->extradata;
120 bytestream_put_le16(&extradata, avctx->frame_size);
121 bytestream_put_le16(&extradata, 7); /* wNumCoef */
122 for (i = 0; i < 7; i++) {
123 bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
124 bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
125 }
126 break;
127 case AV_CODEC_ID_ADPCM_YAMAHA:
128 avctx->frame_size = BLKSIZE * 2 / avctx->channels;
129 avctx->block_align = BLKSIZE;
130 break;
131 case AV_CODEC_ID_ADPCM_SWF:
132 if (avctx->sample_rate != 11025 &&
133 avctx->sample_rate != 22050 &&
134 avctx->sample_rate != 44100) {
135 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
136 "22050 or 44100\n");
137 ret = AVERROR(EINVAL);
138 goto error;
139 }
140 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
141 break;
142 default:
143 ret = AVERROR(EINVAL);
144 goto error;
145 }
146
147 return 0;
148 error:
149 adpcm_encode_close(avctx);
150 return ret;
151 }
152
153 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
154 {
155 ADPCMEncodeContext *s = avctx->priv_data;
156 av_freep(&s->paths);
157 av_freep(&s->node_buf);
158 av_freep(&s->nodep_buf);
159 av_freep(&s->trellis_hash);
160
161 return 0;
162 }
163
164
165 static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
166 int16_t sample)
167 {
168 int delta = sample - c->prev_sample;
169 int nibble = FFMIN(7, abs(delta) * 4 /
170 ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
171 c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
172 ff_adpcm_yamaha_difflookup[nibble]) / 8);
173 c->prev_sample = av_clip_int16(c->prev_sample);
174 c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
175 return nibble;
176 }
177
178 static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
179 int16_t sample)
180 {
181 int delta = sample - c->prev_sample;
182 int diff, step = ff_adpcm_step_table[c->step_index];
183 int nibble = 8*(delta < 0);
184
185 delta= abs(delta);
186 diff = delta + (step >> 3);
187
188 if (delta >= step) {
189 nibble |= 4;
190 delta -= step;
191 }
192 step >>= 1;
193 if (delta >= step) {
194 nibble |= 2;
195 delta -= step;
196 }
197 step >>= 1;
198 if (delta >= step) {
199 nibble |= 1;
200 delta -= step;
201 }
202 diff -= delta;
203
204 if (nibble & 8)
205 c->prev_sample -= diff;
206 else
207 c->prev_sample += diff;
208
209 c->prev_sample = av_clip_int16(c->prev_sample);
210 c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
211
212 return nibble;
213 }
214
215 static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
216 int16_t sample)
217 {
218 int predictor, nibble, bias;
219
220 predictor = (((c->sample1) * (c->coeff1)) +
221 (( c->sample2) * (c->coeff2))) / 64;
222
223 nibble = sample - predictor;
224 if (nibble >= 0)
225 bias = c->idelta / 2;
226 else
227 bias = -c->idelta / 2;
228
229 nibble = (nibble + bias) / c->idelta;
230 nibble = av_clip(nibble, -8, 7) & 0x0F;
231
232 predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
233
234 c->sample2 = c->sample1;
235 c->sample1 = av_clip_int16(predictor);
236
237 c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
238 if (c->idelta < 16)
239 c->idelta = 16;
240
241 return nibble;
242 }
243
244 static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
245 int16_t sample)
246 {
247 int nibble, delta;
248
249 if (!c->step) {
250 c->predictor = 0;
251 c->step = 127;
252 }
253
254 delta = sample - c->predictor;
255
256 nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
257
258 c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
259 c->predictor = av_clip_int16(c->predictor);
260 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
261 c->step = av_clip(c->step, 127, 24567);
262
263 return nibble;
264 }
265
266 static void adpcm_compress_trellis(AVCodecContext *avctx,
267 const int16_t *samples, uint8_t *dst,
268 ADPCMChannelStatus *c, int n, int stride)
269 {
270 //FIXME 6% faster if frontier is a compile-time constant
271 ADPCMEncodeContext *s = avctx->priv_data;
272 const int frontier = 1 << avctx->trellis;
273 const int version = avctx->codec->id;
274 TrellisPath *paths = s->paths, *p;
275 TrellisNode *node_buf = s->node_buf;
276 TrellisNode **nodep_buf = s->nodep_buf;
277 TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
278 TrellisNode **nodes_next = nodep_buf + frontier;
279 int pathn = 0, froze = -1, i, j, k, generation = 0;
280 uint8_t *hash = s->trellis_hash;
281 memset(hash, 0xff, 65536 * sizeof(*hash));
282
283 memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
284 nodes[0] = node_buf + frontier;
285 nodes[0]->ssd = 0;
286 nodes[0]->path = 0;
287 nodes[0]->step = c->step_index;
288 nodes[0]->sample1 = c->sample1;
289 nodes[0]->sample2 = c->sample2;
290 if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
291 version == AV_CODEC_ID_ADPCM_IMA_QT ||
292 version == AV_CODEC_ID_ADPCM_SWF)
293 nodes[0]->sample1 = c->prev_sample;
294 if (version == AV_CODEC_ID_ADPCM_MS)
295 nodes[0]->step = c->idelta;
296 if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
297 if (c->step == 0) {
298 nodes[0]->step = 127;
299 nodes[0]->sample1 = 0;
300 } else {
301 nodes[0]->step = c->step;
302 nodes[0]->sample1 = c->predictor;
303 }
304 }
305
306 for (i = 0; i < n; i++) {
307 TrellisNode *t = node_buf + frontier*(i&1);
308 TrellisNode **u;
309 int sample = samples[i * stride];
310 int heap_pos = 0;
311 memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
312 for (j = 0; j < frontier && nodes[j]; j++) {
313 // higher j have higher ssd already, so they're likely
314 // to yield a suboptimal next sample too
315 const int range = (j < frontier / 2) ? 1 : 0;
316 const int step = nodes[j]->step;
317 int nidx;
318 if (version == AV_CODEC_ID_ADPCM_MS) {
319 const int predictor = ((nodes[j]->sample1 * c->coeff1) +
320 (nodes[j]->sample2 * c->coeff2)) / 64;
321 const int div = (sample - predictor) / step;
322 const int nmin = av_clip(div-range, -8, 6);
323 const int nmax = av_clip(div+range, -7, 7);
324 for (nidx = nmin; nidx <= nmax; nidx++) {
325 const int nibble = nidx & 0xf;
326 int dec_sample = predictor + nidx * step;
327 #define STORE_NODE(NAME, STEP_INDEX)\
328 int d;\
329 uint32_t ssd;\
330 int pos;\
331 TrellisNode *u;\
332 uint8_t *h;\
333 dec_sample = av_clip_int16(dec_sample);\
334 d = sample - dec_sample;\
335 ssd = nodes[j]->ssd + d*(unsigned)d;\
336 /* Check for wraparound, skip such samples completely. \
337 * Note, changing ssd to a 64 bit variable would be \
338 * simpler, avoiding this check, but it's slower on \
339 * x86 32 bit at the moment. */\
340 if (ssd < nodes[j]->ssd)\
341 goto next_##NAME;\
342 /* Collapse any two states with the same previous sample value. \
343 * One could also distinguish states by step and by 2nd to last
344 * sample, but the effects of that are negligible.
345 * Since nodes in the previous generation are iterated
346 * through a heap, they're roughly ordered from better to
347 * worse, but not strictly ordered. Therefore, an earlier
348 * node with the same sample value is better in most cases
349 * (and thus the current is skipped), but not strictly
350 * in all cases. Only skipping samples where ssd >=
351 * ssd of the earlier node with the same sample gives
352 * slightly worse quality, though, for some reason. */ \
353 h = &hash[(uint16_t) dec_sample];\
354 if (*h == generation)\
355 goto next_##NAME;\
356 if (heap_pos < frontier) {\
357 pos = heap_pos++;\
358 } else {\
359 /* Try to replace one of the leaf nodes with the new \
360 * one, but try a different slot each time. */\
361 pos = (frontier >> 1) +\
362 (heap_pos & ((frontier >> 1) - 1));\
363 if (ssd > nodes_next[pos]->ssd)\
364 goto next_##NAME;\
365 heap_pos++;\
366 }\
367 *h = generation;\
368 u = nodes_next[pos];\
369 if (!u) {\
370 av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
371 u = t++;\
372 nodes_next[pos] = u;\
373 u->path = pathn++;\
374 }\
375 u->ssd = ssd;\
376 u->step = STEP_INDEX;\
377 u->sample2 = nodes[j]->sample1;\
378 u->sample1 = dec_sample;\
379 paths[u->path].nibble = nibble;\
380 paths[u->path].prev = nodes[j]->path;\
381 /* Sift the newly inserted node up in the heap to \
382 * restore the heap property. */\
383 while (pos > 0) {\
384 int parent = (pos - 1) >> 1;\
385 if (nodes_next[parent]->ssd <= ssd)\
386 break;\
387 FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
388 pos = parent;\
389 }\
390 next_##NAME:;
391 STORE_NODE(ms, FFMAX(16,
392 (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
393 }
394 } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
395 version == AV_CODEC_ID_ADPCM_IMA_QT ||
396 version == AV_CODEC_ID_ADPCM_SWF) {
397 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
398 const int predictor = nodes[j]->sample1;\
399 const int div = (sample - predictor) * 4 / STEP_TABLE;\
400 int nmin = av_clip(div - range, -7, 6);\
401 int nmax = av_clip(div + range, -6, 7);\
402 if (nmin <= 0)\
403 nmin--; /* distinguish -0 from +0 */\
404 if (nmax < 0)\
405 nmax--;\
406 for (nidx = nmin; nidx <= nmax; nidx++) {\
407 const int nibble = nidx < 0 ? 7 - nidx : nidx;\
408 int dec_sample = predictor +\
409 (STEP_TABLE *\
410 ff_adpcm_yamaha_difflookup[nibble]) / 8;\
411 STORE_NODE(NAME, STEP_INDEX);\
412 }
413 LOOP_NODES(ima, ff_adpcm_step_table[step],
414 av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
415 } else { //AV_CODEC_ID_ADPCM_YAMAHA
416 LOOP_NODES(yamaha, step,
417 av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
418 127, 24567));
419 #undef LOOP_NODES
420 #undef STORE_NODE
421 }
422 }
423
424 u = nodes;
425 nodes = nodes_next;
426 nodes_next = u;
427
428 generation++;
429 if (generation == 255) {
430 memset(hash, 0xff, 65536 * sizeof(*hash));
431 generation = 0;
432 }
433
434 // prevent overflow
435 if (nodes[0]->ssd > (1 << 28)) {
436 for (j = 1; j < frontier && nodes[j]; j++)
437 nodes[j]->ssd -= nodes[0]->ssd;
438 nodes[0]->ssd = 0;
439 }
440
441 // merge old paths to save memory
442 if (i == froze + FREEZE_INTERVAL) {
443 p = &paths[nodes[0]->path];
444 for (k = i; k > froze; k--) {
445 dst[k] = p->nibble;
446 p = &paths[p->prev];
447 }
448 froze = i;
449 pathn = 0;
450 // other nodes might use paths that don't coincide with the frozen one.
451 // checking which nodes do so is too slow, so just kill them all.
452 // this also slightly improves quality, but I don't know why.
453 memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
454 }
455 }
456
457 p = &paths[nodes[0]->path];
458 for (i = n - 1; i > froze; i--) {
459 dst[i] = p->nibble;
460 p = &paths[p->prev];
461 }
462
463 c->predictor = nodes[0]->sample1;
464 c->sample1 = nodes[0]->sample1;
465 c->sample2 = nodes[0]->sample2;
466 c->step_index = nodes[0]->step;
467 c->step = nodes[0]->step;
468 c->idelta = nodes[0]->step;
469 }
470
471 static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
472 const AVFrame *frame, int *got_packet_ptr)
473 {
474 int n, i, ch, st, pkt_size, ret;
475 const int16_t *samples;
476 int16_t **samples_p;
477 uint8_t *dst;
478 ADPCMEncodeContext *c = avctx->priv_data;
479 uint8_t *buf;
480
481 samples = (const int16_t *)frame->data[0];
482 samples_p = (int16_t **)frame->extended_data;
483 st = avctx->channels == 2;
484
485 if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
486 pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
487 else
488 pkt_size = avctx->block_align;
489 if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size)) < 0)
490 return ret;
491 dst = avpkt->data;
492
493 switch(avctx->codec->id) {
494 case AV_CODEC_ID_ADPCM_IMA_WAV:
495 {
496 int blocks, j;
497
498 blocks = (frame->nb_samples - 1) / 8;
499
500 for (ch = 0; ch < avctx->channels; ch++) {
501 ADPCMChannelStatus *status = &c->status[ch];
502 status->prev_sample = samples_p[ch][0];
503 /* status->step_index = 0;
504 XXX: not sure how to init the state machine */
505 bytestream_put_le16(&dst, status->prev_sample);
506 *dst++ = status->step_index;
507 *dst++ = 0; /* unknown */
508 }
509
510 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
511 if (avctx->trellis > 0) {
512 FF_ALLOC_ARRAY_OR_GOTO(avctx, buf, avctx->channels, blocks * 8, error);
513 for (ch = 0; ch < avctx->channels; ch++) {
514 adpcm_compress_trellis(avctx, &samples_p[ch][1],
515 buf + ch * blocks * 8, &c->status[ch],
516 blocks * 8, 1);
517 }
518 for (i = 0; i < blocks; i++) {
519 for (ch = 0; ch < avctx->channels; ch++) {
520 uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
521 for (j = 0; j < 8; j += 2)
522 *dst++ = buf1[j] | (buf1[j + 1] << 4);
523 }
524 }
525 av_free(buf);
526 } else {
527 for (i = 0; i < blocks; i++) {
528 for (ch = 0; ch < avctx->channels; ch++) {
529 ADPCMChannelStatus *status = &c->status[ch];
530 const int16_t *smp = &samples_p[ch][1 + i * 8];
531 for (j = 0; j < 8; j += 2) {
532 uint8_t v = adpcm_ima_compress_sample(status, smp[j ]);
533 v |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
534 *dst++ = v;
535 }
536 }
537 }
538 }
539 break;
540 }
541 case AV_CODEC_ID_ADPCM_IMA_QT:
542 {
543 PutBitContext pb;
544 init_put_bits(&pb, dst, pkt_size * 8);
545
546 for (ch = 0; ch < avctx->channels; ch++) {
547 ADPCMChannelStatus *status = &c->status[ch];
548 put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
549 put_bits(&pb, 7, status->step_index);
550 if (avctx->trellis > 0) {
551 uint8_t buf[64];
552 adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
553 64, 1);
554 for (i = 0; i < 64; i++)
555 put_bits(&pb, 4, buf[i ^ 1]);
556 status->prev_sample = status->predictor;
557 } else {
558 for (i = 0; i < 64; i += 2) {
559 int t1, t2;
560 t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i ]);
561 t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
562 put_bits(&pb, 4, t2);
563 put_bits(&pb, 4, t1);
564 }
565 }
566 }
567
568 flush_put_bits(&pb);
569 break;
570 }
571 case AV_CODEC_ID_ADPCM_SWF:
572 {
573 PutBitContext pb;
574 init_put_bits(&pb, dst, pkt_size * 8);
575
576 n = frame->nb_samples - 1;
577
578 // store AdpcmCodeSize
579 put_bits(&pb, 2, 2); // set 4-bit flash adpcm format
580
581 // init the encoder state
582 for (i = 0; i < avctx->channels; i++) {
583 // clip step so it fits 6 bits
584 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
585 put_sbits(&pb, 16, samples[i]);
586 put_bits(&pb, 6, c->status[i].step_index);
587 c->status[i].prev_sample = samples[i];
588 }
589
590 if (avctx->trellis > 0) {
591 FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
592 adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
593 &c->status[0], n, avctx->channels);
594 if (avctx->channels == 2)
595 adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
596 buf + n, &c->status[1], n,
597 avctx->channels);
598 for (i = 0; i < n; i++) {
599 put_bits(&pb, 4, buf[i]);
600 if (avctx->channels == 2)
601 put_bits(&pb, 4, buf[n + i]);
602 }
603 av_free(buf);
604 } else {
605 for (i = 1; i < frame->nb_samples; i++) {
606 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
607 samples[avctx->channels * i]));
608 if (avctx->channels == 2)
609 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
610 samples[2 * i + 1]));
611 }
612 }
613 flush_put_bits(&pb);
614 break;
615 }
616 case AV_CODEC_ID_ADPCM_MS:
617 for (i = 0; i < avctx->channels; i++) {
618 int predictor = 0;
619 *dst++ = predictor;
620 c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
621 c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
622 }
623 for (i = 0; i < avctx->channels; i++) {
624 if (c->status[i].idelta < 16)
625 c->status[i].idelta = 16;
626 bytestream_put_le16(&dst, c->status[i].idelta);
627 }
628 for (i = 0; i < avctx->channels; i++)
629 c->status[i].sample2= *samples++;
630 for (i = 0; i < avctx->channels; i++) {
631 c->status[i].sample1 = *samples++;
632 bytestream_put_le16(&dst, c->status[i].sample1);
633 }
634 for (i = 0; i < avctx->channels; i++)
635 bytestream_put_le16(&dst, c->status[i].sample2);
636
637 if (avctx->trellis > 0) {
638 n = avctx->block_align - 7 * avctx->channels;
639 FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
640 if (avctx->channels == 1) {
641 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
642 avctx->channels);
643 for (i = 0; i < n; i += 2)
644 *dst++ = (buf[i] << 4) | buf[i + 1];
645 } else {
646 adpcm_compress_trellis(avctx, samples, buf,
647 &c->status[0], n, avctx->channels);
648 adpcm_compress_trellis(avctx, samples + 1, buf + n,
649 &c->status[1], n, avctx->channels);
650 for (i = 0; i < n; i++)
651 *dst++ = (buf[i] << 4) | buf[n + i];
652 }
653 av_free(buf);
654 } else {
655 for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
656 int nibble;
657 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
658 nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
659 *dst++ = nibble;
660 }
661 }
662 break;
663 case AV_CODEC_ID_ADPCM_YAMAHA:
664 n = frame->nb_samples / 2;
665 if (avctx->trellis > 0) {
666 FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
667 n *= 2;
668 if (avctx->channels == 1) {
669 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
670 avctx->channels);
671 for (i = 0; i < n; i += 2)
672 *dst++ = buf[i] | (buf[i + 1] << 4);
673 } else {
674 adpcm_compress_trellis(avctx, samples, buf,
675 &c->status[0], n, avctx->channels);
676 adpcm_compress_trellis(avctx, samples + 1, buf + n,
677 &c->status[1], n, avctx->channels);
678 for (i = 0; i < n; i++)
679 *dst++ = buf[i] | (buf[n + i] << 4);
680 }
681 av_free(buf);
682 } else
683 for (n *= avctx->channels; n > 0; n--) {
684 int nibble;
685 nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
686 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
687 *dst++ = nibble;
688 }
689 break;
690 default:
691 return AVERROR(EINVAL);
692 }
693
694 avpkt->size = pkt_size;
695 *got_packet_ptr = 1;
696 return 0;
697 error:
698 return AVERROR(ENOMEM);
699 }
700
701 static const enum AVSampleFormat sample_fmts[] = {
702 AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
703 };
704
705 static const enum AVSampleFormat sample_fmts_p[] = {
706 AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
707 };
708
709 #define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \
710 AVCodec ff_ ## name_ ## _encoder = { \
711 .name = #name_, \
712 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
713 .type = AVMEDIA_TYPE_AUDIO, \
714 .id = id_, \
715 .priv_data_size = sizeof(ADPCMEncodeContext), \
716 .init = adpcm_encode_init, \
717 .encode2 = adpcm_encode_frame, \
718 .close = adpcm_encode_close, \
719 .sample_fmts = sample_fmts_, \
720 }
721
722 ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, sample_fmts_p, "ADPCM IMA QuickTime");
723 ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, "ADPCM IMA WAV");
724 ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS, adpcm_ms, sample_fmts, "ADPCM Microsoft");
725 ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF, adpcm_swf, sample_fmts, "ADPCM Shockwave Flash");
726 ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, sample_fmts, "ADPCM Yamaha");