2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
31 #include "libavutil/intreadwrite.h"
33 #include "error_resilience.h"
35 #include "h264chroma.h"
39 #include "internal.h" // for avpriv_find_start_code()
41 #include "mpegutils.h"
44 #include "rectangle.h"
47 #define H264_MAX_PICTURE_COUNT 36
48 #define H264_MAX_THREADS 32
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
53 #define MAX_MMCO_COUNT 66
55 #define MAX_DELAYED_PIC_COUNT 16
57 #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
59 /* Compiling in interlaced support reduces the speed
60 * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
66 * The maximum number of slices supported by the decoder.
67 * must be a power of 2
71 #ifdef ALLOW_INTERLACE
72 #define MB_MBAFF(h) (h)->mb_mbaff
73 #define MB_FIELD(h) (h)->mb_field_decoding_flag
74 #define FRAME_MBAFF(h) (h)->mb_aff_frame
75 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
83 #define FRAME_MBAFF(h) 0
84 #define FIELD_PICTURE(h) 0
86 #define IS_INTERLACED(mb_type) 0
92 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
95 #define CABAC(h) (h)->pps.cabac
98 #define CHROMA(h) ((h)->sps.chroma_format_idc)
99 #define CHROMA422(h) ((h)->sps.chroma_format_idc == 2)
100 #define CHROMA444(h) ((h)->sps.chroma_format_idc == 3)
102 #define EXTENDED_SAR 255
104 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
105 #define MB_TYPE_8x8DCT 0x01000000
106 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
107 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
109 #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
122 NAL_END_SEQUENCE
= 10,
124 NAL_FILLER_DATA
= 12,
126 NAL_AUXILIARY_SLICE
= 19,
127 NAL_FF_IGNORE
= 0xff0f001,
134 SEI_TYPE_BUFFERING_PERIOD
= 0, ///< buffering period (H.264, D.1.1)
135 SEI_TYPE_PIC_TIMING
= 1, ///< picture timing
136 SEI_TYPE_USER_DATA_ITU_T_T35
= 4, ///< user data registered by ITU-T Recommendation T.35
137 SEI_TYPE_USER_DATA_UNREGISTERED
= 5, ///< unregistered user data
138 SEI_TYPE_RECOVERY_POINT
= 6, ///< recovery point (frame # to decoder sync)
139 SEI_TYPE_FRAME_PACKING
= 45, ///< frame packing arrangement
140 SEI_TYPE_DISPLAY_ORIENTATION
= 47, ///< display orientation
144 * pic_struct in picture timing SEI message
147 SEI_PIC_STRUCT_FRAME
= 0, ///< 0: %frame
148 SEI_PIC_STRUCT_TOP_FIELD
= 1, ///< 1: top field
149 SEI_PIC_STRUCT_BOTTOM_FIELD
= 2, ///< 2: bottom field
150 SEI_PIC_STRUCT_TOP_BOTTOM
= 3, ///< 3: top field, bottom field, in that order
151 SEI_PIC_STRUCT_BOTTOM_TOP
= 4, ///< 4: bottom field, top field, in that order
152 SEI_PIC_STRUCT_TOP_BOTTOM_TOP
= 5, ///< 5: top field, bottom field, top field repeated, in that order
153 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
= 6, ///< 6: bottom field, top field, bottom field repeated, in that order
154 SEI_PIC_STRUCT_FRAME_DOUBLING
= 7, ///< 7: %frame doubling
155 SEI_PIC_STRUCT_FRAME_TRIPLING
= 8 ///< 8: %frame tripling
159 * frame_packing_arrangement types
162 SEI_FPA_TYPE_CHECKERBOARD
= 0,
163 SEI_FPA_TYPE_INTERLEAVE_COLUMN
= 1,
164 SEI_FPA_TYPE_INTERLEAVE_ROW
= 2,
165 SEI_FPA_TYPE_SIDE_BY_SIDE
= 3,
166 SEI_FPA_TYPE_TOP_BOTTOM
= 4,
167 SEI_FPA_TYPE_INTERLEAVE_TEMPORAL
= 5,
172 * Sequence parameter set
178 int chroma_format_idc
;
179 int transform_bypass
; ///< qpprime_y_zero_transform_bypass_flag
180 int log2_max_frame_num
; ///< log2_max_frame_num_minus4 + 4
181 int poc_type
; ///< pic_order_cnt_type
182 int log2_max_poc_lsb
; ///< log2_max_pic_order_cnt_lsb_minus4
183 int delta_pic_order_always_zero_flag
;
184 int offset_for_non_ref_pic
;
185 int offset_for_top_to_bottom_field
;
186 int poc_cycle_length
; ///< num_ref_frames_in_pic_order_cnt_cycle
187 int ref_frame_count
; ///< num_ref_frames
188 int gaps_in_frame_num_allowed_flag
;
189 int mb_width
; ///< pic_width_in_mbs_minus1 + 1
190 int mb_height
; ///< pic_height_in_map_units_minus1 + 1
191 int frame_mbs_only_flag
;
192 int mb_aff
; ///< mb_adaptive_frame_field_flag
193 int direct_8x8_inference_flag
;
194 int crop
; ///< frame_cropping_flag
196 /* those 4 are already in luma samples */
197 unsigned int crop_left
; ///< frame_cropping_rect_left_offset
198 unsigned int crop_right
; ///< frame_cropping_rect_right_offset
199 unsigned int crop_top
; ///< frame_cropping_rect_top_offset
200 unsigned int crop_bottom
; ///< frame_cropping_rect_bottom_offset
201 int vui_parameters_present_flag
;
203 int video_signal_type_present_flag
;
205 int colour_description_present_flag
;
206 enum AVColorPrimaries color_primaries
;
207 enum AVColorTransferCharacteristic color_trc
;
208 enum AVColorSpace colorspace
;
209 int timing_info_present_flag
;
210 uint32_t num_units_in_tick
;
212 int fixed_frame_rate_flag
;
213 short offset_for_ref_frame
[256]; // FIXME dyn aloc?
214 int bitstream_restriction_flag
;
215 int num_reorder_frames
;
216 int scaling_matrix_present
;
217 uint8_t scaling_matrix4
[6][16];
218 uint8_t scaling_matrix8
[6][64];
219 int nal_hrd_parameters_present_flag
;
220 int vcl_hrd_parameters_present_flag
;
221 int pic_struct_present_flag
;
222 int time_offset_length
;
223 int cpb_cnt
; ///< See H.264 E.1.2
224 int initial_cpb_removal_delay_length
; ///< initial_cpb_removal_delay_length_minus1 + 1
225 int cpb_removal_delay_length
; ///< cpb_removal_delay_length_minus1 + 1
226 int dpb_output_delay_length
; ///< dpb_output_delay_length_minus1 + 1
227 int bit_depth_luma
; ///< bit_depth_luma_minus8 + 8
228 int bit_depth_chroma
; ///< bit_depth_chroma_minus8 + 8
229 int residual_color_transform_flag
; ///< residual_colour_transform_flag
230 int constraint_set_flags
; ///< constraint_set[0-3]_flag
231 int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
235 * Picture parameter set
239 int cabac
; ///< entropy_coding_mode_flag
240 int pic_order_present
; ///< pic_order_present_flag
241 int slice_group_count
; ///< num_slice_groups_minus1 + 1
242 int mb_slice_group_map_type
;
243 unsigned int ref_count
[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
244 int weighted_pred
; ///< weighted_pred_flag
245 int weighted_bipred_idc
;
246 int init_qp
; ///< pic_init_qp_minus26 + 26
247 int init_qs
; ///< pic_init_qs_minus26 + 26
248 int chroma_qp_index_offset
[2];
249 int deblocking_filter_parameters_present
; ///< deblocking_filter_parameters_present_flag
250 int constrained_intra_pred
; ///< constrained_intra_pred_flag
251 int redundant_pic_cnt_present
; ///< redundant_pic_cnt_present_flag
252 int transform_8x8_mode
; ///< transform_8x8_mode_flag
253 uint8_t scaling_matrix4
[6][16];
254 uint8_t scaling_matrix8
[6][64];
255 uint8_t chroma_qp_table
[2][QP_MAX_NUM
+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
260 * Frame Packing Arrangement Type
263 int frame_packing_arrangement_id
;
264 int frame_packing_arrangement_cancel_flag
; ///< is previous arrangement canceled, -1 if never received
265 SEI_FpaType frame_packing_arrangement_type
;
266 int frame_packing_arrangement_repetition_period
;
267 int content_interpretation_type
;
268 int quincunx_sampling_flag
;
272 * Memory management control operation opcode.
274 typedef enum MMCOOpcode
{
285 * Memory management control operation.
287 typedef struct MMCO
{
289 int short_pic_num
; ///< pic_num without wrapping (pic_num & max_pic_num)
290 int long_arg
; ///< index, pic_num, or num long refs depending on opcode
293 typedef struct H264Picture
{
295 uint8_t avframe_padding
[1024]; // hack to allow linking to a avutil with larger AVFrame
298 AVBufferRef
*qscale_table_buf
;
299 int8_t *qscale_table
;
301 AVBufferRef
*motion_val_buf
[2];
302 int16_t (*motion_val
[2])[2];
304 AVBufferRef
*mb_type_buf
;
307 AVBufferRef
*hwaccel_priv_buf
;
308 void *hwaccel_picture_private
; ///< hardware accelerator private data
310 AVBufferRef
*ref_index_buf
[2];
311 int8_t *ref_index
[2];
313 int field_poc
[2]; ///< top/bottom POC
314 int poc
; ///< frame POC
315 int frame_num
; ///< frame_num (raw frame_num from slice header)
316 int mmco_reset
; /**< MMCO_RESET set this 1. Reordering code must
317 not mix pictures before and after MMCO_RESET. */
318 int pic_id
; /**< pic_num (short -> no wrap version of pic_num,
319 pic_num & max_pic_num; long -> long_pic_num) */
320 int long_ref
; ///< 1->long term reference 0->short term reference
321 int ref_poc
[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
322 int ref_count
[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
323 int mbaff
; ///< 1 -> MBAFF frame 0-> not MBAFF
324 int field_picture
; ///< whether or not picture was encoded in separate fields
326 int needs_realloc
; ///< picture needs to be reallocated (eg due to a frame size change)
328 int recovered
; ///< picture at IDR or recovery point + recovery count
330 int sei_recovery_frame_cnt
;
340 typedef struct H264Context
{
342 AVCodecContext
*avctx
;
344 VideoDSPContext vdsp
;
345 H264DSPContext h264dsp
;
346 H264ChromaContext h264chroma
;
347 H264QpelContext h264qpel
;
348 ParseContext parse_context
;
353 H264Picture
*cur_pic_ptr
;
356 int pixel_shift
; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
357 int chroma_qp
[2]; // QPc
359 int qp_thresh
; ///< QP threshold to skip loopfilter
361 /* coded dimensions -- 16 * mb w/h */
363 ptrdiff_t linesize
, uvlinesize
;
364 int chroma_x_shift
, chroma_y_shift
;
368 int data_partitioning
;
369 int coded_picture_number
;
372 int context_initialized
;
380 int chroma_pred_mode
;
381 int intra16x16_pred_mode
;
386 int left_mb_xy
[LEFT_MBS
];
391 int left_type
[LEFT_MBS
];
393 const uint8_t *left_block
;
394 int topleft_partition
;
396 int8_t intra4x4_pred_mode_cache
[5 * 8];
397 int8_t(*intra4x4_pred_mode
);
399 unsigned int topleft_samples_available
;
400 unsigned int top_samples_available
;
401 unsigned int topright_samples_available
;
402 unsigned int left_samples_available
;
403 uint8_t (*top_borders
[2])[(16 * 3) * 2];
406 * non zero coeff count cache.
407 * is 64 if not available.
409 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache
)[15 * 8];
411 uint8_t (*non_zero_count
)[48];
414 * Motion vector cache.
416 DECLARE_ALIGNED(16, int16_t, mv_cache
)[2][5 * 8][2];
417 DECLARE_ALIGNED(8, int8_t, ref_cache
)[2][5 * 8];
418 #define LIST_NOT_USED -1 // FIXME rename?
419 #define PART_NOT_AVAILABLE -2
422 * number of neighbors (top and/or left) that used 8x8 dct
424 int neighbor_transform_size
;
427 * block_offset[ 0..23] for frame macroblocks
428 * block_offset[24..47] for field macroblocks
430 int block_offset
[2 * (16 * 3)];
432 uint32_t *mb2b_xy
; // FIXME are these 4 a good idea?
434 int b_stride
; // FIXME use s->b4_stride
436 ptrdiff_t mb_linesize
; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
437 ptrdiff_t mb_uvlinesize
;
439 unsigned current_sps_id
; ///< id of the current SPS
440 SPS sps
; ///< current sps
441 PPS pps
; ///< current pps
443 int au_pps_id
; ///< pps_id of current access unit
445 uint32_t dequant4_buffer
[6][QP_MAX_NUM
+ 1][16]; // FIXME should these be moved down?
446 uint32_t dequant8_buffer
[6][QP_MAX_NUM
+ 1][64];
447 uint32_t(*dequant4_coeff
[6])[16];
448 uint32_t(*dequant8_coeff
[6])[64];
451 uint16_t *slice_table
; ///< slice_table_base + 2*mb_stride + 1
453 int slice_type_nos
; ///< S free slice type (SI/SP are remapped to I/P)
454 int slice_type_fixed
;
456 // interlacing specific flags
458 int mb_field_decoding_flag
;
459 int mb_mbaff
; ///< mb_aff_frame && mb_field_decoding_flag
460 int picture_structure
;
463 DECLARE_ALIGNED(8, uint16_t, sub_mb_type
)[4];
465 // Weighted pred stuff
467 int use_weight_chroma
;
468 int luma_log2_weight_denom
;
469 int chroma_log2_weight_denom
;
470 // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
471 int luma_weight
[48][2][2];
472 int chroma_weight
[48][2][2][2];
473 int implicit_weight
[48][48][2];
475 int direct_spatial_mv_pred
;
478 int dist_scale_factor
[32];
479 int dist_scale_factor_field
[2][32];
480 int map_col_to_list0
[2][16 + 32];
481 int map_col_to_list0_field
[2][2][16 + 32];
484 * num_ref_idx_l0/1_active_minus1 + 1
486 unsigned int ref_count
[2]; ///< counts frames or fields, depending on current mb mode
487 unsigned int list_count
;
488 uint8_t *list_counts
; ///< Array of list_count per MB specifying the slice type
489 H264Picture ref_list
[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
490 * Reordered version of default_ref_list
491 * according to picture reordering in slice header */
492 int ref2frm
[MAX_SLICES
][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
495 GetBitContext intra_gb
;
496 GetBitContext inter_gb
;
497 GetBitContext
*intra_gb_ptr
;
498 GetBitContext
*inter_gb_ptr
;
500 const uint8_t *intra_pcm_ptr
;
501 DECLARE_ALIGNED(16, int16_t, mb
)[16 * 48 * 2]; ///< as a dct coefficient is int32_t in high depth, we need to reserve twice the space.
502 DECLARE_ALIGNED(16, int16_t, mb_luma_dc
)[3][16 * 2];
503 int16_t mb_padding
[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
509 uint8_t cabac_state
[1024];
511 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
516 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
517 uint8_t *chroma_pred_mode_table
;
518 int last_qscale_diff
;
519 uint8_t (*mvd_table
[2])[2];
520 DECLARE_ALIGNED(16, uint8_t, mvd_cache
)[2][5 * 8][2];
521 uint8_t *direct_table
;
522 uint8_t direct_cache
[5 * 8];
524 uint8_t zigzag_scan
[16];
525 uint8_t zigzag_scan8x8
[64];
526 uint8_t zigzag_scan8x8_cavlc
[64];
527 uint8_t field_scan
[16];
528 uint8_t field_scan8x8
[64];
529 uint8_t field_scan8x8_cavlc
[64];
530 uint8_t zigzag_scan_q0
[16];
531 uint8_t zigzag_scan8x8_q0
[64];
532 uint8_t zigzag_scan8x8_cavlc_q0
[64];
533 uint8_t field_scan_q0
[16];
534 uint8_t field_scan8x8_q0
[64];
535 uint8_t field_scan8x8_cavlc_q0
[64];
543 int mb_height
, mb_width
;
551 int deblocking_filter
; ///< disable_deblocking_filter_idc with 1 <-> 0
552 int slice_alpha_c0_offset
;
553 int slice_beta_offset
;
555 // =============================================================
556 // Things below are not used in the MB or more inner code
560 uint8_t *rbsp_buffer
[2];
561 unsigned int rbsp_buffer_size
[2];
564 * Used to parse AVC variant of h264
566 int is_avc
; ///< this flag is != 0 if codec is avc1
567 int nal_length_size
; ///< Number of bytes used for nal length (1, 2 or 4)
568 int got_first
; ///< this flag is != 0 if we've parsed a frame
570 int bit_depth_luma
; ///< luma bit depth from sps to detect changes
571 int chroma_format_idc
; ///< chroma format from sps to detect changes
573 SPS
*sps_buffers
[MAX_SPS_COUNT
];
574 PPS
*pps_buffers
[MAX_PPS_COUNT
];
576 int dequant_coeff_pps
; ///< reinit tables when pps changes
578 uint16_t *slice_table_base
;
583 int delta_poc_bottom
;
586 int prev_poc_msb
; ///< poc_msb of the last reference pic for POC type 0
587 int prev_poc_lsb
; ///< poc_lsb of the last reference pic for POC type 0
588 int frame_num_offset
; ///< for POC type 2
589 int prev_frame_num_offset
; ///< for POC type 2
590 int prev_frame_num
; ///< frame_num of the last pic for POC type 1/2
593 * frame_num for frames or 2 * frame_num + 1 for field pics.
598 * max_frame_num or 2 * max_frame_num for field pics.
602 int redundant_pic_count
;
604 H264Picture default_ref_list
[2][32]; ///< base reference list for all slices of a coded picture
605 H264Picture
*short_ref
[32];
606 H264Picture
*long_ref
[32];
607 H264Picture
*delayed_pic
[MAX_DELAYED_PIC_COUNT
+ 2]; // FIXME size?
608 int last_pocs
[MAX_DELAYED_PIC_COUNT
];
609 H264Picture
*next_output_pic
;
611 int next_outputed_poc
;
614 * memory management control operations buffer.
616 MMCO mmco
[MAX_MMCO_COUNT
];
620 int long_ref_count
; ///< number of actual long term references
621 int short_ref_count
; ///< number of actual short term references
626 * @name Members for slice based multithreading
629 struct H264Context
*thread_context
[H264_MAX_THREADS
];
632 * current slice number, used to initialize slice_num of each thread/context
637 * Max number of threads / contexts.
638 * This is equal to AVCodecContext.thread_count unless
639 * multithreaded decoding is impossible, in which case it is
644 int slice_context_count
;
647 * 1 if the single thread fallback warning has already been
648 * displayed, 0 otherwise.
650 int single_decode_warning
;
652 enum AVPictureType pict_type
;
655 unsigned int last_ref_count
[2];
659 * pic_struct in picture timing SEI message
661 SEI_PicStructType sei_pic_struct
;
664 * Complement sei_pic_struct
665 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
666 * However, soft telecined frames may have these values.
667 * This is used in an attempt to flag soft telecine progressive.
669 int prev_interlaced_frame
;
672 * frame_packing_arrangment SEI message
674 int sei_frame_packing_present
;
675 int frame_packing_arrangement_type
;
676 int content_interpretation_type
;
677 int quincunx_subsampling
;
680 * display orientation SEI message
682 int sei_display_orientation_present
;
683 int sei_anticlockwise_rotation
;
684 int sei_hflip
, sei_vflip
;
687 * Bit set of clock types for fields/frames in picture timing SEI message.
688 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
694 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
696 int sei_dpb_output_delay
;
699 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
701 int sei_cpb_removal_delay
;
704 * recovery_frame_cnt from SEI message
706 * Set to -1 if no recovery point SEI message found or to number of frames
707 * before playback synchronizes. Frames having recovery point are key
710 int sei_recovery_frame_cnt
;
713 * Are the SEI recovery points looking valid.
715 int valid_recovery_point
;
720 * recovery_frame is the frame_num at which the next frame should
721 * be fully constructed.
723 * Set to -1 when not expecting a recovery point.
728 * We have seen an IDR, so all the following frames in coded order are correctly
731 #define FRAME_RECOVERED_IDR (1 << 0)
733 * Sufficient number of frames have been decoded since a SEI recovery point,
734 * so all the following frames in presentation order are correct.
736 #define FRAME_RECOVERED_SEI (1 << 1)
738 int frame_recovered
; ///< Initial frame has been completely recovered
740 int has_recovery_point
;
742 int luma_weight_flag
[2]; ///< 7.4.3.2 luma_weight_lX_flag
743 int chroma_weight_flag
[2]; ///< 7.4.3.2 chroma_weight_lX_flag
746 int sei_buffering_period_present
; ///< Buffering period SEI flag
747 int initial_cpb_removal_delay
[32]; ///< Initial timestamps for CPBs
749 int cur_chroma_format_idc
;
750 uint8_t *bipred_scratchpad
;
752 int16_t slice_row
[MAX_SLICES
]; ///< to detect when MAX_SLICES is too low
754 uint8_t parse_history
[6];
755 int parse_history_count
;
757 uint8_t *edge_emu_buffer
;
758 int16_t *dc_val_base
;
760 AVBufferPool
*qscale_table_pool
;
761 AVBufferPool
*mb_type_pool
;
762 AVBufferPool
*motion_val_pool
;
763 AVBufferPool
*ref_index_pool
;
765 /* Motion Estimation */
766 qpel_mc_func (*qpel_put
)[16];
767 qpel_mc_func (*qpel_avg
)[16];
770 extern const uint8_t ff_h264_chroma_qp
[7][QP_MAX_NUM
+ 1]; ///< One chroma qp table for each possible bit depth (8-14).
771 extern const uint16_t ff_h264_mb_sizes
[4];
776 int ff_h264_decode_sei(H264Context
*h
);
781 int ff_h264_decode_seq_parameter_set(H264Context
*h
);
784 * compute profile from sps
786 int ff_h264_get_profile(SPS
*sps
);
791 int ff_h264_decode_picture_parameter_set(H264Context
*h
, int bit_length
);
794 * Decode a network abstraction layer unit.
795 * @param consumed is the number of bytes used as input
796 * @param length is the length of the array
797 * @param dst_length is the number of decoded bytes FIXME here
798 * or a decode rbsp tailing?
799 * @return decoded bytes, might be src+1 if no escapes
801 const uint8_t *ff_h264_decode_nal(H264Context
*h
, const uint8_t *src
,
802 int *dst_length
, int *consumed
, int length
);
805 * Free any data that may have been allocated in the H264 context
808 void ff_h264_free_context(H264Context
*h
);
811 * Reconstruct bitstream slice_type.
813 int ff_h264_get_slice_type(const H264Context
*h
);
819 int ff_h264_alloc_tables(H264Context
*h
);
822 * Fill the default_ref_list.
824 int ff_h264_fill_default_ref_list(H264Context
*h
);
826 int ff_h264_decode_ref_pic_list_reordering(H264Context
*h
);
827 void ff_h264_fill_mbaff_ref_list(H264Context
*h
);
828 void ff_h264_remove_all_refs(H264Context
*h
);
831 * Execute the reference picture marking (memory management control operations).
833 int ff_h264_execute_ref_pic_marking(H264Context
*h
, MMCO
*mmco
, int mmco_count
);
835 int ff_h264_decode_ref_pic_marking(H264Context
*h
, GetBitContext
*gb
,
838 int ff_generate_sliding_window_mmcos(H264Context
*h
, int first_slice
);
841 * Check if the top & left blocks are available if needed & change the
842 * dc mode so it only uses the available blocks.
844 int ff_h264_check_intra4x4_pred_mode(H264Context
*h
);
847 * Check if the top & left blocks are available if needed & change the
848 * dc mode so it only uses the available blocks.
850 int ff_h264_check_intra_pred_mode(H264Context
*h
, int mode
, int is_chroma
);
852 void ff_h264_hl_decode_mb(H264Context
*h
);
853 int ff_h264_decode_extradata(H264Context
*h
, const uint8_t *buf
, int size
);
854 int ff_h264_decode_init(AVCodecContext
*avctx
);
855 void ff_h264_decode_init_vlc(void);
858 * Decode a macroblock
859 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
861 int ff_h264_decode_mb_cavlc(H264Context
*h
);
864 * Decode a CABAC coded macroblock
865 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
867 int ff_h264_decode_mb_cabac(H264Context
*h
);
869 void ff_h264_init_cabac_states(H264Context
*h
);
871 void h264_init_dequant_tables(H264Context
*h
);
873 void ff_h264_direct_dist_scale_factor(H264Context
*const h
);
874 void ff_h264_direct_ref_list_init(H264Context
*const h
);
875 void ff_h264_pred_direct_motion(H264Context
*const h
, int *mb_type
);
877 void ff_h264_filter_mb_fast(H264Context
*h
, int mb_x
, int mb_y
,
878 uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
,
879 unsigned int linesize
, unsigned int uvlinesize
);
880 void ff_h264_filter_mb(H264Context
*h
, int mb_x
, int mb_y
,
881 uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
,
882 unsigned int linesize
, unsigned int uvlinesize
);
885 * Reset SEI values at the beginning of the frame.
887 * @param h H.264 context.
889 void ff_h264_reset_sei(H264Context
*h
);
892 * Get stereo_mode string from the h264 frame_packing_arrangement
893 * @param h H.264 context.
895 const char* ff_h264_sei_stereo_mode(H264Context
*h
);
907 /* Scan8 organization:
924 * DY/DU/DV are for luma/chroma DC.
927 #define LUMA_DC_BLOCK_INDEX 48
928 #define CHROMA_DC_BLOCK_INDEX 49
930 // This table must be here because scan8[constant] must be known at compiletime
931 static const uint8_t scan8
[16 * 3 + 3] = {
932 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
933 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
934 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
935 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
936 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
937 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
938 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
939 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
940 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
941 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
942 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
943 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
944 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
947 static av_always_inline
uint32_t pack16to32(int a
, int b
)
950 return (b
& 0xFFFF) + (a
<< 16);
952 return (a
& 0xFFFF) + (b
<< 16);
956 static av_always_inline
uint16_t pack8to16(int a
, int b
)
959 return (b
& 0xFF) + (a
<< 8);
961 return (a
& 0xFF) + (b
<< 8);
968 static av_always_inline
int get_chroma_qp(H264Context
*h
, int t
, int qscale
)
970 return h
->pps
.chroma_qp_table
[t
][qscale
];
974 * Get the predicted intra4x4 prediction mode.
976 static av_always_inline
int pred_intra_mode(H264Context
*h
, int n
)
978 const int index8
= scan8
[n
];
979 const int left
= h
->intra4x4_pred_mode_cache
[index8
- 1];
980 const int top
= h
->intra4x4_pred_mode_cache
[index8
- 8];
981 const int min
= FFMIN(left
, top
);
983 tprintf(h
->avctx
, "mode:%d %d min:%d\n", left
, top
, min
);
991 static av_always_inline
void write_back_intra_pred_mode(H264Context
*h
)
993 int8_t *i4x4
= h
->intra4x4_pred_mode
+ h
->mb2br_xy
[h
->mb_xy
];
994 int8_t *i4x4_cache
= h
->intra4x4_pred_mode_cache
;
996 AV_COPY32(i4x4
, i4x4_cache
+ 4 + 8 * 4);
997 i4x4
[4] = i4x4_cache
[7 + 8 * 3];
998 i4x4
[5] = i4x4_cache
[7 + 8 * 2];
999 i4x4
[6] = i4x4_cache
[7 + 8 * 1];
1002 static av_always_inline
void write_back_non_zero_count(H264Context
*h
)
1004 const int mb_xy
= h
->mb_xy
;
1005 uint8_t *nnz
= h
->non_zero_count
[mb_xy
];
1006 uint8_t *nnz_cache
= h
->non_zero_count_cache
;
1008 AV_COPY32(&nnz
[ 0], &nnz_cache
[4 + 8 * 1]);
1009 AV_COPY32(&nnz
[ 4], &nnz_cache
[4 + 8 * 2]);
1010 AV_COPY32(&nnz
[ 8], &nnz_cache
[4 + 8 * 3]);
1011 AV_COPY32(&nnz
[12], &nnz_cache
[4 + 8 * 4]);
1012 AV_COPY32(&nnz
[16], &nnz_cache
[4 + 8 * 6]);
1013 AV_COPY32(&nnz
[20], &nnz_cache
[4 + 8 * 7]);
1014 AV_COPY32(&nnz
[32], &nnz_cache
[4 + 8 * 11]);
1015 AV_COPY32(&nnz
[36], &nnz_cache
[4 + 8 * 12]);
1017 if (!h
->chroma_y_shift
) {
1018 AV_COPY32(&nnz
[24], &nnz_cache
[4 + 8 * 8]);
1019 AV_COPY32(&nnz
[28], &nnz_cache
[4 + 8 * 9]);
1020 AV_COPY32(&nnz
[40], &nnz_cache
[4 + 8 * 13]);
1021 AV_COPY32(&nnz
[44], &nnz_cache
[4 + 8 * 14]);
1025 static av_always_inline
void write_back_motion_list(H264Context
*h
,
1027 int b_xy
, int b8_xy
,
1028 int mb_type
, int list
)
1030 int16_t(*mv_dst
)[2] = &h
->cur_pic
.motion_val
[list
][b_xy
];
1031 int16_t(*mv_src
)[2] = &h
->mv_cache
[list
][scan8
[0]];
1032 AV_COPY128(mv_dst
+ 0 * b_stride
, mv_src
+ 8 * 0);
1033 AV_COPY128(mv_dst
+ 1 * b_stride
, mv_src
+ 8 * 1);
1034 AV_COPY128(mv_dst
+ 2 * b_stride
, mv_src
+ 8 * 2);
1035 AV_COPY128(mv_dst
+ 3 * b_stride
, mv_src
+ 8 * 3);
1037 uint8_t (*mvd_dst
)[2] = &h
->mvd_table
[list
][FMO
? 8 * h
->mb_xy
1038 : h
->mb2br_xy
[h
->mb_xy
]];
1039 uint8_t(*mvd_src
)[2] = &h
->mvd_cache
[list
][scan8
[0]];
1040 if (IS_SKIP(mb_type
)) {
1041 AV_ZERO128(mvd_dst
);
1043 AV_COPY64(mvd_dst
, mvd_src
+ 8 * 3);
1044 AV_COPY16(mvd_dst
+ 3 + 3, mvd_src
+ 3 + 8 * 0);
1045 AV_COPY16(mvd_dst
+ 3 + 2, mvd_src
+ 3 + 8 * 1);
1046 AV_COPY16(mvd_dst
+ 3 + 1, mvd_src
+ 3 + 8 * 2);
1051 int8_t *ref_index
= &h
->cur_pic
.ref_index
[list
][b8_xy
];
1052 int8_t *ref_cache
= h
->ref_cache
[list
];
1053 ref_index
[0 + 0 * 2] = ref_cache
[scan8
[0]];
1054 ref_index
[1 + 0 * 2] = ref_cache
[scan8
[4]];
1055 ref_index
[0 + 1 * 2] = ref_cache
[scan8
[8]];
1056 ref_index
[1 + 1 * 2] = ref_cache
[scan8
[12]];
1060 static av_always_inline
void write_back_motion(H264Context
*h
, int mb_type
)
1062 const int b_stride
= h
->b_stride
;
1063 const int b_xy
= 4 * h
->mb_x
+ 4 * h
->mb_y
* h
->b_stride
; // try mb2b(8)_xy
1064 const int b8_xy
= 4 * h
->mb_xy
;
1066 if (USES_LIST(mb_type
, 0)) {
1067 write_back_motion_list(h
, b_stride
, b_xy
, b8_xy
, mb_type
, 0);
1069 fill_rectangle(&h
->cur_pic
.ref_index
[0][b8_xy
],
1070 2, 2, 2, (uint8_t)LIST_NOT_USED
, 1);
1072 if (USES_LIST(mb_type
, 1))
1073 write_back_motion_list(h
, b_stride
, b_xy
, b8_xy
, mb_type
, 1);
1075 if (h
->slice_type_nos
== AV_PICTURE_TYPE_B
&& CABAC(h
)) {
1076 if (IS_8X8(mb_type
)) {
1077 uint8_t *direct_table
= &h
->direct_table
[4 * h
->mb_xy
];
1078 direct_table
[1] = h
->sub_mb_type
[1] >> 1;
1079 direct_table
[2] = h
->sub_mb_type
[2] >> 1;
1080 direct_table
[3] = h
->sub_mb_type
[3] >> 1;
1085 static av_always_inline
int get_dct8x8_allowed(H264Context
*h
)
1087 if (h
->sps
.direct_8x8_inference_flag
)
1088 return !(AV_RN64A(h
->sub_mb_type
) &
1089 ((MB_TYPE_16x8
| MB_TYPE_8x16
| MB_TYPE_8x8
) *
1090 0x0001000100010001ULL
));
1092 return !(AV_RN64A(h
->sub_mb_type
) &
1093 ((MB_TYPE_16x8
| MB_TYPE_8x16
| MB_TYPE_8x8
| MB_TYPE_DIRECT2
) *
1094 0x0001000100010001ULL
));
1097 static inline int find_start_code(const uint8_t *buf
, int buf_size
,
1098 int buf_index
, int next_avc
)
1100 uint32_t state
= -1;
1102 buf_index
= avpriv_find_start_code(buf
+ buf_index
, buf
+ next_avc
+ 1, &state
) - buf
- 1;
1104 return FFMIN(buf_index
, buf_size
);
1107 static inline int get_avc_nalsize(H264Context
*h
, const uint8_t *buf
,
1108 int buf_size
, int *buf_index
)
1112 if (*buf_index
>= buf_size
- h
->nal_length_size
)
1115 for (i
= 0; i
< h
->nal_length_size
; i
++)
1116 nalsize
= ((unsigned)nalsize
<< 8) | buf
[(*buf_index
)++];
1117 if (nalsize
<= 0 || nalsize
> buf_size
- *buf_index
) {
1118 av_log(h
->avctx
, AV_LOG_ERROR
,
1119 "AVC: nal size %d\n", nalsize
);
1125 int ff_h264_field_end(H264Context
*h
, int in_setup
);
1127 int ff_h264_ref_picture(H264Context
*h
, H264Picture
*dst
, H264Picture
*src
);
1128 void ff_h264_unref_picture(H264Context
*h
, H264Picture
*pic
);
1130 int ff_h264_context_init(H264Context
*h
);
1131 int ff_h264_set_parameter_from_sps(H264Context
*h
);
1133 void ff_h264_draw_horiz_band(H264Context
*h
, int y
, int height
);
1134 int ff_init_poc(H264Context
*h
, int pic_field_poc
[2], int *pic_poc
);
1135 int ff_pred_weight_table(H264Context
*h
);
1136 int ff_set_ref_count(H264Context
*h
);
1138 int ff_h264_decode_slice_header(H264Context
*h
, H264Context
*h0
);
1139 #define SLICE_SINGLETHREAD 1
1140 #define SLICE_SKIPED 2
1142 int ff_h264_execute_decode_slices(H264Context
*h
, unsigned context_count
);
1143 int ff_h264_update_thread_context(AVCodecContext
*dst
,
1144 const AVCodecContext
*src
);
1146 void ff_h264_flush_change(H264Context
*h
);
1148 void ff_h264_free_tables(H264Context
*h
, int free_rbsp
);
1150 void ff_h264_set_erpic(ERPicture
*dst
, H264Picture
*src
);
1152 #endif /* AVCODEC_H264_H */