Imported Debian version 2.5.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / sbrdsp.c
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include "config.h"
24 #include "libavutil/attributes.h"
25 #include "libavutil/intfloat.h"
26 #include "sbrdsp.h"
27
28 static void sbr_sum64x5_c(float *z)
29 {
30 int k;
31 for (k = 0; k < 64; k++) {
32 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
33 z[k] = f;
34 }
35 }
36
37 static float sbr_sum_square_c(float (*x)[2], int n)
38 {
39 float sum0 = 0.0f, sum1 = 0.0f;
40 int i;
41
42 for (i = 0; i < n; i += 2)
43 {
44 sum0 += x[i + 0][0] * x[i + 0][0];
45 sum1 += x[i + 0][1] * x[i + 0][1];
46 sum0 += x[i + 1][0] * x[i + 1][0];
47 sum1 += x[i + 1][1] * x[i + 1][1];
48 }
49
50 return sum0 + sum1;
51 }
52
53 static void sbr_neg_odd_64_c(float *x)
54 {
55 union av_intfloat32 *xi = (union av_intfloat32*) x;
56 int i;
57 for (i = 1; i < 64; i += 4) {
58 xi[i + 0].i ^= 1U << 31;
59 xi[i + 2].i ^= 1U << 31;
60 }
61 }
62
63 static void sbr_qmf_pre_shuffle_c(float *z)
64 {
65 union av_intfloat32 *zi = (union av_intfloat32*) z;
66 int k;
67 zi[64].i = zi[0].i;
68 zi[65].i = zi[1].i;
69 for (k = 1; k < 31; k += 2) {
70 zi[64 + 2 * k + 0].i = zi[64 - k].i ^ (1U << 31);
71 zi[64 + 2 * k + 1].i = zi[ k + 1].i;
72 zi[64 + 2 * k + 2].i = zi[63 - k].i ^ (1U << 31);
73 zi[64 + 2 * k + 3].i = zi[ k + 2].i;
74 }
75
76 zi[64 + 2 * 31 + 0].i = zi[64 - 31].i ^ (1U << 31);
77 zi[64 + 2 * 31 + 1].i = zi[31 + 1].i;
78 }
79
80 static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
81 {
82 const union av_intfloat32 *zi = (const union av_intfloat32*) z;
83 union av_intfloat32 *Wi = (union av_intfloat32*) W;
84 int k;
85 for (k = 0; k < 32; k += 2) {
86 Wi[2 * k + 0].i = zi[63 - k].i ^ (1U << 31);
87 Wi[2 * k + 1].i = zi[ k + 0].i;
88 Wi[2 * k + 2].i = zi[62 - k].i ^ (1U << 31);
89 Wi[2 * k + 3].i = zi[ k + 1].i;
90 }
91 }
92
93 static void sbr_qmf_deint_neg_c(float *v, const float *src)
94 {
95 const union av_intfloat32 *si = (const union av_intfloat32*)src;
96 union av_intfloat32 *vi = (union av_intfloat32*)v;
97 int i;
98 for (i = 0; i < 32; i++) {
99 vi[ i].i = si[63 - 2 * i ].i;
100 vi[63 - i].i = si[63 - 2 * i - 1].i ^ (1U << 31);
101 }
102 }
103
104 static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1)
105 {
106 int i;
107 for (i = 0; i < 64; i++) {
108 v[ i] = src0[i] - src1[63 - i];
109 v[127 - i] = src0[i] + src1[63 - i];
110 }
111 }
112
113
114 #if 0
115 /* This code is slower because it multiplies memory accesses.
116 * It is left for educational purposes and because it may offer
117 * a better reference for writing arch-specific DSP functions. */
118 static av_always_inline void autocorrelate(const float x[40][2],
119 float phi[3][2][2], int lag)
120 {
121 int i;
122 float real_sum = 0.0f;
123 float imag_sum = 0.0f;
124 if (lag) {
125 for (i = 1; i < 38; i++) {
126 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
127 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
128 }
129 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
130 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
131 if (lag == 1) {
132 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
133 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
134 }
135 } else {
136 for (i = 1; i < 38; i++) {
137 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
138 }
139 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
140 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
141 }
142 }
143
144 static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
145 {
146 autocorrelate(x, phi, 0);
147 autocorrelate(x, phi, 1);
148 autocorrelate(x, phi, 2);
149 }
150 #else
151 static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
152 {
153 float real_sum2 = x[0][0] * x[2][0] + x[0][1] * x[2][1];
154 float imag_sum2 = x[0][0] * x[2][1] - x[0][1] * x[2][0];
155 float real_sum1 = 0.0f, imag_sum1 = 0.0f, real_sum0 = 0.0f;
156 int i;
157 for (i = 1; i < 38; i++) {
158 real_sum0 += x[i][0] * x[i ][0] + x[i][1] * x[i ][1];
159 real_sum1 += x[i][0] * x[i + 1][0] + x[i][1] * x[i + 1][1];
160 imag_sum1 += x[i][0] * x[i + 1][1] - x[i][1] * x[i + 1][0];
161 real_sum2 += x[i][0] * x[i + 2][0] + x[i][1] * x[i + 2][1];
162 imag_sum2 += x[i][0] * x[i + 2][1] - x[i][1] * x[i + 2][0];
163 }
164 phi[2 - 2][1][0] = real_sum2;
165 phi[2 - 2][1][1] = imag_sum2;
166 phi[2 ][1][0] = real_sum0 + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
167 phi[1 ][0][0] = real_sum0 + x[38][0] * x[38][0] + x[38][1] * x[38][1];
168 phi[2 - 1][1][0] = real_sum1 + x[ 0][0] * x[ 1][0] + x[ 0][1] * x[ 1][1];
169 phi[2 - 1][1][1] = imag_sum1 + x[ 0][0] * x[ 1][1] - x[ 0][1] * x[ 1][0];
170 phi[0 ][0][0] = real_sum1 + x[38][0] * x[39][0] + x[38][1] * x[39][1];
171 phi[0 ][0][1] = imag_sum1 + x[38][0] * x[39][1] - x[38][1] * x[39][0];
172 #endif
173 }
174
175 static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2],
176 const float alpha0[2], const float alpha1[2],
177 float bw, int start, int end)
178 {
179 float alpha[4];
180 int i;
181
182 alpha[0] = alpha1[0] * bw * bw;
183 alpha[1] = alpha1[1] * bw * bw;
184 alpha[2] = alpha0[0] * bw;
185 alpha[3] = alpha0[1] * bw;
186
187 for (i = start; i < end; i++) {
188 X_high[i][0] =
189 X_low[i - 2][0] * alpha[0] -
190 X_low[i - 2][1] * alpha[1] +
191 X_low[i - 1][0] * alpha[2] -
192 X_low[i - 1][1] * alpha[3] +
193 X_low[i][0];
194 X_high[i][1] =
195 X_low[i - 2][1] * alpha[0] +
196 X_low[i - 2][0] * alpha[1] +
197 X_low[i - 1][1] * alpha[2] +
198 X_low[i - 1][0] * alpha[3] +
199 X_low[i][1];
200 }
201 }
202
203 static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2],
204 const float *g_filt, int m_max, intptr_t ixh)
205 {
206 int m;
207
208 for (m = 0; m < m_max; m++) {
209 Y[m][0] = X_high[m][ixh][0] * g_filt[m];
210 Y[m][1] = X_high[m][ixh][1] * g_filt[m];
211 }
212 }
213
214 static av_always_inline void sbr_hf_apply_noise(float (*Y)[2],
215 const float *s_m,
216 const float *q_filt,
217 int noise,
218 float phi_sign0,
219 float phi_sign1,
220 int m_max)
221 {
222 int m;
223
224 for (m = 0; m < m_max; m++) {
225 float y0 = Y[m][0];
226 float y1 = Y[m][1];
227 noise = (noise + 1) & 0x1ff;
228 if (s_m[m]) {
229 y0 += s_m[m] * phi_sign0;
230 y1 += s_m[m] * phi_sign1;
231 } else {
232 y0 += q_filt[m] * ff_sbr_noise_table[noise][0];
233 y1 += q_filt[m] * ff_sbr_noise_table[noise][1];
234 }
235 Y[m][0] = y0;
236 Y[m][1] = y1;
237 phi_sign1 = -phi_sign1;
238 }
239 }
240
241 static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m,
242 const float *q_filt, int noise,
243 int kx, int m_max)
244 {
245 sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max);
246 }
247
248 static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m,
249 const float *q_filt, int noise,
250 int kx, int m_max)
251 {
252 float phi_sign = 1 - 2 * (kx & 1);
253 sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max);
254 }
255
256 static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m,
257 const float *q_filt, int noise,
258 int kx, int m_max)
259 {
260 sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max);
261 }
262
263 static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m,
264 const float *q_filt, int noise,
265 int kx, int m_max)
266 {
267 float phi_sign = 1 - 2 * (kx & 1);
268 sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max);
269 }
270
271 av_cold void ff_sbrdsp_init(SBRDSPContext *s)
272 {
273 s->sum64x5 = sbr_sum64x5_c;
274 s->sum_square = sbr_sum_square_c;
275 s->neg_odd_64 = sbr_neg_odd_64_c;
276 s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c;
277 s->qmf_post_shuffle = sbr_qmf_post_shuffle_c;
278 s->qmf_deint_neg = sbr_qmf_deint_neg_c;
279 s->qmf_deint_bfly = sbr_qmf_deint_bfly_c;
280 s->autocorrelate = sbr_autocorrelate_c;
281 s->hf_gen = sbr_hf_gen_c;
282 s->hf_g_filt = sbr_hf_g_filt_c;
283
284 s->hf_apply_noise[0] = sbr_hf_apply_noise_0;
285 s->hf_apply_noise[1] = sbr_hf_apply_noise_1;
286 s->hf_apply_noise[2] = sbr_hf_apply_noise_2;
287 s->hf_apply_noise[3] = sbr_hf_apply_noise_3;
288
289 if (ARCH_ARM)
290 ff_sbrdsp_init_arm(s);
291 if (ARCH_X86)
292 ff_sbrdsp_init_x86(s);
293 if (ARCH_MIPS)
294 ff_sbrdsp_init_mips(s);
295 }