Imported Debian version 2.5.2~trusty
[deb_ffmpeg.git] / ffmpeg / libswresample / rematrix.c
1 /*
2 * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3 *
4 * This file is part of libswresample
5 *
6 * libswresample is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * libswresample is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with libswresample; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "swresample_internal.h"
22 #include "libavutil/avassert.h"
23 #include "libavutil/channel_layout.h"
24
25 #define TEMPLATE_REMATRIX_FLT
26 #include "rematrix_template.c"
27 #undef TEMPLATE_REMATRIX_FLT
28
29 #define TEMPLATE_REMATRIX_DBL
30 #include "rematrix_template.c"
31 #undef TEMPLATE_REMATRIX_DBL
32
33 #define TEMPLATE_REMATRIX_S16
34 #include "rematrix_template.c"
35 #undef TEMPLATE_REMATRIX_S16
36
37 #define TEMPLATE_REMATRIX_S32
38 #include "rematrix_template.c"
39 #undef TEMPLATE_REMATRIX_S32
40
41 #define FRONT_LEFT 0
42 #define FRONT_RIGHT 1
43 #define FRONT_CENTER 2
44 #define LOW_FREQUENCY 3
45 #define BACK_LEFT 4
46 #define BACK_RIGHT 5
47 #define FRONT_LEFT_OF_CENTER 6
48 #define FRONT_RIGHT_OF_CENTER 7
49 #define BACK_CENTER 8
50 #define SIDE_LEFT 9
51 #define SIDE_RIGHT 10
52 #define TOP_CENTER 11
53 #define TOP_FRONT_LEFT 12
54 #define TOP_FRONT_CENTER 13
55 #define TOP_FRONT_RIGHT 14
56 #define TOP_BACK_LEFT 15
57 #define TOP_BACK_CENTER 16
58 #define TOP_BACK_RIGHT 17
59 #define NUM_NAMED_CHANNELS 18
60
61 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
62 {
63 int nb_in, nb_out, in, out;
64
65 if (!s || s->in_convert) // s needs to be allocated but not initialized
66 return AVERROR(EINVAL);
67 memset(s->matrix, 0, sizeof(s->matrix));
68 nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
69 nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
70 for (out = 0; out < nb_out; out++) {
71 for (in = 0; in < nb_in; in++)
72 s->matrix[out][in] = matrix[in];
73 matrix += stride;
74 }
75 s->rematrix_custom = 1;
76 return 0;
77 }
78
79 static int even(int64_t layout){
80 if(!layout) return 1;
81 if(layout&(layout-1)) return 1;
82 return 0;
83 }
84
85 static int clean_layout(SwrContext *s, int64_t layout){
86 if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
87 char buf[128];
88 av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
89 av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
90 return AV_CH_FRONT_CENTER;
91 }
92
93 return layout;
94 }
95
96 static int sane_layout(int64_t layout){
97 if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
98 return 0;
99 if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
100 return 0;
101 if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
102 return 0;
103 if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
104 return 0;
105 if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
106 return 0;
107 if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
108 return 0;
109
110 return 1;
111 }
112
113 av_cold static int auto_matrix(SwrContext *s)
114 {
115 int i, j, out_i;
116 double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}};
117 int64_t unaccounted, in_ch_layout, out_ch_layout;
118 double maxcoef=0;
119 char buf[128];
120 const int matrix_encoding = s->matrix_encoding;
121 float maxval;
122
123 in_ch_layout = clean_layout(s, s->in_ch_layout);
124 out_ch_layout = clean_layout(s, s->out_ch_layout);
125
126 if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
127 && (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
128 )
129 out_ch_layout = AV_CH_LAYOUT_STEREO;
130
131 if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
132 && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
133 )
134 in_ch_layout = AV_CH_LAYOUT_STEREO;
135
136 if(!sane_layout(in_ch_layout)){
137 av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
138 av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
139 return AVERROR(EINVAL);
140 }
141
142 if(!sane_layout(out_ch_layout)){
143 av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
144 av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
145 return AVERROR(EINVAL);
146 }
147
148 memset(s->matrix, 0, sizeof(s->matrix));
149 for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
150 if(in_ch_layout & out_ch_layout & (1ULL<<i))
151 matrix[i][i]= 1.0;
152 }
153
154 unaccounted= in_ch_layout & ~out_ch_layout;
155
156 //FIXME implement dolby surround
157 //FIXME implement full ac3
158
159
160 if(unaccounted & AV_CH_FRONT_CENTER){
161 if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
162 if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
163 matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
164 matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
165 } else {
166 matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
167 matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
168 }
169 }else
170 av_assert0(0);
171 }
172 if(unaccounted & AV_CH_LAYOUT_STEREO){
173 if(out_ch_layout & AV_CH_FRONT_CENTER){
174 matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
175 matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
176 if(in_ch_layout & AV_CH_FRONT_CENTER)
177 matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
178 }else
179 av_assert0(0);
180 }
181
182 if(unaccounted & AV_CH_BACK_CENTER){
183 if(out_ch_layout & AV_CH_BACK_LEFT){
184 matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
185 matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
186 }else if(out_ch_layout & AV_CH_SIDE_LEFT){
187 matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
188 matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
189 }else if(out_ch_layout & AV_CH_FRONT_LEFT){
190 if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
191 matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
192 if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
193 matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
194 matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
195 } else {
196 matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
197 matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
198 }
199 } else {
200 matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
201 matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
202 }
203 }else if(out_ch_layout & AV_CH_FRONT_CENTER){
204 matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
205 }else
206 av_assert0(0);
207 }
208 if(unaccounted & AV_CH_BACK_LEFT){
209 if(out_ch_layout & AV_CH_BACK_CENTER){
210 matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
211 matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
212 }else if(out_ch_layout & AV_CH_SIDE_LEFT){
213 if(in_ch_layout & AV_CH_SIDE_LEFT){
214 matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
215 matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
216 }else{
217 matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
218 matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
219 }
220 }else if(out_ch_layout & AV_CH_FRONT_LEFT){
221 if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
222 matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
223 matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
224 matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
225 matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
226 } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
227 matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
228 matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
229 matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
230 matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
231 } else {
232 matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
233 matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
234 }
235 }else if(out_ch_layout & AV_CH_FRONT_CENTER){
236 matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
237 matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
238 }else
239 av_assert0(0);
240 }
241
242 if(unaccounted & AV_CH_SIDE_LEFT){
243 if(out_ch_layout & AV_CH_BACK_LEFT){
244 /* if back channels do not exist in the input, just copy side
245 channels to back channels, otherwise mix side into back */
246 if (in_ch_layout & AV_CH_BACK_LEFT) {
247 matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
248 matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
249 } else {
250 matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
251 matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
252 }
253 }else if(out_ch_layout & AV_CH_BACK_CENTER){
254 matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
255 matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
256 }else if(out_ch_layout & AV_CH_FRONT_LEFT){
257 if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
258 matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
259 matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
260 matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
261 matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
262 } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
263 matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
264 matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
265 matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
266 matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
267 } else {
268 matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
269 matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
270 }
271 }else if(out_ch_layout & AV_CH_FRONT_CENTER){
272 matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
273 matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
274 }else
275 av_assert0(0);
276 }
277
278 if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
279 if(out_ch_layout & AV_CH_FRONT_LEFT){
280 matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
281 matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
282 }else if(out_ch_layout & AV_CH_FRONT_CENTER){
283 matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
284 matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
285 }else
286 av_assert0(0);
287 }
288 /* mix LFE into front left/right or center */
289 if (unaccounted & AV_CH_LOW_FREQUENCY) {
290 if (out_ch_layout & AV_CH_FRONT_CENTER) {
291 matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
292 } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
293 matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
294 matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
295 } else
296 av_assert0(0);
297 }
298
299 for(out_i=i=0; i<64; i++){
300 double sum=0;
301 int in_i=0;
302 if((out_ch_layout & (1ULL<<i)) == 0)
303 continue;
304 for(j=0; j<64; j++){
305 if((in_ch_layout & (1ULL<<j)) == 0)
306 continue;
307 if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
308 s->matrix[out_i][in_i]= matrix[i][j];
309 else
310 s->matrix[out_i][in_i]= i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
311 sum += fabs(s->matrix[out_i][in_i]);
312 in_i++;
313 }
314 maxcoef= FFMAX(maxcoef, sum);
315 out_i++;
316 }
317 if(s->rematrix_volume < 0)
318 maxcoef = -s->rematrix_volume;
319
320 if (s->rematrix_maxval > 0) {
321 maxval = s->rematrix_maxval;
322 } else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
323 || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
324 maxval = 1.0;
325 } else
326 maxval = INT_MAX;
327
328 if(maxcoef > maxval || s->rematrix_volume < 0){
329 maxcoef /= maxval;
330 for(i=0; i<SWR_CH_MAX; i++)
331 for(j=0; j<SWR_CH_MAX; j++){
332 s->matrix[i][j] /= maxcoef;
333 }
334 }
335
336 if(s->rematrix_volume > 0){
337 for(i=0; i<SWR_CH_MAX; i++)
338 for(j=0; j<SWR_CH_MAX; j++){
339 s->matrix[i][j] *= s->rematrix_volume;
340 }
341 }
342
343 for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
344 for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
345 av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
346 }
347 av_log(NULL, AV_LOG_DEBUG, "\n");
348 }
349 return 0;
350 }
351
352 av_cold int swri_rematrix_init(SwrContext *s){
353 int i, j;
354 int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
355 int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
356
357 s->mix_any_f = NULL;
358
359 if (!s->rematrix_custom) {
360 int r = auto_matrix(s);
361 if (r)
362 return r;
363 }
364 if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
365 s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
366 s->native_one = av_mallocz(sizeof(int));
367 for (i = 0; i < nb_out; i++)
368 for (j = 0; j < nb_in; j++)
369 ((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
370 *((int*)s->native_one) = 32768;
371 s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
372 s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
373 s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
374 }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
375 s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
376 s->native_one = av_mallocz(sizeof(float));
377 for (i = 0; i < nb_out; i++)
378 for (j = 0; j < nb_in; j++)
379 ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
380 *((float*)s->native_one) = 1.0;
381 s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
382 s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
383 s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
384 }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
385 s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
386 s->native_one = av_mallocz(sizeof(double));
387 for (i = 0; i < nb_out; i++)
388 for (j = 0; j < nb_in; j++)
389 ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
390 *((double*)s->native_one) = 1.0;
391 s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
392 s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
393 s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
394 }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
395 // Only for dithering currently
396 // s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
397 s->native_one = av_mallocz(sizeof(int));
398 // for (i = 0; i < nb_out; i++)
399 // for (j = 0; j < nb_in; j++)
400 // ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
401 *((int*)s->native_one) = 32768;
402 s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
403 s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
404 s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
405 }else
406 av_assert0(0);
407 //FIXME quantize for integeres
408 for (i = 0; i < SWR_CH_MAX; i++) {
409 int ch_in=0;
410 for (j = 0; j < SWR_CH_MAX; j++) {
411 s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
412 if(s->matrix[i][j])
413 s->matrix_ch[i][++ch_in]= j;
414 }
415 s->matrix_ch[i][0]= ch_in;
416 }
417
418 if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s);
419
420 return 0;
421 }
422
423 av_cold void swri_rematrix_free(SwrContext *s){
424 av_freep(&s->native_matrix);
425 av_freep(&s->native_one);
426 av_freep(&s->native_simd_matrix);
427 av_freep(&s->native_simd_one);
428 }
429
430 int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
431 int out_i, in_i, i, j;
432 int len1 = 0;
433 int off = 0;
434
435 if(s->mix_any_f) {
436 s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
437 return 0;
438 }
439
440 if(s->mix_2_1_simd || s->mix_1_1_simd){
441 len1= len&~15;
442 off = len1 * out->bps;
443 }
444
445 av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
446 av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
447
448 for(out_i=0; out_i<out->ch_count; out_i++){
449 switch(s->matrix_ch[out_i][0]){
450 case 0:
451 if(mustcopy)
452 memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
453 break;
454 case 1:
455 in_i= s->matrix_ch[out_i][1];
456 if(s->matrix[out_i][in_i]!=1.0){
457 if(s->mix_1_1_simd && len1)
458 s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
459 if(len != len1)
460 s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
461 }else if(mustcopy){
462 memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
463 }else{
464 out->ch[out_i]= in->ch[in_i];
465 }
466 break;
467 case 2: {
468 int in_i1 = s->matrix_ch[out_i][1];
469 int in_i2 = s->matrix_ch[out_i][2];
470 if(s->mix_2_1_simd && len1)
471 s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
472 else
473 s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
474 if(len != len1)
475 s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
476 break;}
477 default:
478 if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
479 for(i=0; i<len; i++){
480 float v=0;
481 for(j=0; j<s->matrix_ch[out_i][0]; j++){
482 in_i= s->matrix_ch[out_i][1+j];
483 v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
484 }
485 ((float*)out->ch[out_i])[i]= v;
486 }
487 }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
488 for(i=0; i<len; i++){
489 double v=0;
490 for(j=0; j<s->matrix_ch[out_i][0]; j++){
491 in_i= s->matrix_ch[out_i][1+j];
492 v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
493 }
494 ((double*)out->ch[out_i])[i]= v;
495 }
496 }else{
497 for(i=0; i<len; i++){
498 int v=0;
499 for(j=0; j<s->matrix_ch[out_i][0]; j++){
500 in_i= s->matrix_ch[out_i][1+j];
501 v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
502 }
503 ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
504 }
505 }
506 }
507 }
508 return 0;
509 }