1 \documentclass[12pt,oneside,
a4paper]{book
}
11 \usepackage[utf8
]{inputenc}
12 \usepackage[francais
]{babel
}
17 \usepackage[T1]{fontenc}
20 \usepackage{tocbibind
}
24 %%%%%Marges & en-t\^etes
26 \geometry{hmargin=
2.3cm, vmargin=
3cm
}
27 \fancyhf{} % supprime les en-t\^etes et pieds pr\'ed\'efinis
28 \fancyhead[FC
]{\bfseries\thepage} % N∞page centre bas
29 \fancyhead[HC
]{\footnotesize\leftmark} % chapitre centre haut
30 \renewcommand{\headrulewidth}{0.2pt
} % filet en haut
31 \addtolength{\headheight}{0.5pt
} % espace pour le filet
32 \renewcommand{\footrulewidth}{0.2pt
} % filet en bas
35 %%%%%Th\'eor\`eme et d\'efinitions
37 \newtheorem{Def
}{D\'efinition
}
38 \newtheorem{Not
}[Def
]{Notation
}
39 \newtheorem{Th
}{Th\'eor\`eme
}
40 \newtheorem{Prop
}[Th
]{Proposition
}
41 \newtheorem{Cor
}[Th
]{Corollaire
}
42 \newtheorem{Rmq
}{Remarque
}
44 \newcommand{\norme}[1]{\left\Vert #1\right\Vert}
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 %\includegraphics[scale=0.5]{logo_sciences_rvb.png}\\
59 \includegraphics[scale=
0.5]{polytech.png
}\\
64 \large \bf D\'epartement d'Informatique, Réseaux et Multimédia\\
65 \large \bf 5ème année\\
70 %\large{Master 2 Professionnel\\
71 %Math\'ematiques et Informatique des Nouvelles Technologies\\}
73 \large{Projet \\ en \\ Optimisation et Recherche Opérationnelle \\
}
80 \LARGE\textbf {Programmation Séquentielle Quadratique
} \\
82 \LARGE\textbf {Optimisation non linéraire sous contraintes
} \\
89 \includegraphics[scale=
0.4]{CE.PNG
}\\
96 %\normalsize{M\'emoire encadr\'e par :} \large St\'ephane \bsc{Ballet}\\
99 \large {\bf Jérôme
\bsc{Benoit
} et Sylvain
\bsc{Papa
}}\\
103 % \large sous la direction de \\
107 %Eric Audureau et Thierry Masson
113 %\normalsize{Licence de Mathématiques 3ème année}
114 \normalsize{Année
2018-
2019}
118 \thispagestyle{empty
}
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135 %%%%%Table des mati\`eres
141 %\includegraphics{logo_fac2}
142 \includegraphics[scale=
0.04]{amu
}
149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
157 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
158 \chapter{Introduction générale
}
162 \section{Qu'est-ce que la recherche opérationnelle?
}
164 \subsection{Présentation rapide
}
166 La recherche opérationnelle est une discipline dite "hybride" au confluent de plusieurs disciplines dont principalement les mathématiques (l'analyse numérique, les probabilités, la statistique) et l'informatique (l'algorithmie).
168 On la considère usuellement comme une sous discipline des mathématiques de la décision. Elle a de nombreuses applications, particulièrement en intelligence artificielle.
170 \subsection{Définition de la problèmatique
}
172 Définissons le problème central $
\mathcal{P
} $ que se propose de résoudre la recherche opérationnelle :
174 Soient $(n, p, q)
\in \mathbb{N
}^
3$, $x
\in \mathbb{R
}^n$, une fonction $g:
\mathbb{R
}^n
\longrightarrow \mathbb{R
}^p$ représentant les contraintes d'inégalités, une fonction $h:
\mathbb{R
}^n
\longrightarrow \mathbb{R
}^q$ représentant les contraintes d'égalités et une fonction dite objectif $J:
\mathbb{R
}^n
\longrightarrow \mathbb{R
}$.
176 La problèmatique $
\mathcal{P
} $ se définit par :
180 \displaystyle\min_{x
\in \mathbb{R
}^n
} J(x) \\
188 On définit $
\mathcal{C
} $ l'ensemble des contraintes par :
189 $$
\mathcal{C
} =
\left \
{ x
\in \mathbb{R
}^n \ | \ g(x)
\leq 0 \land h(x) =
0 \right \
} $$
191 Elle se doit de résoudre les problèmes d'existence d'une solution ($
\mathcal{C
} \neq \emptyset $ et $
\displaystyle\min_{x
\in \mathbb{R
}^n
} J(x) $ défini dans $
\mathcal{C
} $) ainsi que de construction d'une solution dans $
\mathcal{C
} $.
193 \section{Qu'est-ce que l'optimisation?
}
195 \subsection{Définition
}
197 La recherche d'une méthode permettant de trouver la solution au problème $
\mathcal{P
} $ dans $
\mathcal{C
} $ est l'activité principale de l'optimisation.
199 Si la modélisation de la problèmatique $
\mathcal{P
} $ est considérée comme un art, la recherche d'une solution au problème $
\mathcal{P
} $ dans $
\mathcal{C
} $ est, elle, une science.
201 \subsection{Quelques définitions annexes
}
203 Définissons quelques notions supplémentaires de base nécessaires à la suite :
205 Soient $
\mathbb{R
}^n $ un espace topologique, $ A
\subset \mathbb{R
}^n $ et $ x^
\ast \in \mathbb{R
}^n $.
207 On dit que $ x^
\ast $ est
\textbf{intérieur
} à $ A $ si $ A $ est un voisinage de $ x^
\ast $. On appelle intérieur de $ A $ l'ensemble des points intérieurs à $ A $ et on le note $
\mathring{A
} $.
210 Soient $
\mathbb{R
}^n $ un espace topologique, $ A
\subset \mathbb{R
}^n $ et $ x^
\ast \in \mathbb{R
}^n $.
212 On dit que $ x^
\ast $ est
\textbf{adhérent
} à $ A $ si et seulement si $
\forall V
\in \mathcal{V
}(x^
\ast) \ A
\cap V
\neq \emptyset $. On appelle adhérence de $ A $ l'ensemble des points adhérents à $ A $ et on le note $
\overline{A
} $.
216 Soient une fonction $ f:
\mathbb{R
}^n
\longrightarrow \mathbb{R
} $ et $ x^
\ast \in \mathbb{R
}^n $.
218 On dit que $ f $ est continue en $ x^
\ast $ si
219 $$
\forall \varepsilon \in \mathbb{R
}_
{+
}^
{*
} \
\exists \alpha \in \mathbb{R
}_
{+
}^
{*
} \
\forall x
\in \mathbb{R
}^n \
\norme{x - x^
\ast} \leq \alpha \Longrightarrow |f(x) - f(x^
\ast)|
\leq \varepsilon $$
222 Soient $ k
\in \
{ 1,
\ldots,n \
} $ et une fonction $ f:
\mathbb{R
}^n
\longrightarrow \mathbb{R
} $.
224 On dit que la $ k^
{ième
} $ dérivée partielle de $ f $ existe au point $ x^
\ast \in \mathbb{R
}^n $ si l’application
225 $$ t
\longmapsto f(x^
\ast_1,
\ldots,x^
\ast_{k-
1},x^
\ast_k + t,x^
\ast_{k+
1},
\ldots,x^
\ast_n) $$
226 définie sur un voisinage de $
0 $ dans $
\mathbb{R
} $ et à valeurs dans $
\mathbb{R
} $ est dérivable en $
0 $.
229 $$
\frac{\partial f
}{\partial x_k
}(x^
\ast) $$ ou $$
\partial_k f(x^
\ast) $$
233 Soient une fonction $ f:
\mathbb{R
}^n
\longrightarrow \mathbb{R
} $
234 et $ x^
\ast, h
\in \mathbb{R
}^n $.
236 On dit que $ f $ est différentiable en $ x^
\ast $ si il existe une application linéraire $ d_
{x^
\ast}f $ de $
\mathbb{R
}^n $ dans $
\mathbb{R
} $ telle que
238 f(x^
\ast + h) = f(x^
\ast) + d_
{x^
\ast}f(h) +
\underset{h
\rightarrow 0}{\mathrm{o
}}(
\norme{h
})
240 Autrement dit il existe une application $
\varepsilon_{x^
\ast} $ définie sur le voisinage de $
0 $ dans $
\mathbb{R
}^n $ et à valeurs dans $
\mathbb{R
} $
241 telle que $
\lim\limits_{h
\rightarrow 0} \varepsilon_{x^
\ast}(h) =
0 $ et
243 f(x^
\ast + h) = f(x^
\ast) + d_
{x^
\ast}f(h) +
\norme{h
}\varepsilon_{x^
\ast}(h)
245 On appelle $ d_
{x^
\ast}f $ la différentielle de $ f $ en $ x^
\ast $.
248 On peut démontrer que : $$ d_
{x^
\ast}f =
\sum_{i=
1}^n
\frac{\partial f
}{\partial x_i
}(x^
\ast) $$.
251 Soit une fonction $ f:
\mathbb{R
}^n
\longrightarrow \mathbb{R
} $ différentiable.
253 Le gradient de $ f $, noté $
\nabla f$, en $ x^
\ast \in \mathbb{R
}^n$ se définit par :
255 \nabla f(x^
\ast) = (
\frac{\partial f
}{\partial x_1
}(x^
\ast),
\ldots,
\frac{\partial f
}{\partial x_n
}(x^
\ast))
259 $
\forall h
\in \mathbb{R
}^n \ d_
{x^
\ast}f(h) =
\langle \nabla f(x^
\ast),h
\rangle $
262 \subsection{Conditions d'existence d'un extremum
}
264 On peut démontrer que $
\mathcal{C
}$ est un ensemble fermé de $
\mathbb{R
}^n $ si $ g $ et $ h $ sont continues.
265 On peut en déduire que si $ J $ est continue, $
\mathcal{C
}$ est un ensemble fermé et borné de $
\mathbb{R
}^n $.
266 \begin{Th
}[Théorème de Weierstrass
]
267 Soient $
\mathcal{C
} \neq \emptyset \subset \mathbb{R
}^n $ un fermé borné et $ f :
\mathcal{C
} \longrightarrow \mathbb{R
} $ une fonction continue.
269 Alors $$
\exists x^
\ast \in \mathcal{C
} \
\forall x
\in \mathcal{C
} \ f(x)
\geq f(x^
\ast) $$
270 Autrement dit $ x^
\ast $ est un minimum global de $ J $ sur $
\mathcal{C
} $.
272 De la même façon, il existe maximum global de $ J $ sur $
\mathcal{C
} $.
274 On en déduit que $
\mathcal{P
} $ admet au moins une solution dans le cas où $ J, g ,h $ sont continues.
275 \subsection{Conditions de caractérisation d'un extremum
}
277 Dans le cas où $ J, g, h $ sont continûment différentiable et ses dérivées sont continues (c'est à dire de classe $
\mathcal{C
}^
1 $), la recherche du mimimum consiste à faire une descente par gradient de $ J $ sur $
\mathcal{C
} $ avec comme critère d'arrêt : $
\forall \varepsilon \in \mathbb{R
}_
{+
}^
{*
} \
\norme{\nabla J(x^
\ast)
} <
\varepsilon $.
279 On peut en déduire que une condition nécessaire et suffisante pour que $ x^
\ast \in \mathring{\mathcal{C
}} $ soit un des extremums locaux de $ J $ est que $
\nabla J(x^
\ast) =
0 $. Mais si $ x^
\ast \in \overline{\mathcal{C
}}\setminus\mathring{\mathcal{C
}} $ (la frontière de $
\mathcal{C
} $) alors $
\nabla J(x^
\ast) $ n'est pas nécessairement nul. Il sera par conséquent nécessaire de trouver d'autres caratérisations d'un extremum.
281 \subsubsection{Conditions de Kuhn-Tucker et Lagrange
}
284 Soient $ x^
\ast \in \mathbb{R
}^n $, $ I = \
{ 1,
\ldots,p \
} $ et $ J = \
{ 1,
\ldots,q \
} $.
286 Une condition nécessaire pour que $ x^
\ast \in \mathcal{C
}$ soit un minimum local est :
289 \centerline{$ \
{ \nabla g_1(x^
\ast),
\ldots,
\nabla g_p(x^
\ast),
\nabla h_1(x^
\ast),
\ldots,
\nabla h_q(x^
\ast) \
} $ sont linéairement indépendants.
}
293 $$
\forall i
\in I \
\exists \mu_i \in \mathbb{R
}_
{+
} \land \forall j
\in J \
\exists \lambda_j \in \mathbb{R
} \
\nabla J(x^
\ast) +
\sum_{i
\in I
}\mu_i{\nabla g_i(x^
\ast)
} +
\sum_{j
\in J
}\lambda_j{\nabla h_j(x^
\ast)
} =
0 \land \forall i
\in I \
\mu_i \nabla g_i(x^
\ast) =
0 $$
294 On appelle $ (
\mu_i)_
{i
\in I
}$ les multiplicateurs de Kuhn-Tucker et $ (
\lambda_j)_
{j
\in J
}$ les multiplicateurs de Lagrange.
296 Il est à noter que une condition d'égalité peut se répresenter par deux conditions d'inégalité : $
\forall x
\in \mathbb{R
}^n \
\forall i
\in \
{ 1,
\ldots,q \
} \ h_i(x) =
0 \Longleftrightarrow h_i(x)
\leq 0 \land h_i(x)
\geq 0 $.
299 Dans ce projet, nous nous proposons d'étudier une des méthodes d'optimisation non linéaire avec contraintes nommée programmation quadratique séquentielle.
301 % Dans cette section nous prenons appui sur l'ouvrage {\it Optimisation et contrôle des systèmes linéaires} \cite{Berg} de Maïtine Bergounioux \footnote{Maïtine Bergounioux, {\it Optimisation et contrôle des systèmes linéaires}, Dunod, 2001.}.
302 % Nous utiliserons aussi l'ouvrage de Francis Filbet\footnote{Francis Filbet, {\it Analyse numérique - Algorithme et étude mathématique}, Dunod, 2009.}, {\it Analyse numérique - Algorithme et étude mathématique} \cite{Filb}.
304 %{\it La relativité}, Que sais-je?, 4ème édition, puf, 2000, \cite{Mavr};
305 %ainsi que Jean Hladik, {\it La relativité selon Einstein}, L'esprit des sciences, Ellipses, 2000, \cite{Hlad}.
308 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
310 \chapter{Méthodes de programmation quadratique séquentielle
}
312 % \section{Cahier des charges}
314 % Il s'agit de travailler en binôme ou bien seul sur des sujets complémentaires et d'approfondissement du cours. Le travail en question effectué durant les TDs consistera
315 % à effectuer un dossier sur un thème. Le dossier devra être tapé en Latex ou Tex puisque il peut y avoir des formules de mathématiques ou de physiques. Il pourra aussi comporter une partie "implémentation effective" d'algorithmes (en annexe).
319 % Sur la fond, toutes les sources de connaissance utilisées devront être citées. En particulier, la méthodologie universitaire sera privilégiée
320 % (citations en note de bas de page et dans le corps du document, liste des références en fin de document dans la bibliographie, etc...).
321 % Wikipédia pourra être utilisé mais cela devra être mentionné en tant que référence (note de bas de page ou citation dans le corps du document).
322 % L'accent sera essentiellement mis sur la démarche scientifique utilisée à égal niveau avec le contenu acquis des connaissances.
326 % Plusieurs sources devront être croisées afin de prétendre au maximum de vraisemblance
327 % et d'objectivité scientifique. Le document ne devra pas excéder 10 pages.
328 % On privilégiera les qualités de synthèse, d'organisation ainsi que du contenu du document.
330 % \section{Proposition de sujets}
332 % \subsection{Analyse numérique}
336 % 1) Méthode des moindres Carrés (cas général, cas pondéré, cas des équations non linéaires).
340 % 2) Méthode de Newton-Raphson (cas d'une variable, cas de deux variables) - Application: extrema d'une fonction à deux variables.
344 % 3) Autres méthodes: méthode de Jacobi, de Gauss-Seidel, etc....
348 \section{Optimisation
}
352 % \subsubsection{Optimisation sans contrainte}
354 % {\bf A- Algorithmes déterministes}
358 % 1) Régression linéaire sans contrainte (pré-requis: Méthode des moindres carrés).
362 % 2) Méthodes de descente: la méthode du gradient (à pas constant ou à pas variable ou à pas optimal).
366 % 3) Méthode de Newton (ou méthode dite de la tangente) et application à la recherche d'extrema.
370 % 4) Méthodes de descente: méthode du gradient conjugué (cas linéaire et cas général)
374 % 5) Méthode de relaxation
378 % {\bf B- Algorithmes probabilistes ou dit stochastiques}
382 % 1) Dynamique de métropolis (prérequis: chaines de Markov)
386 % 2) Recuit simulé sur un ensemble fini et application au problème du voyageur de commerce (prérequis: dynamique de métropolis)
390 \subsubsection{Optimisation ou minimisation avec contraintes
}
394 % 1) Régression linéaire avec contraintes (prérequis: méthode des moindres carrés, conditions ou équations dites de Karush-kuhn-Tucker (KKT)) .
398 % 2) Cas de la programmation linéaire (prérequis: Lagrangien et multiplicateurs de Lagrange, conditions de KKT).
402 % 3) Algorithmes: méthode du gradient projeté, méthode de Lagrange-Newton pour des contraintes en égalité,
403 % méthode de Newton projetée pour des contraintes de bornes, méthodes de pénalisation,
404 % méthodes de programmation quadratique successive (SQP Sequential Quadratic Programming),
405 % méthode de dualité (méthode d'Uzawa, prérequis: théorie de la dualité convexe) etc...
409 % \subsection{Recherche opérationnelle}
413 % \subsubsection{La programmation linéaire (cas particulier de l'optimisation avec contraintes)}
415 % 1) Méthode d'énumération.
419 % 2) Méthode du simplexe.
423 % 3) Application à des problèmes de R.O:
427 % \hspace{.3em} 3.1) Fêtes de Pâques: A l'approche des fêtes de Pâques, un artisan chocolatier décide de confectionner des oeufs en chocolats. En allant inspecter ses réserves, il constate qu'il lui reste 18 kg de cacao, 8 kg de noisettes et 14 litres de lait. Ce chocolatier a deux spécialités: l'oeuf {\it extra} et l'oeuf {\it sublime}. Un oeuf {\it extra} nécessite 1kg de cacao, 1 kg de noisettes et 2 litres de lait tandis qu'un oeuf {\it sublime} nécessite 3 kg de cacao, 1 kg de noisettes et 1 litre de lait. Il fera un bénéfice de 20 euros en vendant un oeuf {\it extra}, et de 30 euros en vendant un oeuf {\it sublime}.
431 % \hspace{.6em} a) \'Ecrire ce problème sous la forme d'un problème de programmation linéaire.
435 % \hspace{.6em} b) Combien d'oeufs extra et sublime doit-il fabriquer pour faire le plus grand bénéfice?
439 % \hspace{.3em} 3.2) Organisation du travail: La fabrication d'une pièce $P_1$ a un prix de revient de 150 euros et celle d'une pièce $P_2$ coûte 100 euros. Chaque pièce est traitée successivement dans trois ateliers. Le nombre d'heures-machines par pièce est indiqué dans le tableau suivant :
445 % \begin{array}{|c|c|c|c|}
447 % Atelier & A & B & C \\
449 % Pièce 1 & 3 h & 5 h & 2 h \\
451 % Pièce 2 & 1 h & 3 h & 3 h \\
459 % Pour éviter le chômage technique, l'atelier A doit obligatoirement fournir 1200 heures machines, l'atelier B doit obligatoirement fournir 3000 heures machines et l'atelier C doit obligatoirement fournir 1800 heures machines.
461 % \hspace{.6em} a) \'Ecrire ce problème sous la forme d'un problème de programmation linéaire.
465 % \hspace{.6em} b) Combien faut-il fabriquer de pièces $P_1$ et $P_2$ pour minimiser le coût de revient de l'ensemble de la production et pour assurer le fonctionnement des trois ateliers excluant tout chômage technique?
469 \bibliographystyle{plain
}
470 \bibliography{stdlib_sbphilo
}
472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
477 \begin{thebibliography
}{6}\input{MemoireM2Ballet6.synctex.gz(busy)
}
479 %\bibitem[1]{BL} Jean-Pierre \bsc{Bourguignon} et David \bsc{Langlois}, Cours de M1, Module Relativité Générale,
480 %Ecole Polytechnique, ParisTech, 2011.\\
482 %\bibitem[2]{G} Gilles \bsc{Cohen-Tannoudji}, Einstein et la refondation relativiste de la physique, 2005.\\
484 %\bibitem[3]{D} Pierre \bsc{Duhem}, La théorie physique, son objet, sa structure, Vrin, 2007.\\
486 %\bibitem[4]{E1} Albert \bsc{Einstein}, Die formale grundlage der allgemeinen Relativittstheorie. Kniglich Preussische
487 %Akademie der Wissenschaften (Berlin),Sitzungsberichte: pp 1030-1085. \\
489 %\bibitem[5]{G} Christian \bsc{Godin}, Dictionnaire de philosophie, Fayard Edition du temps, 2004.\\
491 %\bibitem[6]{H} Jean \bsc{Hladik}, La Relativité selon Einstein, L'Esprit des Sciences, Ellipses.\\
493 %\bibitem[7]{IS} \bsc{Iftime} and \bsc{Stachel}, The hole argument for covariant theories, arKiv:gr-qc/0512021v2, 8 avril 2006.\\
495 %\bibitem[8]{K} \bsc{Kant}, Critique de la raison pure, Traduction, présentation, notes par Alain Renaut, GF-Flammarion, 2006.\\
497 %\bibitem[9]{K2} \bsc{Kant}, Prolégomènes à toute métaphysique future, Traduction de Louis Guilermit, Vrin, 1986.\\
499 %\bibitem[10]{KU} Thomas \bsc{Kuhn}, La structure des révolutions scientifiques, Flammarion Champs Sciences, 2008.
501 %\bibitem[11]{L} Marc \bsc{Lachièze-Rey}, Initiation à la cosmologie, 3ème édition, Dunod, 2000.\\
503 %\bibitem[12]{Mas} Thierry \bsc{Masson}, Cours de géométrie différentielle, groupe et algèbre de Lie, fibrés et connexions, 2010.\\
505 %\bibitem[13]{Poi} Henri \bsc{Poincaré}, La Science et L'Hypothèse, Flammarion, Paris, 1968.\\
507 %\bibitem[14]{Mav} Stamatia \bsc{Mavridès}, La Relativité, Que sais-je, 4ème édition, PUF, 2000.\\
509 %\bibitem[15]{R} Robert \bsc{Rynasiewicz}, The Lessons of the Hole Argument, The British Journal of the Philosophy of Science,
510 %vol; 45 (2), 407-436, Oxford University Press, Oxford Journals, 1994. \\
512 %\bibitem[16]{S} Standford Encyclopedia of Philosophy.\\
514 %\bibitem[17]{W} Wikipedia.\\
516 %\bibitem[1]{Bachtold} {\bf Manuel Bächtold}, L'interprétation de la mécanique quantique, une approche pragmatique, Collection vision des sciences, Hermann, 2008 .\\
518 %\bibitem[2]{Aspect} {\bf Alain Aspect}, Présentation naïve des inégalités de Bell, 2004.\\
520 % \bibitem[3]{Basda} {\bf Jean-Louis Basdevant et Manuel Joffre}, Mécanique Quantique, Les éditions de l'Ecole Polytechnique, 2006.\\
522 %\bibitem[4]{Diu} {\bf Bernard Diu}, Le congrès de Solvay de 1927: petite chronique d'un grand évènement, Bibnum.\\
524 %\bibitem[1]{B} \bsc{Aristote}, Métaphysique, traduction J.Tricot, Vrin, 1974.\\
526 \end{thebibliography
}