+/**
+ * Simplest demonstration of using the rotating master hue.
+ * All pixels are full-on the same color.
+ */
class TestHuePattern extends SCPattern {
public TestHuePattern(GLucose glucose) {
super(glucose);
}
+
public void run(int deltaMs) {
+ // Access the core master hue via this method call
+ float hv = lx.getBaseHuef();
for (int i = 0; i < colors.length; ++i) {
- colors[i] = color(lx.getBaseHuef(), 100, 100);
+ colors[i] = color(hv, 100, 100);
}
}
}
+/**
+ * Test of a wave moving across the X axis.
+ */
class TestXPattern extends SCPattern {
- private SinLFO xPos = new SinLFO(0, model.xMax, 4000);
+ private final SinLFO xPos = new SinLFO(0, model.xMax, 4000);
public TestXPattern(GLucose glucose) {
super(glucose);
addModulator(xPos).trigger();
}
public void run(int deltaMs) {
+ float hv = lx.getBaseHuef();
for (Point p : model.points) {
- colors[p.index] = color(
- lx.getBaseHuef(),
- 100,
- max(0, 100 - abs(p.fx - xPos.getValuef()))
- );
+ // This is a common technique for modulating brightness.
+ // You can use abs() to determine the distance between two
+ // values. The further away this point is from an exact
+ // point, the more we decrease its brightness
+ float bv = max(0, 100 - abs(p.fx - xPos.getValuef()));
+ colors[p.index] = color(hv, 100, bv);
}
}
}
+/**
+ * Test of a wave on the Y axis.
+ */
class TestYPattern extends SCPattern {
- private SinLFO yPos = new SinLFO(0, model.yMax, 4000);
+ private final SinLFO yPos = new SinLFO(0, model.yMax, 4000);
public TestYPattern(GLucose glucose) {
super(glucose);
addModulator(yPos).trigger();
}
public void run(int deltaMs) {
+ float hv = lx.getBaseHuef();
for (Point p : model.points) {
- colors[p.index] = color(
- lx.getBaseHuef(),
- 100,
- max(0, 100 - abs(p.fy - yPos.getValuef()))
- );
+ float bv = max(0, 100 - abs(p.fy - yPos.getValuef()));
+ colors[p.index] = color(hv, 100, bv);
}
}
}
+/**
+ * Test of a wave on the Z axis.
+ */
class TestZPattern extends SCPattern {
- private SinLFO zPos = new SinLFO(0, model.zMax, 4000);
+ private final SinLFO zPos = new SinLFO(0, model.zMax, 4000);
public TestZPattern(GLucose glucose) {
super(glucose);
addModulator(zPos).trigger();
}
public void run(int deltaMs) {
+ float hv = lx.getBaseHuef();
for (Point p : model.points) {
- colors[p.index] = color(
- lx.getBaseHuef(),
- 100,
- max(0, 100 - abs(p.fz - zPos.getValuef()))
- );
+ float bv = max(0, 100 - abs(p.fz - zPos.getValuef()));
+ colors[p.index] = color(hv, 100, bv);
}
}
}
+/**
+ * This is a demonstration of how to use the projection library. A projection
+ * creates a mutation of the coordinates of all the points in the model, creating
+ * virtual x,y,z coordinates. In effect, this is like virtually rotating the entire
+ * art car. However, since in reality the car does not move, the result is that
+ * it appears that the object we are drawing on the car is actually moving.
+ *
+ * Keep in mind that what we are creating a projection of is the view coordinates.
+ * Depending on your intuition, some operations may feel backwards. For instance,
+ * if you translate the view to the right, it will make it seem that the object
+ * you are drawing has moved to the left. If you scale the view up 2x, objects
+ * drawn with the same absolute values will seem to be half the size.
+ *
+ * If this feels counterintuitive at first, don't worry. Just remember that you
+ * are moving the pixels, not the structure. We're dealing with a finite set
+ * of sparse, non-uniformly spaced pixels. Mutating the structure would move
+ * things to a space where there are no pixels in 99% of the cases.
+ */
class TestProjectionPattern extends SCPattern {
- final Projection projection;
- final SawLFO angle = new SawLFO(0, TWO_PI, 9000);
- final SinLFO yPos = new SinLFO(-20, 40, 5000);
+ private final Projection projection;
+ private final SawLFO angle = new SawLFO(0, TWO_PI, 9000);
+ private final SinLFO yPos = new SinLFO(-20, 40, 5000);
- TestProjectionPattern(GLucose glucose) {
+ public TestProjectionPattern(GLucose glucose) {
super(glucose);
projection = new Projection(model);
addModulator(angle).trigger();
}
public void run(int deltaMs) {
- // Note: logically, you typically apply the transformations in reverse order
+ // For the same reasons described above, it may logically feel to you that
+ // some of these operations are in reverse order. Again, just keep in mind that
+ // the car itself is what's moving, not the object
projection.reset(model)
- .translate(-model.xMax/2., -model.yMax/2. + yPos.getValuef(), -model.zMax/2.)
+
+ // Translate so the center of the car is the origin, offset by yPos
+ .translateCenter(0, yPos.getValuef(), 0)
+
+ // Rotate around the origin (now the center of the car) about an X-vector
.rotate(angle.getValuef(), 1, 0, 0)
+
+ // Scale up the Y axis (objects will look smaller in that access)
.scale(1, 1.5, 1);
+ float hv = lx.getBaseHuef();
for (Coord c : projection) {
float d = sqrt(c.x*c.x + c.y*c.y + c.z*c.z); // distance from origin
// d = abs(d-60) + max(0, abs(c.z) - 20); // life saver / ring thing
d = max(0, abs(c.y) - 10 + .3*abs(c.z) + .08*abs(c.x)); // plane / spear thing
colors[c.index] = color(
- (lx.getBaseHuef() + .6*abs(c.x) + abs(c.z)) % 360,
+ (hv + .6*abs(c.x) + abs(c.z)) % 360,
100,
constrain(140 - 10*d, 0, 100)
);