Add more needed computation on the SQP example.
authorJérôme Benoit <jerome.benoit@piment-noir.org>
Wed, 7 Nov 2018 12:22:33 +0000 (13:22 +0100)
committerJérôme Benoit <jerome.benoit@piment-noir.org>
Wed, 7 Nov 2018 12:22:33 +0000 (13:22 +0100)
Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
rapport/ProjetOptimRO.tex

index 11ede70314b3c093cf65427f68e840aa6a0cb095..b129b919a4415d1c0568664733195db2324a8b47 100644 (file)
@@ -283,7 +283,7 @@ Définissons quelques notions supplémentaires de base nécessaires à la suite
  $ \forall h \in \mathbb{R}^n \ d_{x^\ast}f(h) = \langle \nabla f(x^\ast),h \rangle = \nabla f(x^\ast)^\top h $
 \end{Rmq}
 \begin{Def}
- Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ un fonction de classe $ \mathcal{C}^2 $.
+ Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ une fonction de classe $ \mathcal{C}^2 $.
  On définit la matrice hessienne de $ f $ en $ x^\ast $ par :
  $$ H[f](x^\ast) =
   \begin{pmatrix}
@@ -759,25 +759,31 @@ $$
  \right .
 $$
 où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
-\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ \lambda_0 = $ multiplicateur initial.
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ (\lambda_{0_1},\lambda_{0_2}) = $ multiplicateur initial.
 \newline
-Le Lagrangien de $ \mathcal{P} $ : $ L(x,y,z,\lambda) = $
+Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
 \newline
-Le gradient de $ J $ : $ \nabla J(x,y,z) = (\frac{\partial J}{\partial x}(x,y,z),\frac{\partial J}{\partial y}(x,y,z),\frac{\partial J}{\partial z}(x,y,z)) = $
+Le gradient de $ J $ : $$ \nabla J(x,y,z) = (\frac{\partial J}{\partial x}(x,y,z),\frac{\partial J}{\partial y}(x,y,z),\frac{\partial J}{\partial z}(x,y,z)) = (2x,2y,2z). $$
 \newline
-Le gradient de $ g $ : $ \nabla g(x,y,z) = (\nabla g_1(x,y,z),\nabla g_2(x,z,z)) = $
+Le gradient de $ g $ : $$ \nabla g(x,y,z) = (\nabla g_1(x,y,z),\nabla g_2(x,z,z)) $$
+$$ = ((\frac{\partial g_1}{\partial x}(x,y,z),\frac{\partial g_1}{\partial y}(x,y,z),\frac{\partial g_1}{\partial z}(x,y,z)),(\frac{\partial g_2}{\partial x}(x,y,z),\frac{\partial g_2}{\partial y}(x,y,z),\frac{\partial g_2}{\partial z}(x,y,z)) $$
+$$ = ((2x,2y,0),(2x,0,2z)). $$
 \newline
-La matrice hessienne de $ J $ : $ H[J](x,y,z) =
+Le gradient du Lagrangien $ L $ :
+$$ \nabla L((x,y,z),(\lambda_1,\lambda_2)) = \nabla J(x,y,z) + \lambda_1 \nabla g_1(x,y,z) + \lambda_2 \nabla g_2(x,y,z)) $$
+\newline
+La matrice hessienne de $ J $ : $$ H[J](x,y,z) =
  \begin{pmatrix}
   \frac{\partial^2 J}{\partial^2 x}(x,y,z)         & \frac{\partial^2 J}{\partial x\partial y}(x,y,z) & \frac{\partial^2 J}{\partial x\partial z}(x,y,z) \\
   \frac{\partial^2 J}{\partial y\partial x}(x,y,z) & \frac{\partial^2 J}{\partial^2 y}(x,y,z)         & \frac{\partial^2 J}{\partial y\partial z}(x,y,z) \\
   \frac{\partial^2 J}{\partial z\partial x}(x,y,z) & \frac{\partial^2 J}{\partial z\partial y}(x,y,z) & \frac{\partial^2 J}{\partial^2 z}(x,y,z)         \\
  \end{pmatrix} =
  \begin{pmatrix}
-   &  & \\
-   &  & \\
-   &  & \\
- \end{pmatrix} $
+  2 & 0 & 0 \\
+  0 & 2 & 0 \\
+  0 & 0 & 2 \\
+ \end{pmatrix} = 2Id_{\mathbb{R}^3} $$
+ On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $.
 
 \bibliographystyle{plain}
 \bibliography{stdlib_sbphilo}