La recherche d'une méthode permettant de trouver la solution au problème $ \mathcal{P} $ dans $ \mathcal{C} $ est l'activité principale de l'optimisation.
\newline
-Si la modélisation de la problèmatique $ \mathcal{P} $ est considérée comme un art, la recherche d'une solution au problème $ \mathcal{P} $ dans $ \mathcal{C} $ est une science.
+Si la modélisation de la problèmatique $ \mathcal{P} $ est considérée comme un art, la recherche d'une solution au problème $ \mathcal{P} $ dans $ \mathcal{C} $ est, elle, une science.
\subsection{Quelques définitions annexes}
Soient $ x^\ast \in \mathbb{R}^n $, $ I = \{ 1,\ldots,p \} $ et $ J = \{ 1,\ldots,q \} $.
\newline
Une condition nécessaire pour que $ x^\ast \in \mathcal{C}$ soit un minimum local est :
-$$ \forall i \in I \ \exists \mu_i \in \mathbb{R}_{+} \land \forall j \in J \ \exists \lambda_j \in \mathbb{R} \ \nabla J(x^\ast) + \sum_{i \in I}\mu_i{\nabla g_i(x^\ast)} + \sum_{j \in J}\lambda_j{\nabla h_j(x^\ast)} = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $$
-et $ \{ \nabla g_1(x^\ast),\ldots,\nabla g_p(x^\ast),\nabla h_1(x^\ast),\ldots,\nabla h_q(x^\ast) \} $ sont linéairement indépendants.
\newline
\newline
+\centerline{$ \{ \nabla g_1(x^\ast),\ldots,\nabla g_p(x^\ast),\nabla h_1(x^\ast),\ldots,\nabla h_q(x^\ast) \} $ sont linéairement indépendants.}
+\newline
+\newline
+et
+$$ \forall i \in I \ \exists \mu_i \in \mathbb{R}_{+} \land \forall j \in J \ \exists \lambda_j \in \mathbb{R} \ \nabla J(x^\ast) + \sum_{i \in I}\mu_i{\nabla g_i(x^\ast)} + \sum_{j \in J}\lambda_j{\nabla h_j(x^\ast)} = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $$
On appelle $ (\mu_i)_{i \in I}$ les multiplicateurs de Kuhn-Tucker et $ (\lambda_j)_{j \in J}$ les multiplicateurs de Lagrange.
\end{Th}
-Il est à noter que une condition d'égalité peut se répresenter par deux conditions d'inégalité : $ \forall i \in \{ 1,\ldots,q \} \ h_i = 0 \Longleftrightarrow \exists g_i \ g_i \leq 0 \land g_i \geq 0 $.
+Il est à noter que une condition d'égalité peut se répresenter par deux conditions d'inégalité : $ \forall x \in \mathbb{R}^n \ \forall i \in \{ 1,\ldots,q \} \ h_i(x) = 0 \Longleftrightarrow h_i(x) \leq 0 \land h_i(x) \geq 0 $.
\newline
\newline
Dans ce projet, nous nous proposons d'étudier une des méthodes d'optimisation non linéaire avec contraintes nommée programmation quadratique séquentielle.