Current work on the example
[Projet_Recherche_Operationnelle.git] / rapport / ProjetOptimRO.tex
index 11ede70314b3c093cf65427f68e840aa6a0cb095..28796600115e84e852d5d435f0870eda0a58a257 100644 (file)
@@ -21,6 +21,8 @@
 \usepackage{tocbibind}
 \usepackage{lmodern}
 \usepackage{enumitem}
+\usepackage{algorithm2e}
+\usepackage{algorithmic}
 
 
 %%%%%Marges & en-t\^etes
@@ -283,7 +285,7 @@ Définissons quelques notions supplémentaires de base nécessaires à la suite
  $ \forall h \in \mathbb{R}^n \ d_{x^\ast}f(h) = \langle \nabla f(x^\ast),h \rangle = \nabla f(x^\ast)^\top h $
 \end{Rmq}
 \begin{Def}
- Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ un fonction de classe $ \mathcal{C}^2 $.
+ Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ une fonction de classe $ \mathcal{C}^2 $.
  On définit la matrice hessienne de $ f $ en $ x^\ast $ par :
  $$ H[f](x^\ast) =
   \begin{pmatrix}
@@ -553,6 +555,29 @@ Nous ne répondrons pas à ces questions qui sont hors du cadre de ce projet. Ce
 
 Nous supposons les fonctions $ J,g,h $ à valeurs réelles et de classe $ \mathcal{C}^1 $. Trouver une solution d’un problème d’optimisation sous contraintes fonctionnelles consiste à déterminer un point optimal $ x^\ast $ et des multiplicateurs associés $ (\lambda^\ast,\mu^\ast) $. Deux grandes familles de méthodes peuvent être définies pour la résolution des problèmes d’optimisation sous contraintes : les méthodes primales et les méthodes duales. Les approches primales se concentrent sur la détermination du point $ x^\ast $, les multiplicateurs $ (\lambda,\mu) $ ne servant souvent qu’à vérifier l’optimalité de $ x^\ast $. Les méthodes duales quant à elles mettent l’accent sur la recherche des multiplicateurs en travaillant sur un problème d’optimisation déduit du problème initial par \textit{dualité}.
 
+\subsection{Problème quadratique sous contraintes linéaires}
+
+Nous introduisons les différentes approches développées pour la résolution des problèmes de programmation quadratique avec contraintes d'égalités et d’inégalités linéaires.
+\newline
+Ce type de problème quadratique se pose sous la forme :
+$$
+ \mathcal{PQ} \left \{
+ \begin{array}{l}
+  \displaystyle\min_{x \in \mathbb{R}^n} c^\top x + \frac{1}{2} x^\top \mathcal{Q} x \\
+  A^\top x + b \leq 0                                                                \\
+  A^{\prime^\top} x + b^\prime = 0
+ \end{array}
+ \right .
+$$
+où $$ \mathcal{Q} \in \mathcal{M}_n(\mathbb{R}) \ symétrique, c \in \mathbb{R}^n, A \in  \mathcal{M}_{n,p}(\mathbb{R}), b \in \mathbb{R}^p, A^\prime \in \mathcal{M}_{n,q}(\mathbb{R}), b^\prime \in \mathbb{R}^q $$
+Or
+$$  A^{\prime^\top} x + b^\prime = 0 \iff A^{\prime^\top} x + b^\prime \leq 0 \land   -A^{\prime^\top} x - b^\prime \leq 0 $$
+Donc le problème se ramène à :
+
+\subsubsection{Algorithme 1}
+
+\subsubsection{Algorithme 2}
+
 \subsection{Algorithmes Newtoniens}
 
 Les algorithmes newtoniens sont basés sur la linéarisation d’équations caractérisant les solutions que l’on cherche, fournies par les conditions d’optimalité d’ordre $ 1 $. Ces algorithmes sont \textit{primaux-duaux} dans le sens où ils génèrent à la fois une suite primale $ (x_k )_{k \in \mathbb{N}} $ convergeant vers une solution $ \overline{x} $ du problème considéré, et une suite duale $ (\lambda_k)_{k \in \mathbb{N}} $ (resp. $ ((\lambda_k, \mu_k))_{k \in \mathbb{N}} $) de multiplicateurs convergeant vers un multiplicateur optimal $ \overline{\lambda} $ (resp. $ (\overline{\lambda},\overline{\mu}) $) associé à $ \overline{x} $.
@@ -711,7 +736,7 @@ ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ.
                \mathcal{PQ}_k \left \{
                \begin{array}{l}
                 \displaystyle\min_{d \in \mathbb{R}^n} \nabla J(x_k)^\top d + \frac{1}{2}d^\top H_k d \\
-                g_j(x_k) + \nabla g_j(x_k)^\top d = 0, \ \forall j \in \{1,\ldots,p\}                 \\
+                g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0 \\, \ \forall j \in \{1,\ldots,p\}                 \\
                 h_i(x_k) + \nabla h_i(x_k)^\top d = 0, \ \forall i \in \{1,\ldots,q\}
                \end{array}
                \right .
@@ -759,25 +784,128 @@ $$
  \right .
 $$
 où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
-\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ \lambda_0 = $ multiplicateur initial.
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ (\lambda_{0_1},\lambda_{0_2}) = $ multiplicateur initial.
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
 \newline
-Le Lagrangien de $ \mathcal{P} $ : $ L(x,y,z,\lambda) = $
+Le gradient de $ J $ : $$ \nabla J(x,y,z) = (\frac{\partial J}{\partial x}(x,y,z),\frac{\partial J}{\partial y}(x,y,z),\frac{\partial J}{\partial z}(x,y,z)) = (2x,2y,2z). $$
 \newline
-Le gradient de $ J $ : $ \nabla J(x,y,z) = (\frac{\partial J}{\partial x}(x,y,z),\frac{\partial J}{\partial y}(x,y,z),\frac{\partial J}{\partial z}(x,y,z)) = $
+Le gradient de $ g $ : $$ \nabla g(x,y,z) = (\nabla g_1(x,y,z),\nabla g_2(x,y,z)) $$
+$$ = ((\frac{\partial g_1}{\partial x}(x,y,z),\frac{\partial g_1}{\partial y}(x,y,z),\frac{\partial g_1}{\partial z}(x,y,z)),(\frac{\partial g_2}{\partial x}(x,y,z),\frac{\partial g_2}{\partial y}(x,y,z),\frac{\partial g_2}{\partial z}(x,y,z)) $$
+$$ = ((2x,2y,0),(2x,0,2z)). $$
 \newline
-Le gradient de $ g $ : $ \nabla g(x,y,z) = (\nabla g_1(x,y,z),\nabla g_2(x,z,z)) = $
+Le gradient du Lagrangien $ L $ :
+$$ \nabla L((x,y,z),(\lambda_1,\lambda_2)) = \nabla J(x,y,z) + \lambda_1 \nabla g_1(x,y,z) + \lambda_2 \nabla g_2(x,y,z)) $$
 \newline
-La matrice hessienne de $ J $ : $ H[J](x,y,z) =
+La matrice hessienne de $ J $ : $$ H[J](x,y,z) =
  \begin{pmatrix}
   \frac{\partial^2 J}{\partial^2 x}(x,y,z)         & \frac{\partial^2 J}{\partial x\partial y}(x,y,z) & \frac{\partial^2 J}{\partial x\partial z}(x,y,z) \\
   \frac{\partial^2 J}{\partial y\partial x}(x,y,z) & \frac{\partial^2 J}{\partial^2 y}(x,y,z)         & \frac{\partial^2 J}{\partial y\partial z}(x,y,z) \\
   \frac{\partial^2 J}{\partial z\partial x}(x,y,z) & \frac{\partial^2 J}{\partial z\partial y}(x,y,z) & \frac{\partial^2 J}{\partial^2 z}(x,y,z)         \\
  \end{pmatrix} =
  \begin{pmatrix}
-   &  & \\
-   &  & \\
-   &  & \\
- \end{pmatrix} $
+  2 & 0 & 0 \\
+  0 & 2 & 0 \\
+  0 & 0 & 2 \\
+ \end{pmatrix} = 2Id_{\mathbb{R}^3} $$
+On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $.
+
+\hrulefill
+
+\subsection{Trace d'éxécution de PQS}
+
+Utilisons le problème $ \mathcal{P} $ précédent :
+
+$$
+ \mathcal{P} \left \{
+ \begin{array}{l}
+  \displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2       \\
+  g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 \\
+ \end{array}
+ \right .
+$$
+où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = (0.01,0.01,0.01) $, $ (x_0,y_0,z_0) = (80, 20 ,60)$  et $ (\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 40$  et $r1= r2= 10$.
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs :
+ $ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2). $
+ $ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900). $
+ $ L((80,20,60),(1,1)) = 21800. $
+
+ \begin{algorithm}
+ \caption {PQS du problème $ \mathcal{P} $}
+ \begin{algorithmic}
+ \REQUIRE $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$
+ \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
+ \STATE \textbf{Data :}
+ \STATE $k \leftarrow 0$
+ \STATE $x_k \leftarrow 80$
+ \STATE $y_k \leftarrow 20$
+ \STATE $z_k \leftarrow 60$
+ \STATE $x_a \leftarrow 30$
+ \STATE $y_a \leftarrow 10$
+ \STATE $z_a \leftarrow 40$
+ \STATE $r \leftarrow 40$
+ \STATE $r_1 \leftarrow 10$
+ \STATE $r_2 \leftarrow 10$
+ \STATE $\varepsilon \leftarrow 0.01$
+ \STATE $\lambda_1 = \lambda_2 = 1$
+ \STATE $ H[J](x,y,z)^{-1}\leftarrow  \begin{pmatrix}
+  0.5 & 0 & 0 \\
+  0 & 0.5 & 0 \\
+  0 & 0 & 0.5 \\ \end{pmatrix} $
+\newline
+
+ \STATE{//Calcule du gradient de $ J $ :}
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (160,40,120) $
+\newline
+ \STATE {//calcule des deux sous partie de du gradient de $ g $: }
+ \STATE $ // \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
+ \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$  \hfill $ //résultat : (60, 20, 0)$
+ \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$  \hfill $ //résultat : (60, 0, 80)$
+\newline
+ \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ < 10)$}
+
+ \STATE { //première itération :}
+
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (280, 60, 200)$
+ \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
+\newline
+ \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+ \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$
+ \newline
+ \STATE {//Calcul nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
+ \newline
+ \STATE {//Incrémentation de k}
+ \STATE $ k \leftarrow k+1$
+
+
+ \STATE {//Deuxième itération :}
+ \STATE{//Calcule du gradient de $ J $ :}
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (0,0,0) $
+
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (160, 20, 30)$
+ \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
+
+ \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+ \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$
+ \STATE {//Calcul nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
+ \STATE {//Incrémentation de k}
+ \STATE $ k \leftarrow k+1$\hfill $ //k = 1$
+
+ \ENDWHILE
+
+\end{algorithmic}
+\end{algorithm}
+
+
+\hrulefill
 
 \bibliographystyle{plain}
 \bibliography{stdlib_sbphilo}