Finish the slides.
[Projet_Recherche_Operationnelle.git] / rapport / ProjetOptimRO.tex
index e66ed414bfb00df88cb30fd0168800a8dfaa0fa9..372670f6167b036fa74ce7f8913ff20c2a746fdd 100644 (file)
@@ -514,7 +514,7 @@ En supposant $ J $ de classe $ \mathcal{C}^2 $ et la matrice hessienne $ H[J](x_
 $$ x_{k+1} = x_k - H[J](x_k)^{-1} \nabla J(x_k), $$
 où $ d_k = -H[J](x_k)^{-1} \nabla J(x_k) $ est appelée direction de Newton. La direction $ d_k $ est également l’unique solution du problème :
 $$ \underset{d \in \mathbb{R}^n}{\mathrm{argmin}} \ J(x_k) + \langle \nabla J(x_k),d \rangle + \frac{1}{2}\langle H[J](x_k)d,d \rangle $$
-Autrement dit, $ d_k $ est le point de minimum global de l’approximation de second ordre de $ J $ au voisinage du point courant $ x_k $.
+Autrement dit, $ d_k $ est le point de minimum global de l’approximation quadratique de $ J $ au voisinage du point courant $ x_k $.
 À condition que la matrice $ H[J](x_k) $ soit définie positive à chaque itération, la méthode de Newton est bien une méthode de descente à pas fixe égal à $ 1 $.
 \newline
 Les propriétés remarquables de cet algorithme sont :