Merge branch 'master' of git.piment-noir.org:Projet_Recherche_Operationnelle
[Projet_Recherche_Operationnelle.git] / rapport / ProjetOptimRO.tex
index 28796600115e84e852d5d435f0870eda0a58a257..ac1711839f0a4d88260d2414b8a8a41af6a192b7 100644 (file)
@@ -334,13 +334,19 @@ On peut en déduire que une condition nécessaire et suffisante pour que $ x^\as
  Soient $ x^\ast \in \mathbb{R}^n $, $ I = \{ 1,\ldots,p \} $ et $ J = \{ 1,\ldots,q \} $.
  \newline
  Les conditions nécessaires pour que $ x^\ast \in \mathcal{C}$ soit un minimum local de $ J $ sont :
- \newline
- \newline
- \centerline{$ \{ \nabla g_1(x^\ast),\ldots,\nabla g_p(x^\ast),\nabla h_1(x^\ast),\ldots,\nabla h_q(x^\ast) \} $ sont linéairement indépendants.}
- \newline
- \newline
+ \begin{center}
+  $ \{ \nabla g_1(x^\ast),\ldots,\nabla g_p(x^\ast),\nabla h_1(x^\ast),\ldots,\nabla h_q(x^\ast) \} $ sont linéairement indépendants.
+ \end{center}
  et
- $$ \forall i \in I \ \exists \mu_i \in \mathbb{R}_{+} \land \forall j \in J \ \exists \lambda_j \in \mathbb{R} \ \nabla J(x^\ast) + \sum_{i \in I}\mu_i{\nabla g_i(x^\ast)} + \sum_{j \in J}\lambda_j{\nabla h_j(x^\ast)} = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $$
+ \begin{center}
+  $ \forall i \in I \ \exists \mu_i \in \mathbb{R}_{+} \land \forall j \in J \ \exists \lambda_j \in \mathbb{R} $ tels que :
+ \end{center}
+ \begin{center}
+  $ \nabla J(x^\ast) + \sum\limits_{i \in I}\mu_i{\nabla g_i(x^\ast)} + \sum\limits_{j \in J}\lambda_j{\nabla h_j(x^\ast)} = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $
+ \end{center}
+ \begin{center}
+  $ \iff \nabla L(x^\ast,\lambda,\mu) = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $ où $ \lambda = (\lambda_1,\ldots,\lambda_q) $ et $ \mu = (\mu_1,\ldots,\mu_p) $.
+ \end{center}
  On appelle $ (\mu_i)_{i \in I}$ les multiplicateurs de Kuhn-Tucker et $ (\lambda_j)_{j \in J}$ les multiplicateurs de Lagrange.
  \newline
  On nomme également les conditions \textit{KTT} conditions nécessaires d'optimalité du premier ordre.
@@ -400,7 +406,7 @@ Cette dernière inégalité garantit une décroissance minimum de la fonction $
 
 \hrulefill
 \newline
-ALGORITHME DE DESCENTE MODÈLE.
+ALGORITHME DE DESCENTE GÉNÉRIQUE.
 \newline
 \textit{Entrées}: $ J : \mathbb{R}^n \longrightarrow \mathbb{R} $ différentiable, $ x_0 \in \mathbb{R}^n $ point initial arbitraire.
 \newline
@@ -429,7 +435,7 @@ Remarquons que si $ x_k $ est un point stationnaire ($ \iff \nabla J(x_k) = 0 $)
 
 \subsection{Critère d’arrêt}
 
-Soit $ x^\ast $ un minimum local de l'objectif $ J $ à optimiser. Supposons que l’on choisisse comme test d’arrêt dans l’algorithme de descente modèle, le critère idéal : "$ x_k = x^\ast $". Dans un monde idéal (i.e. en supposant tous les calculs exacts et la capacité de calcul illimitée), soit l’algorithme s’arrête après un nombre fini d’itérations, soit il construit (théoriquement) une suite infinie $ x_0,x_1,\ldots,x_k,\ldots $ de points de $ \mathbb{R}^n $ qui converge vers $ x^\ast $.
+Soit $ x^\ast $ un minimum local de l'objectif $ J $ à optimiser. Supposons que l’on choisisse comme test d’arrêt dans l’algorithme de descente générique, le critère idéal : "$ x_k = x^\ast $". Dans un monde idéal (i.e. en supposant tous les calculs exacts et la capacité de calcul illimitée), soit l’algorithme s’arrête après un nombre fini d’itérations, soit il construit (théoriquement) une suite infinie $ x_0,x_1,\ldots,x_k,\ldots $ de points de $ \mathbb{R}^n $ qui converge vers $ x^\ast $.
 \newline
 En pratique, un test d’arrêt devra être choisi pour garantir que l’algorithme s’arrête toujours après un nombre fini d’itérations et que le dernier point calculé soit suffisamment proche de $ x^\ast $.
 
@@ -516,7 +522,7 @@ En supposant $ J $ de classe $ \mathcal{C}^2 $ et la matrice hessienne $ H[J](x_
 $$ x_{k+1} = x_k - H[J](x_k)^{-1} \nabla J(x_k), $$
 où $ d_k = -H[J](x_k)^{-1} \nabla J(x_k) $ est appelée direction de Newton. La direction $ d_k $ est également l’unique solution du problème :
 $$ \underset{d \in \mathbb{R}^n}{\mathrm{argmin}} \ J(x_k) + \langle \nabla J(x_k),d \rangle + \frac{1}{2}\langle H[J](x_k)d,d \rangle $$
-Autrement dit, $ d_k $ est le point de minimum global de l’approximation de second ordre de $ J $ au voisinage du point courant $ x_k $.
+Autrement dit, $ d_k $ est le point de minimum global de l’approximation quadratique de $ J $ au voisinage du point courant $ x_k $.
 À condition que la matrice $ H[J](x_k) $ soit définie positive à chaque itération, la méthode de Newton est bien une méthode de descente à pas fixe égal à $ 1 $.
 \newline
 Les propriétés remarquables de cet algorithme sont :
@@ -531,7 +537,7 @@ Les propriétés remarquables de cet algorithme sont :
  \hline
                                                                                                      & le coût de résolution du système linéaire $ H[J](x_k )(x_{k+1} - x_k) = \nabla J(x_k) $.                                                                          \\
  \hline
-                                                                                                     & l’absence de convergence si le premier itéré est trop loin de la solution, ou si la    hessienne est singulière.                                                  \\
+                                                                                                     & l’absence de convergence si le premier itéré est trop loin de la solution, ou si la hessienne est singulière.                                                     \\
  \hline
                                                                                                      & pas de distinction entre minima, maxima et points stationnaires.                                                                                                  \\
  \hline
@@ -722,7 +728,7 @@ En posant $ d = x - x_k $ et $ H_k = H[L](x_k,\lambda_k,\mu_k) $, on obtient le
 
 \hrulefill
 \newline
-ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ.
+ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INÉGALITÉ.
 \newline
 \textit{Entrées}: $ J : \mathbb{R}^n \longrightarrow \mathbb{R} $, $g: \mathbb{R}^n \longrightarrow \mathbb{R}^p$, $ h : \mathbb{R}^n \longrightarrow \mathbb{R}^q $ différentiables, $ x_0 \in \mathbb{R}^n $ point initial arbitraire, $ \lambda_0 \in \mathbb{R}_+^p $ et $ \mu_0 \in \mathbb{R}_+^q $ multiplicateurs initiaux, $ \varepsilon > 0 $ précision demandée.
 \newline
@@ -736,7 +742,7 @@ ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ.
                \mathcal{PQ}_k \left \{
                \begin{array}{l}
                 \displaystyle\min_{d \in \mathbb{R}^n} \nabla J(x_k)^\top d + \frac{1}{2}d^\top H_k d \\
-                g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0 \\, \ \forall j \in \{1,\ldots,p\}                 \\
+                g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0, \ \forall j \in \{1,\ldots,p\}              \\
                 h_i(x_k) + \nabla h_i(x_k)^\top d = 0, \ \forall i \in \{1,\ldots,q\}
                \end{array}
                \right .
@@ -783,7 +789,7 @@ $$
  \end{array}
  \right .
 $$
-où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
+où $$ (r,r_1,r_2) \in \mathbb{R}_+^{*^3} \land r < r_1 \land r < r_2. $$
 \textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ (\lambda_{0_1},\lambda_{0_2}) = $ multiplicateur initial.
 \newline
 Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
@@ -810,9 +816,18 @@ La matrice hessienne de $ J $ : $$ H[J](x,y,z) =
  \end{pmatrix} = 2Id_{\mathbb{R}^3} $$
 On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $.
 
-\hrulefill
+\newpage
 
-\subsection{Trace d'éxécution de PQS}
+\subsection{Trace d'éxécution de PQS avec contrainte}
+%\includegraphics[scale=0.2]{figure_sphere_avec_contrainte.png}\\
+\begin{center}
+\includegraphics[scale=0.2]{sphere2.jpg}\\
+
+\footnotesize{
+ \small \it Fig : Exemple de la sphère\\
+ \vspace*{0.5cm}
+}
+\end{center}
 
 Utilisons le problème $ \mathcal{P} $ précédent :
 
@@ -825,32 +840,24 @@ $$
  \right .
 $$
 où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
-\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = (0.01,0.01,0.01) $, $ (x_0,y_0,z_0) = (80, 20 ,60)$  et $ (\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 40$  et $r1= r2= 10$.
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (100, 100 ,0)$  et $(\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 100$  et $r1 = r2 = 10$.
 \newline
 Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
 \newline
 Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs :
- $ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2). $
- $ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900). $
- $ L((80,20,60),(1,1)) = 21800. $
+ $ L((100,100,0),(1,1)) = 100^2 + 100^2 + 0^2 -100^2 + 1 * (100^2 +100^2 - 10^2) + \lambda_2(100^2 + 100^2 -10^2). $
+ $ L((100,100,0),(1,1)) = 1000 + 1000 - 1000 + (1000 + 1000 - 100) + (1000 + 1000 -100). $
+ $ L((100,100,0),(1,1)) = 4800. $
 
- \begin{algorithm}
- \caption {PQS du problème $ \mathcal{P} $}
+\newpage
+\begin{algorithmfloat}[#Algo 1]
+ \caption {Trace d'éxécution du PQS du problème $ \mathcal{P} $}
  \begin{algorithmic}
- \REQUIRE $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$
+ \REQUIRE $g(x_0,y_0,z_0)\leq 0$, $(x_0,y_0,z_0) = (10, 10 ,10)$
  \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
  \STATE \textbf{Data :}
- \STATE $k \leftarrow 0$
- \STATE $x_k \leftarrow 80$
- \STATE $y_k \leftarrow 20$
- \STATE $z_k \leftarrow 60$
- \STATE $x_a \leftarrow 30$
- \STATE $y_a \leftarrow 10$
- \STATE $z_a \leftarrow 40$
- \STATE $r \leftarrow 40$
- \STATE $r_1 \leftarrow 10$
- \STATE $r_2 \leftarrow 10$
- \STATE $\varepsilon \leftarrow 0.01$
+ \STATE $k \leftarrow 0, (x_k, y_k, z_k)  \leftarrow (100, 100, 0), r \leftarrow 100$
+ \STATE $r_1 = r2 \leftarrow 10, \varepsilon \leftarrow 0.01$
  \STATE $\lambda_1 = \lambda_2 = 1$
  \STATE $ H[J](x,y,z)^{-1}\leftarrow  \begin{pmatrix}
   0.5 & 0 & 0 \\
@@ -859,50 +866,197 @@ Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs :
 \newline
 
  \STATE{//Calcule du gradient de $ J $ :}
- \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (160,40,120) $
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (100,100,0) $
 \newline
  \STATE {//calcule des deux sous partie de du gradient de $ g $: }
- \STATE $ // \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
- \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$  \hfill $ //résultat : (60, 20, 0)$
- \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$  \hfill $ //résultat : (60, 0, 80)$
+ \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$  \hfill $ //résultat : (20, 20, 0)$
+ \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$  \hfill $ //résultat : (20, 0, 20)$
+ \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
 \newline
- \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ < 10)$}
+ \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$}
 
  \STATE { //première itération :}
 
 \STATE {//Calcule du gradient de $ L $ : }
-\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (280, 60, 200)$
- \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (220, 220, 40)$
+ \STATE $  \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
 \newline
  \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
- \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$
+ \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(50,50,0))$
  \newline
  \STATE {//Calcul nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (50,50,0)$
  \newline
  \STATE {//Incrémentation de k}
- \STATE $ k \leftarrow k+1$
-
+ \STATE $ k \leftarrow k+1$\hfill $ //k = 1$
+\newline
 
  \STATE {//Deuxième itération :}
  \STATE{//Calcule du gradient de $ J $ :}
- \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (0,0,0) $
-
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (100,100,0) $
+\newline
 \STATE {//Calcule du gradient de $ L $ : }
-\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (160, 20, 30)$
- \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
-
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (120, 120, 0)$
+ \STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
  \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
- \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$
+ \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(25,25,0))$
  \STATE {//Calcul nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (25,25,0)$
+ \newline
  \STATE {//Incrémentation de k}
- \STATE $ k \leftarrow k+1$\hfill $ //k = 1$
+\STATE $ k \leftarrow k+1$\hfill $ //k = 2$
+\newline
+
+\STATE {//Troisième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (50,50,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (70, 70, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(12.5,12.5,0))$
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\newline
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (12.5,12.5,0)$
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 3$
+\newline
+
+\STATE {//Quatrième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (25,25,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (45, 45, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(6.25,6.25,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (6.25,6.25,0)$
+\STATE {//Incrémentation de k}
+\newline
+\STATE $ k \leftarrow k+1$\hfill $ //k = 4$
+\STATE $ $
+
+\STATE {//Cinquième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (12.5,12.5,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (32.5, 32.5, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(3.125,3.125,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (3.125,3.125,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 5$
+\newline
+
+\STATE {//Sixième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (6.25,6.25,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (26.25, 26.25, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(1.5625,1.5625,0))$
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\newline
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$
+\STATE {//Incrémentation de k}
+\newline
+\STATE $ k \leftarrow k+1$\hfill $ //k = 6$
+\newline
+
+\STATE {//Septième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (3.125, 3.125, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (23.125, 23.125, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.78125,0.78125,0))$
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\newline
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$
+\STATE {//Incrémentation de k}
+\newline
+\STATE $ k \leftarrow k+1$\hfill $ //k = 7$
+\newline
+
+\STATE {//Huitième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (1.5625, 1.5625, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (21.5625, 21.5625, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.390625,0.390625,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 8$
+\newline
+
+\STATE {//neuvième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (0.78125, 0.78125, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (20.78125, 20.78125, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1 \hfill  //k = 9$
+\newline
+
+\STATE {//Dixième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (0.390625, 0.390625, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (20.390625, 20.390625, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 10$
+\newline
+\STATE {// Fin de la boucle "while" car nous avons atteint k =10, condition mettant fin à la //boucle}
+\newline
 
  \ENDWHILE
 
 \end{algorithmic}
-\end{algorithm}
+\end{algorithmfloat}
 
 
 \hrulefill