Correction sur la trace de l'algo
[Projet_Recherche_Operationnelle.git] / rapport / ProjetOptimRO.tex
index 0a136865259c876287b5f32ac3fd4c028da895d4..ccce4d2d1ae6ad6280595a3c715deff9bdb60f71 100644 (file)
@@ -21,6 +21,8 @@
 \usepackage{tocbibind}
 \usepackage{lmodern}
 \usepackage{enumitem}
+\usepackage{algorithm2e}
+\usepackage{algorithmic}
 
 
 %%%%%Marges & en-t\^etes
@@ -283,7 +285,7 @@ Définissons quelques notions supplémentaires de base nécessaires à la suite
  $ \forall h \in \mathbb{R}^n \ d_{x^\ast}f(h) = \langle \nabla f(x^\ast),h \rangle = \nabla f(x^\ast)^\top h $
 \end{Rmq}
 \begin{Def}
- Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ un fonction de classe $ \mathcal{C}^2 $.
+ Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ une fonction de classe $ \mathcal{C}^2 $.
  On définit la matrice hessienne de $ f $ en $ x^\ast $ par :
  $$ H[f](x^\ast) =
   \begin{pmatrix}
@@ -514,7 +516,7 @@ En supposant $ J $ de classe $ \mathcal{C}^2 $ et la matrice hessienne $ H[J](x_
 $$ x_{k+1} = x_k - H[J](x_k)^{-1} \nabla J(x_k), $$
 où $ d_k = -H[J](x_k)^{-1} \nabla J(x_k) $ est appelée direction de Newton. La direction $ d_k $ est également l’unique solution du problème :
 $$ \underset{d \in \mathbb{R}^n}{\mathrm{argmin}} \ J(x_k) + \langle \nabla J(x_k),d \rangle + \frac{1}{2}\langle H[J](x_k)d,d \rangle $$
-Autrement dit, $ d_k $ est le point de minimum global de l’approximation de second ordre de $ J $ au voisinage du point courant $ x_k $.
+Autrement dit, $ d_k $ est le point de minimum global de l’approximation quadratique de $ J $ au voisinage du point courant $ x_k $.
 À condition que la matrice $ H[J](x_k) $ soit définie positive à chaque itération, la méthode de Newton est bien une méthode de descente à pas fixe égal à $ 1 $.
 \newline
 Les propriétés remarquables de cet algorithme sont :
@@ -553,9 +555,32 @@ Nous ne répondrons pas à ces questions qui sont hors du cadre de ce projet. Ce
 
 Nous supposons les fonctions $ J,g,h $ à valeurs réelles et de classe $ \mathcal{C}^1 $. Trouver une solution d’un problème d’optimisation sous contraintes fonctionnelles consiste à déterminer un point optimal $ x^\ast $ et des multiplicateurs associés $ (\lambda^\ast,\mu^\ast) $. Deux grandes familles de méthodes peuvent être définies pour la résolution des problèmes d’optimisation sous contraintes : les méthodes primales et les méthodes duales. Les approches primales se concentrent sur la détermination du point $ x^\ast $, les multiplicateurs $ (\lambda,\mu) $ ne servant souvent qu’à vérifier l’optimalité de $ x^\ast $. Les méthodes duales quant à elles mettent l’accent sur la recherche des multiplicateurs en travaillant sur un problème d’optimisation déduit du problème initial par \textit{dualité}.
 
+\subsection{Problème quadratique sous contraintes linéaires}
+
+Nous introduisons les différentes approches développées pour la résolution des problèmes de programmation quadratique avec contraintes d'égalités et d’inégalités linéaires.
+\newline
+Ce type de problème quadratique se pose sous la forme :
+$$
+ \mathcal{PQ} \left \{
+ \begin{array}{l}
+  \displaystyle\min_{x \in \mathbb{R}^n} c^\top x + \frac{1}{2} x^\top \mathcal{Q} x \\
+  A^\top x + b \leq 0                                                                \\
+  A^{\prime^\top} x + b^\prime = 0
+ \end{array}
+ \right .
+$$
+où $$ \mathcal{Q} \in \mathcal{M}_n(\mathbb{R}) \ symétrique, c \in \mathbb{R}^n, A \in  \mathcal{M}_{n,p}(\mathbb{R}), b \in \mathbb{R}^p, A^\prime \in \mathcal{M}_{n,q}(\mathbb{R}), b^\prime \in \mathbb{R}^q $$
+Or
+$$  A^{\prime^\top} x + b^\prime = 0 \iff A^{\prime^\top} x + b^\prime \leq 0 \land   -A^{\prime^\top} x - b^\prime \leq 0 $$
+Donc le problème se ramène à :
+
+\subsubsection{Algorithme 1}
+
+\subsubsection{Algorithme 2}
+
 \subsection{Algorithmes Newtoniens}
 
-Les algorithmes newtoniens sont basés sur la linéarisation d’équations caractérisant les solutions que l’on cherche, fournies par les conditions d’optimalité d’ordre $ 1 $. Ces algorithmes sont \textit{primaux-duaux} dans le sens où ils génèrent à la fois une suite primale $ (x_k )_{k \in \mathbb{N}} $ convergeant vers une solution $ \overline{x} $ du problème considéré, et une suite duale $ (\lambda_k)_{k \in \mathbb{N}} $ (resp. $ ((\lambda_k, \mu_k))_{k \in \mathbb{N}} $) de multiplicateurs convergeant vers un multiplicateur optimal $ \overline{\lambda} $ (resp. $ (\overline{\lambda},\overline{\mu}) $) associé à $ \overline{x} $.
+Les algorithmes newtoniens sont basés sur la linéarisation d’équations caractérisant les solutions que l’on cherche, fournies par les conditions d’optimalité d’ordre $ 1 $. Ces algorithmes sont \textit{primaux-duaux} dans le sens où ils génèrent à la fois une suite primale $ (x_k )_{k \in \mathbb{N}} $ convergeant vers une solution $ \overline{x} $ du problème considéré, et une suite duale $ (\lambda_k)_{k \in \mathbb{N}} $ (resp. $ ((\lambda_k, \mu_k))_{k \in \mathbb{N}} $) de multiplicateurs convergeant vers un multiplicateur optimal $ \overline{\lambda} $ (resp. $ (\overline{\lambda},\overline{\mu})) $ associé à $ \overline{x} $.
 
 \subsection{Algorithme PQS}
 
@@ -711,7 +736,7 @@ ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ.
                \mathcal{PQ}_k \left \{
                \begin{array}{l}
                 \displaystyle\min_{d \in \mathbb{R}^n} \nabla J(x_k)^\top d + \frac{1}{2}d^\top H_k d \\
-                g_j(x_k) + \nabla g_j(x_k)^\top d = 0, \ \forall j \in \{1,\ldots,p\}                 \\
+                g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0 \\, \ \forall j \in \{1,\ldots,p\}                 \\
                 h_i(x_k) + \nabla h_i(x_k)^\top d = 0, \ \forall i \in \{1,\ldots,q\}
                \end{array}
                \right .
@@ -759,25 +784,267 @@ $$
  \right .
 $$
 où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
-\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ x_0 = $ point initial et $ \lambda_0 = $ multiplicateur initial.
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ (\lambda_{0_1},\lambda_{0_2}) = $ multiplicateur initial.
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
 \newline
-Le Lagrangien de $ \mathcal{P} $ : $ L(x,y,z,\lambda) = $
+Le gradient de $ J $ : $$ \nabla J(x,y,z) = (\frac{\partial J}{\partial x}(x,y,z),\frac{\partial J}{\partial y}(x,y,z),\frac{\partial J}{\partial z}(x,y,z)) = (2x,2y,2z). $$
 \newline
-Le gradient de $ J $ : $ \nabla J(x,y,z) = (\frac{\partial J}{\partial x}(x,y,z),\frac{\partial J}{\partial y}(x,y,z),\frac{\partial J}{\partial z}(x,y,z)) = $
+Le gradient de $ g $ : $$ \nabla g(x,y,z) = (\nabla g_1(x,y,z),\nabla g_2(x,y,z)) $$
+$$ = ((\frac{\partial g_1}{\partial x}(x,y,z),\frac{\partial g_1}{\partial y}(x,y,z),\frac{\partial g_1}{\partial z}(x,y,z)),(\frac{\partial g_2}{\partial x}(x,y,z),\frac{\partial g_2}{\partial y}(x,y,z),\frac{\partial g_2}{\partial z}(x,y,z)) $$
+$$ = ((2x,2y,0),(2x,0,2z)). $$
 \newline
-Le gradient de $ g $ : $ \nabla g(x,y,z) = (\nabla g_1(x,y,z),\nabla g_2(x,z,z)) = $
+Le gradient du Lagrangien $ L $ :
+$$ \nabla L((x,y,z),(\lambda_1,\lambda_2)) = \nabla J(x,y,z) + \lambda_1 \nabla g_1(x,y,z) + \lambda_2 \nabla g_2(x,y,z)) $$
 \newline
-La matrice hessienne de $ J $ : $ H[J](x,y,z) =
+La matrice hessienne de $ J $ : $$ H[J](x,y,z) =
  \begin{pmatrix}
   \frac{\partial^2 J}{\partial^2 x}(x,y,z)         & \frac{\partial^2 J}{\partial x\partial y}(x,y,z) & \frac{\partial^2 J}{\partial x\partial z}(x,y,z) \\
   \frac{\partial^2 J}{\partial y\partial x}(x,y,z) & \frac{\partial^2 J}{\partial^2 y}(x,y,z)         & \frac{\partial^2 J}{\partial y\partial z}(x,y,z) \\
   \frac{\partial^2 J}{\partial z\partial x}(x,y,z) & \frac{\partial^2 J}{\partial z\partial y}(x,y,z) & \frac{\partial^2 J}{\partial^2 z}(x,y,z)         \\
  \end{pmatrix} =
  \begin{pmatrix}
-   &  & \\
-   &  & \\
-   &  & \\
- \end{pmatrix} $
+  2 & 0 & 0 \\
+  0 & 2 & 0 \\
+  0 & 0 & 2 \\
+ \end{pmatrix} = 2Id_{\mathbb{R}^3} $$
+On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $.
+
+\hrulefill
+
+\subsection{Trace d'éxécution de PQS}
+
+Utilisons le problème $ \mathcal{P} $ précédent :
+
+$$
+ \mathcal{P} \left \{
+ \begin{array}{l}
+  \displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2       \\
+  g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 \\
+ \end{array}
+ \right .
+$$
+où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (100, 100 ,0)$  et $(\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 100$  et $r1 = r2 = 10$.
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
+\newline
+Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs :
+ $ L((100,100,0),(1,1)) = 100^2 + 100^2 + 0^2 -100^2 + 1 * (100^2 +100^2 - 10^2) + \lambda_2(100^2 + 100^2 -10^2). $
+ $ L((100,100,0),(1,1)) = 1000 + 1000 - 1000 + (1000 + 1000 - 100) + (1000 + 1000 -100). $
+ $ L((100,100,0),(1,1)) = 4800. $
+
+\newpage
+\begin{algorithmfloat}[#Algo 1]
+ \caption {Trace d'éxécution du PQS du problème $ \mathcal{P} $}
+ \begin{algorithmic}
+ \REQUIRE $g(x_0,y_0,z_0)\leq 0$, $(x_0,y_0,z_0) = (10, 10 ,10)$
+ \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
+ \STATE \textbf{Data :}
+ \STATE $k \leftarrow 0, (x_k, y_k, z_k)  \leftarrow (100, 100, 0), r \leftarrow 100$
+ \STATE $r_1 = r2 \leftarrow 10, \varepsilon \leftarrow 0.01$
+ \STATE $\lambda_1 = \lambda_2 = 1$
+ \STATE $ H[J](x,y,z)^{-1}\leftarrow  \begin{pmatrix}
+  0.5 & 0 & 0 \\
+  0 & 0.5 & 0 \\
+  0 & 0 & 0.5 \\ \end{pmatrix} $
+\newline
+
+ \STATE{//Calcule du gradient de $ J $ :}
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (100,100,0) $
+\newline
+ \STATE {//calcule des deux sous partie de du gradient de $ g $: }
+ \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$  \hfill $ //résultat : (20, 20, 0)$
+ \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$  \hfill $ //résultat : (20, 0, 20)$
+ \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
+\newline
+ \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$}
+
+ \STATE { //première itération :}
+
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (220, 220, 40)$
+ \STATE $  \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
+\newline
+ \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+ \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(50,50,0))$
+ \newline
+ \STATE {//Calcul nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (50,50,0)$
+ \newline
+ \STATE {//Incrémentation de k}
+ \STATE $ k \leftarrow k+1$\hfill $ //k = 1$
+\newline
+
+ \STATE {//Deuxième itération :}
+ \STATE{//Calcule du gradient de $ J $ :}
+ \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (100,100,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (120, 120, 0)$
+ \STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+ \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+ \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(25,25,0))$
+ \STATE {//Calcul nouvelles valeurs des coordonnées}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (25,25,0)$
+ \newline
+ \STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 2$
+\newline
+
+\STATE {//Troisième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (50,50,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (70, 70, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(12.5,12.5,0))$
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\newline
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (12.5,12.5,0)$
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 3$
+\newline
+
+\STATE {//Quatrième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (25,25,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (45, 45, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(6.25,6.25,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (6.25,6.25,0)$
+\STATE {//Incrémentation de k}
+\newline
+\STATE $ k \leftarrow k+1$\hfill $ //k = 4$
+\STATE $ $
+
+\STATE {//Cinquième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (12.5,12.5,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (32.5, 32.5, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(3.125,3.125,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (3.125,3.125,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 5$
+\newline
+
+\STATE {//Sixième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (6.25,6.25,0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (26.25, 26.25, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(1.5625,1.5625,0))$
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\newline
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$
+\STATE {//Incrémentation de k}
+\newline
+\STATE $ k \leftarrow k+1$\hfill $ //k = 6$
+\newline
+
+\STATE {//Septième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (3.125, 3.125, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (23.125, 23.125, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.78125,0.78125,0))$
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\newline
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$
+\STATE {//Incrémentation de k}
+\newline
+\STATE $ k \leftarrow k+1$\hfill $ //k = 7$
+\newline
+
+\STATE {//Huitième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (1.5625, 1.5625, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (21.5625, 21.5625, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.390625,0.390625,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 8$
+\newline
+
+\STATE {//neuvième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (0.78125, 0.78125, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (20.78125, 20.78125, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1 \hfill  //k = 9$
+\newline
+
+\STATE {//Dixième itération :}
+\STATE{//Calcule du gradient de $ J $ :}
+\STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$  \hfill $  // résultat : (0.390625, 0.390625, 0) $
+\newline
+\STATE {//Calcule du gradient de $ L $ : }
+\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (20.390625, 20.390625, 0)$
+\STATE $  \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$
+\newline
+\STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
+\STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$
+\newline
+\STATE {//Calcul nouvelles valeurs des coordonnées}
+\STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$
+\newline
+\STATE {//Incrémentation de k}
+\STATE $ k \leftarrow k+1$\hfill $ //k = 10$
+\newline
+\STATE {// Fin de la boucle "while" car nous avons atteint k =10, condition mettant fin à la //boucle}
+\newline
+
+ \ENDWHILE
+
+\end{algorithmic}
+\end{algorithmfloat}
+
+
+\hrulefill
 
 \bibliographystyle{plain}
 \bibliography{stdlib_sbphilo}