Imported Debian version 0.1.3.1
[deb_fdk-aac.git] / libSBRdec / src / sbr_dec.cpp
1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 © Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 /*!
85 \file
86 \brief Sbr decoder
87 This module provides the actual decoder implementation. The SBR data (side information) is already
88 decoded. Only three functions are provided:
89
90 \li 1.) createSbrDec(): One time initialization
91 \li 2.) resetSbrDec(): Called by sbr_Apply() when the information contained in an SBR_HEADER_ELEMENT requires a reset
92 and recalculation of important SBR structures.
93 \li 3.) sbr_dec(): The actual decoder. Calls the different tools such as filterbanks, lppTransposer(), and calculateSbrEnvelope()
94 [the envelope adjuster].
95
96 \sa sbr_dec(), \ref documentationOverview
97 */
98
99 #include "sbr_dec.h"
100
101 #include "sbr_ram.h"
102 #include "env_extr.h"
103 #include "env_calc.h"
104 #include "scale.h"
105
106 #include "genericStds.h"
107
108 #include "sbrdec_drc.h"
109
110
111
112 static void assignLcTimeSlots( HANDLE_SBR_DEC hSbrDec, /*!< handle to Decoder channel */
113 FIXP_DBL **QmfBufferReal,
114 int noCols )
115 {
116 int slot, i;
117 FIXP_DBL *ptr;
118
119 /* Number of QMF timeslots in the overlap buffer: */
120 ptr = hSbrDec->pSbrOverlapBuffer;
121 for(slot=0; slot<hSbrDec->LppTrans.pSettings->overlap; slot++) {
122 QmfBufferReal[slot] = ptr; ptr += (64);
123 }
124
125 /* Assign timeslots to Workbuffer1 */
126 ptr = hSbrDec->WorkBuffer1;
127 for(i=0; i<noCols; i++) {
128 QmfBufferReal[slot] = ptr; ptr += (64);
129 slot++;
130 }
131 }
132
133
134 static void assignHqTimeSlots( HANDLE_SBR_DEC hSbrDec, /*!< handle to Decoder channel */
135 FIXP_DBL **QmfBufferReal,
136 FIXP_DBL **QmfBufferImag,
137 int noCols )
138 {
139 FIXP_DBL *ptr;
140 int slot;
141
142 /* Number of QMF timeslots in one half of a frame (size of Workbuffer1 or 2): */
143 int halflen = (noCols >> 1) + hSbrDec->LppTrans.pSettings->overlap;
144 int totCols = noCols + hSbrDec->LppTrans.pSettings->overlap;
145
146 /* Number of QMF timeslots in the overlap buffer: */
147 ptr = hSbrDec->pSbrOverlapBuffer;
148 for(slot=0; slot<hSbrDec->LppTrans.pSettings->overlap; slot++) {
149 QmfBufferReal[slot] = ptr; ptr += (64);
150 QmfBufferImag[slot] = ptr; ptr += (64);
151 }
152
153 /* Assign first half of timeslots to Workbuffer1 */
154 ptr = hSbrDec->WorkBuffer1;
155 for(; slot<halflen; slot++) {
156 QmfBufferReal[slot] = ptr; ptr += (64);
157 QmfBufferImag[slot] = ptr; ptr += (64);
158 }
159
160 /* Assign second half of timeslots to Workbuffer2 */
161 ptr = hSbrDec->WorkBuffer2;
162 for(; slot<totCols; slot++) {
163 QmfBufferReal[slot] = ptr; ptr += (64);
164 QmfBufferImag[slot] = ptr; ptr += (64);
165 }
166 }
167
168
169 static void assignTimeSlots( HANDLE_SBR_DEC hSbrDec, /*!< handle to Decoder channel */
170 int noCols,
171 int useLP )
172 {
173 /* assign qmf time slots */
174 hSbrDec->useLP = useLP;
175 if (useLP) {
176 hSbrDec->SynthesisQMF.flags |= QMF_FLAG_LP;
177 hSbrDec->AnalysiscQMF.flags |= QMF_FLAG_LP;
178 } else {
179 hSbrDec->SynthesisQMF.flags &= ~QMF_FLAG_LP;
180 hSbrDec->AnalysiscQMF.flags &= ~QMF_FLAG_LP;
181 }
182 if (!useLP)
183 assignHqTimeSlots( hSbrDec, hSbrDec->QmfBufferReal, hSbrDec->QmfBufferImag, noCols );
184 else
185 {
186 assignLcTimeSlots( hSbrDec, hSbrDec->QmfBufferReal, noCols );
187 }
188 }
189
190 static void changeQmfType( HANDLE_SBR_DEC hSbrDec, /*!< handle to Decoder channel */
191 int useLdTimeAlign )
192 {
193 UINT synQmfFlags = hSbrDec->SynthesisQMF.flags;
194 UINT anaQmfFlags = hSbrDec->AnalysiscQMF.flags;
195 int resetSynQmf = 0;
196 int resetAnaQmf = 0;
197
198 /* assign qmf type */
199 if (useLdTimeAlign) {
200 if (synQmfFlags & QMF_FLAG_CLDFB) {
201 /* change the type to MPSLD */
202 synQmfFlags &= ~QMF_FLAG_CLDFB;
203 synQmfFlags |= QMF_FLAG_MPSLDFB;
204 resetSynQmf = 1;
205 }
206 if (anaQmfFlags & QMF_FLAG_CLDFB) {
207 /* change the type to MPSLD */
208 anaQmfFlags &= ~QMF_FLAG_CLDFB;
209 anaQmfFlags |= QMF_FLAG_MPSLDFB;
210 resetAnaQmf = 1;
211 }
212 } else {
213 if (synQmfFlags & QMF_FLAG_MPSLDFB) {
214 /* change the type to CLDFB */
215 synQmfFlags &= ~QMF_FLAG_MPSLDFB;
216 synQmfFlags |= QMF_FLAG_CLDFB;
217 resetSynQmf = 1;
218 }
219 if (anaQmfFlags & QMF_FLAG_MPSLDFB) {
220 /* change the type to CLDFB */
221 anaQmfFlags &= ~QMF_FLAG_MPSLDFB;
222 anaQmfFlags |= QMF_FLAG_CLDFB;
223 resetAnaQmf = 1;
224 }
225 }
226
227 if (resetAnaQmf) {
228 int qmfErr = qmfInitAnalysisFilterBank (
229 &hSbrDec->AnalysiscQMF,
230 hSbrDec->anaQmfStates,
231 hSbrDec->AnalysiscQMF.no_col,
232 hSbrDec->AnalysiscQMF.lsb,
233 hSbrDec->AnalysiscQMF.usb,
234 hSbrDec->AnalysiscQMF.no_channels,
235 anaQmfFlags | QMF_FLAG_KEEP_STATES
236 );
237 if (qmfErr != 0) {
238 FDK_ASSERT(0);
239 }
240 }
241
242 if (resetSynQmf) {
243 int qmfErr = qmfInitSynthesisFilterBank (
244 &hSbrDec->SynthesisQMF,
245 hSbrDec->pSynQmfStates,
246 hSbrDec->SynthesisQMF.no_col,
247 hSbrDec->SynthesisQMF.lsb,
248 hSbrDec->SynthesisQMF.usb,
249 hSbrDec->SynthesisQMF.no_channels,
250 synQmfFlags | QMF_FLAG_KEEP_STATES
251 );
252
253 if (qmfErr != 0) {
254 FDK_ASSERT(0);
255 }
256 }
257 }
258
259
260 /*!
261 \brief SBR decoder core function for one channel
262
263 \image html BufferMgmtDetailed-1632.png
264
265 Besides the filter states of the QMF filter bank and the LPC-states of
266 the LPP-Transposer, processing is mainly based on four buffers:
267 #timeIn, #timeOut, #WorkBuffer2 and #OverlapBuffer. The #WorkBuffer2
268 is reused for all channels and might be used by the core decoder, a
269 static overlap buffer is required for each channel. Du to in-place
270 processing, #timeIn and #timeOut point to identical locations.
271
272 The spectral data is organized in so-called slots, each slot
273 containing 64 bands of complex data. The number of slots per frame is
274 dependend on the frame size. For mp3PRO, there are 18 slots per frame
275 and 6 slots per #OverlapBuffer. It is not necessary to have the slots
276 in located consecutive address ranges.
277
278 To optimize memory usage and to minimize the number of memory
279 accesses, the memory management is organized as follows (Slot numbers
280 based on mp3PRO):
281
282 1.) Input time domain signal is located in #timeIn, the last slots
283 (0..5) of the spectral data of the previous frame are located in the
284 #OverlapBuffer. In addition, #frameData of the current frame resides
285 in the upper part of #timeIn.
286
287 2.) During the cplxAnalysisQmfFiltering(), 32 samples from #timeIn are transformed
288 into a slot of up to 32 complex spectral low band values at a
289 time. The first spectral slot -- nr. 6 -- is written at slot number
290 zero of #WorkBuffer2. #WorkBuffer2 will be completely filled with
291 spectral data.
292
293 3.) LPP-Transposition in lppTransposer() is processed on 24 slots. During the
294 transposition, the high band part of the spectral data is replicated
295 based on the low band data.
296
297 Envelope Adjustment is processed on the high band part of the spectral
298 data only by calculateSbrEnvelope().
299
300 4.) The cplxSynthesisQmfFiltering() creates 64 time domain samples out
301 of a slot of 64 complex spectral values at a time. The first 6 slots
302 in #timeOut are filled from the results of spectral slots 0..5 in the
303 #OverlapBuffer. The consecutive slots in timeOut are now filled with
304 the results of spectral slots 6..17.
305
306 5.) The preprocessed slots 18..23 have to be stored in the
307 #OverlapBuffer.
308
309 */
310
311 void
312 sbr_dec ( HANDLE_SBR_DEC hSbrDec, /*!< handle to Decoder channel */
313 INT_PCM *timeIn, /*!< pointer to input time signal */
314 INT_PCM *timeOut, /*!< pointer to output time signal */
315 HANDLE_SBR_DEC hSbrDecRight, /*!< handle to Decoder channel right */
316 INT_PCM *timeOutRight, /*!< pointer to output time signal */
317 const int strideIn, /*!< Time data traversal strideIn */
318 const int strideOut, /*!< Time data traversal strideOut */
319 HANDLE_SBR_HEADER_DATA hHeaderData,/*!< Static control data */
320 HANDLE_SBR_FRAME_DATA hFrameData, /*!< Control data of current frame */
321 HANDLE_SBR_PREV_FRAME_DATA hPrevFrameData, /*!< Some control data of last frame */
322 const int applyProcessing, /*!< Flag for SBR operation */
323 HANDLE_PS_DEC h_ps_d,
324 const UINT flags
325 )
326 {
327 int i, slot, reserve;
328 int saveLbScale;
329 int ov_len;
330 int lastSlotOffs;
331 FIXP_DBL maxVal;
332
333 /* 1+1/3 frames of spectral data: */
334 FIXP_DBL **QmfBufferReal = hSbrDec->QmfBufferReal;
335 FIXP_DBL **QmfBufferImag = hSbrDec->QmfBufferImag;
336
337 /* Number of QMF timeslots in the overlap buffer: */
338 ov_len = hSbrDec->LppTrans.pSettings->overlap;
339
340 /* Number of QMF slots per frame */
341 int noCols = hHeaderData->numberTimeSlots * hHeaderData->timeStep;
342
343 /* assign qmf time slots */
344 if ( ((flags & SBRDEC_LOW_POWER ) ? 1 : 0) != ((hSbrDec->SynthesisQMF.flags & QMF_FLAG_LP) ? 1 : 0) ) {
345 assignTimeSlots( hSbrDec, hHeaderData->numberTimeSlots * hHeaderData->timeStep, flags & SBRDEC_LOW_POWER);
346 }
347
348 if (flags & SBRDEC_ELD_GRID) {
349 /* Choose the right low delay filter bank */
350 changeQmfType( hSbrDec, (flags & SBRDEC_LD_MPS_QMF) ? 1 : 0 );
351 }
352
353 /*
354 low band codec signal subband filtering
355 */
356
357 {
358 C_AALLOC_SCRATCH_START(qmfTemp, FIXP_DBL, 2*(64));
359
360 qmfAnalysisFiltering( &hSbrDec->AnalysiscQMF,
361 QmfBufferReal + ov_len,
362 QmfBufferImag + ov_len,
363 &hSbrDec->sbrScaleFactor,
364 timeIn,
365 strideIn,
366 qmfTemp
367 );
368
369 C_AALLOC_SCRATCH_END(qmfTemp, FIXP_DBL, 2*(64));
370 }
371
372 /*
373 Clear upper half of spectrum
374 */
375 {
376 int nAnalysisBands = hHeaderData->numberOfAnalysisBands;
377
378 if (! (flags & SBRDEC_LOW_POWER)) {
379 for (slot = ov_len; slot < noCols+ov_len; slot++) {
380 FDKmemclear(&QmfBufferReal[slot][nAnalysisBands],((64)-nAnalysisBands)*sizeof(FIXP_DBL));
381 FDKmemclear(&QmfBufferImag[slot][nAnalysisBands],((64)-nAnalysisBands)*sizeof(FIXP_DBL));
382 }
383 } else
384 for (slot = ov_len; slot < noCols+ov_len; slot++) {
385 FDKmemclear(&QmfBufferReal[slot][nAnalysisBands],((64)-nAnalysisBands)*sizeof(FIXP_DBL));
386 }
387 }
388
389
390
391 /*
392 Shift spectral data left to gain accuracy in transposer and adjustor
393 */
394 maxVal = maxSubbandSample( QmfBufferReal,
395 (flags & SBRDEC_LOW_POWER) ? NULL : QmfBufferImag,
396 0,
397 hSbrDec->AnalysiscQMF.lsb,
398 ov_len,
399 noCols+ov_len );
400
401 reserve = fixMax(0,CntLeadingZeros(maxVal)-1) ;
402 reserve = fixMin(reserve,DFRACT_BITS-1-hSbrDec->sbrScaleFactor.lb_scale);
403
404 /* If all data is zero, lb_scale could become too large */
405 rescaleSubbandSamples( QmfBufferReal,
406 (flags & SBRDEC_LOW_POWER) ? NULL : QmfBufferImag,
407 0,
408 hSbrDec->AnalysiscQMF.lsb,
409 ov_len,
410 noCols+ov_len,
411 reserve);
412
413 hSbrDec->sbrScaleFactor.lb_scale += reserve;
414
415 /*
416 save low band scale, wavecoding or parametric stereo may modify it
417 */
418 saveLbScale = hSbrDec->sbrScaleFactor.lb_scale;
419
420
421 if (applyProcessing)
422 {
423 UCHAR * borders = hFrameData->frameInfo.borders;
424 lastSlotOffs = borders[hFrameData->frameInfo.nEnvelopes] - hHeaderData->numberTimeSlots;
425
426 FIXP_DBL degreeAlias[(64)];
427
428 /* The transposer will override most values in degreeAlias[].
429 The array needs to be cleared at least from lowSubband to highSubband before. */
430 if (flags & SBRDEC_LOW_POWER)
431 FDKmemclear(&degreeAlias[hHeaderData->freqBandData.lowSubband], (hHeaderData->freqBandData.highSubband-hHeaderData->freqBandData.lowSubband)*sizeof(FIXP_DBL));
432
433 /*
434 Inverse filtering of lowband and transposition into the SBR-frequency range
435 */
436
437 lppTransposer ( &hSbrDec->LppTrans,
438 &hSbrDec->sbrScaleFactor,
439 QmfBufferReal,
440 degreeAlias, // only used if useLP = 1
441 QmfBufferImag,
442 flags & SBRDEC_LOW_POWER,
443 hHeaderData->timeStep,
444 borders[0],
445 lastSlotOffs,
446 hHeaderData->freqBandData.nInvfBands,
447 hFrameData->sbr_invf_mode,
448 hPrevFrameData->sbr_invf_mode );
449
450
451
452
453
454 /*
455 Adjust envelope of current frame.
456 */
457
458 calculateSbrEnvelope (&hSbrDec->sbrScaleFactor,
459 &hSbrDec->SbrCalculateEnvelope,
460 hHeaderData,
461 hFrameData,
462 QmfBufferReal,
463 QmfBufferImag,
464 flags & SBRDEC_LOW_POWER,
465
466 degreeAlias,
467 flags,
468 (hHeaderData->frameErrorFlag || hPrevFrameData->frameErrorFlag));
469
470
471 /*
472 Update hPrevFrameData (to be used in the next frame)
473 */
474 for (i=0; i<hHeaderData->freqBandData.nInvfBands; i++) {
475 hPrevFrameData->sbr_invf_mode[i] = hFrameData->sbr_invf_mode[i];
476 }
477 hPrevFrameData->coupling = hFrameData->coupling;
478 hPrevFrameData->stopPos = borders[hFrameData->frameInfo.nEnvelopes];
479 hPrevFrameData->ampRes = hFrameData->ampResolutionCurrentFrame;
480 }
481 else {
482 /* Reset hb_scale if no highband is present, because hb_scale is considered in the QMF-synthesis */
483 hSbrDec->sbrScaleFactor.hb_scale = saveLbScale;
484 }
485
486
487 for (i=0; i<LPC_ORDER; i++){
488 /*
489 Store the unmodified qmf Slots values (required for LPC filtering)
490 */
491 if (! (flags & SBRDEC_LOW_POWER)) {
492 FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesReal[i], QmfBufferReal[noCols-LPC_ORDER+i], hSbrDec->AnalysiscQMF.lsb*sizeof(FIXP_DBL));
493 FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesImag[i], QmfBufferImag[noCols-LPC_ORDER+i], hSbrDec->AnalysiscQMF.lsb*sizeof(FIXP_DBL));
494 } else
495 FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesReal[i], QmfBufferReal[noCols-LPC_ORDER+i], hSbrDec->AnalysiscQMF.lsb*sizeof(FIXP_DBL));
496 }
497
498 /*
499 Synthesis subband filtering.
500 */
501
502 if ( ! (flags & SBRDEC_PS_DECODED) ) {
503
504 {
505 int outScalefactor = 0;
506
507 if (h_ps_d != NULL) {
508 h_ps_d->procFrameBased = 1; /* we here do frame based processing */
509 }
510
511
512 sbrDecoder_drcApply(&hSbrDec->sbrDrcChannel,
513 QmfBufferReal,
514 (flags & SBRDEC_LOW_POWER) ? NULL : QmfBufferImag,
515 hSbrDec->SynthesisQMF.no_col,
516 &outScalefactor
517 );
518
519
520
521 qmfChangeOutScalefactor(&hSbrDec->SynthesisQMF, outScalefactor );
522
523 {
524 C_AALLOC_SCRATCH_START(qmfTemp, FIXP_DBL, 2*(64));
525
526 qmfSynthesisFiltering( &hSbrDec->SynthesisQMF,
527 QmfBufferReal,
528 (flags & SBRDEC_LOW_POWER) ? NULL : QmfBufferImag,
529 &hSbrDec->sbrScaleFactor,
530 hSbrDec->LppTrans.pSettings->overlap,
531 timeOut,
532 strideOut,
533 qmfTemp);
534
535 C_AALLOC_SCRATCH_END(qmfTemp, FIXP_DBL, 2*(64));
536 }
537
538 }
539
540 } else { /* (flags & SBRDEC_PS_DECODED) */
541 INT i, sdiff, outScalefactor, scaleFactorLowBand, scaleFactorHighBand;
542 SCHAR scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
543
544 HANDLE_QMF_FILTER_BANK synQmf = &hSbrDec->SynthesisQMF;
545 HANDLE_QMF_FILTER_BANK synQmfRight = &hSbrDecRight->SynthesisQMF;
546
547 /* adapt scaling */
548 sdiff = hSbrDec->sbrScaleFactor.lb_scale - reserve; /* Scaling difference */
549 scaleFactorHighBand = sdiff - hSbrDec->sbrScaleFactor.hb_scale; /* Scale of current high band */
550 scaleFactorLowBand_ov = sdiff - hSbrDec->sbrScaleFactor.ov_lb_scale; /* Scale of low band overlapping QMF data */
551 scaleFactorLowBand_no_ov = sdiff - hSbrDec->sbrScaleFactor.lb_scale; /* Scale of low band current QMF data */
552 outScalefactor = 0; /* Initial output scale */
553
554 if (h_ps_d->procFrameBased == 1) /* If we have switched from frame to slot based processing copy filter states */
555 { /* procFrameBased will be unset later */
556 /* copy filter states from left to right */
557 FDKmemcpy(synQmfRight->FilterStates, synQmf->FilterStates, ((640)-(64))*sizeof(FIXP_QSS));
558 }
559
560 /* scale ALL qmf vales ( real and imag ) of mono / left channel to the
561 same scale factor ( ov_lb_sf, lb_sf and hq_sf ) */
562 scalFilterBankValues( h_ps_d, /* parametric stereo decoder handle */
563 QmfBufferReal, /* qmf filterbank values */
564 QmfBufferImag, /* qmf filterbank values */
565 synQmf->lsb, /* sbr start subband */
566 hSbrDec->sbrScaleFactor.ov_lb_scale,
567 hSbrDec->sbrScaleFactor.lb_scale,
568 &scaleFactorLowBand_ov, /* adapt scaling values */
569 &scaleFactorLowBand_no_ov, /* adapt scaling values */
570 hSbrDec->sbrScaleFactor.hb_scale, /* current frame ( highband ) */
571 &scaleFactorHighBand,
572 synQmf->no_col);
573
574 /* use the same synthese qmf values for left and right channel */
575 synQmfRight->no_col = synQmf->no_col;
576 synQmfRight->lsb = synQmf->lsb;
577 synQmfRight->usb = synQmf->usb;
578
579 int env=0;
580
581 outScalefactor += (SCAL_HEADROOM+1); /* psDiffScale! */
582
583 {
584 C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, 2*(64));
585
586 int maxShift = 0;
587
588 if (hSbrDec->sbrDrcChannel.enable != 0) {
589 if (hSbrDec->sbrDrcChannel.prevFact_exp > maxShift) {
590 maxShift = hSbrDec->sbrDrcChannel.prevFact_exp;
591 }
592 if (hSbrDec->sbrDrcChannel.currFact_exp > maxShift) {
593 maxShift = hSbrDec->sbrDrcChannel.currFact_exp;
594 }
595 if (hSbrDec->sbrDrcChannel.nextFact_exp > maxShift) {
596 maxShift = hSbrDec->sbrDrcChannel.nextFact_exp;
597 }
598 }
599
600 /* copy DRC data to right channel (with PS both channels use the same DRC gains) */
601 FDKmemcpy(&hSbrDecRight->sbrDrcChannel, &hSbrDec->sbrDrcChannel, sizeof(SBRDEC_DRC_CHANNEL));
602
603 for (i = 0; i < synQmf->no_col; i++) { /* ----- no_col loop ----- */
604
605 INT outScalefactorR, outScalefactorL;
606 outScalefactorR = outScalefactorL = outScalefactor;
607
608 /* qmf timeslot of right channel */
609 FIXP_DBL* rQmfReal = pWorkBuffer;
610 FIXP_DBL* rQmfImag = pWorkBuffer + 64;
611
612
613 {
614 if ( i == h_ps_d->bsData[h_ps_d->processSlot].mpeg.aEnvStartStop[env] ) {
615 initSlotBasedRotation( h_ps_d, env, hHeaderData->freqBandData.highSubband );
616 env++;
617 }
618
619 ApplyPsSlot( h_ps_d, /* parametric stereo decoder handle */
620 (QmfBufferReal + i), /* one timeslot of left/mono channel */
621 (QmfBufferImag + i), /* one timeslot of left/mono channel */
622 rQmfReal, /* one timeslot or right channel */
623 rQmfImag); /* one timeslot or right channel */
624 }
625
626
627 scaleFactorLowBand = (i<(6)) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
628
629
630 sbrDecoder_drcApplySlot ( /* right channel */
631 &hSbrDecRight->sbrDrcChannel,
632 rQmfReal,
633 rQmfImag,
634 i,
635 synQmfRight->no_col,
636 maxShift
637 );
638
639 outScalefactorR += maxShift;
640
641 sbrDecoder_drcApplySlot ( /* left channel */
642 &hSbrDec->sbrDrcChannel,
643 *(QmfBufferReal + i),
644 *(QmfBufferImag + i),
645 i,
646 synQmf->no_col,
647 maxShift
648 );
649
650 outScalefactorL += maxShift;
651
652
653 /* scale filter states for left and right channel */
654 qmfChangeOutScalefactor( synQmf, outScalefactorL );
655 qmfChangeOutScalefactor( synQmfRight, outScalefactorR );
656
657 {
658
659 qmfSynthesisFilteringSlot( synQmfRight,
660 rQmfReal, /* QMF real buffer */
661 rQmfImag, /* QMF imag buffer */
662 scaleFactorLowBand,
663 scaleFactorHighBand,
664 timeOutRight+(i*synQmf->no_channels*strideOut),
665 strideOut,
666 pWorkBuffer);
667
668 qmfSynthesisFilteringSlot( synQmf,
669 *(QmfBufferReal + i), /* QMF real buffer */
670 *(QmfBufferImag + i), /* QMF imag buffer */
671 scaleFactorLowBand,
672 scaleFactorHighBand,
673 timeOut+(i*synQmf->no_channels*strideOut),
674 strideOut,
675 pWorkBuffer);
676
677 }
678 } /* no_col loop i */
679
680 /* scale back (6) timeslots look ahead for hybrid filterbank to original value */
681 rescalFilterBankValues( h_ps_d,
682 QmfBufferReal,
683 QmfBufferImag,
684 synQmf->lsb,
685 synQmf->no_col );
686
687 C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, 2*(64));
688 }
689 }
690
691 sbrDecoder_drcUpdateChannel( &hSbrDec->sbrDrcChannel );
692
693
694 /*
695 Update overlap buffer
696 Even bands above usb are copied to avoid outdated spectral data in case
697 the stop frequency raises.
698 */
699
700 if (hSbrDec->LppTrans.pSettings->overlap > 0)
701 {
702 if (! (flags & SBRDEC_LOW_POWER)) {
703 for ( i=0; i<hSbrDec->LppTrans.pSettings->overlap; i++ ) {
704 FDKmemcpy(QmfBufferReal[i], QmfBufferReal[i+noCols], (64)*sizeof(FIXP_DBL));
705 FDKmemcpy(QmfBufferImag[i], QmfBufferImag[i+noCols], (64)*sizeof(FIXP_DBL));
706 }
707 } else
708 for ( i=0; i<hSbrDec->LppTrans.pSettings->overlap; i++ ) {
709 FDKmemcpy(QmfBufferReal[i], QmfBufferReal[i+noCols], (64)*sizeof(FIXP_DBL));
710 }
711 }
712
713 hSbrDec->sbrScaleFactor.ov_lb_scale = saveLbScale;
714
715 /* Save current frame status */
716 hPrevFrameData->frameErrorFlag = hHeaderData->frameErrorFlag;
717
718 } // sbr_dec()
719
720
721 /*!
722 \brief Creates sbr decoder structure
723 \return errorCode, 0 if successful
724 */
725 SBR_ERROR
726 createSbrDec (SBR_CHANNEL * hSbrChannel,
727 HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
728 TRANSPOSER_SETTINGS *pSettings,
729 const int downsampleFac, /*!< Downsampling factor */
730 const UINT qmfFlags, /*!< flags -> 1: HQ/LP selector, 2: CLDFB */
731 const UINT flags,
732 const int overlap,
733 int chan) /*!< Channel for which to assign buffers etc. */
734
735 {
736 SBR_ERROR err = SBRDEC_OK;
737 int timeSlots = hHeaderData->numberTimeSlots; /* Number of SBR slots per frame */
738 int noCols = timeSlots * hHeaderData->timeStep; /* Number of QMF slots per frame */
739 HANDLE_SBR_DEC hs = &(hSbrChannel->SbrDec);
740
741 /* Initialize scale factors */
742 hs->sbrScaleFactor.ov_lb_scale = 0;
743 hs->sbrScaleFactor.ov_hb_scale = 0;
744 hs->sbrScaleFactor.hb_scale = 0;
745
746
747 /*
748 create envelope calculator
749 */
750 err = createSbrEnvelopeCalc (&hs->SbrCalculateEnvelope,
751 hHeaderData,
752 chan,
753 flags);
754 if (err != SBRDEC_OK) {
755 return err;
756 }
757
758 /*
759 create QMF filter banks
760 */
761 {
762 int qmfErr;
763 /* Adapted QMF analysis post-twiddles for down-sampled HQ SBR */
764 const UINT downSampledFlag = (downsampleFac==2) ? QMF_FLAG_DOWNSAMPLED : 0;
765
766 qmfErr = qmfInitAnalysisFilterBank (
767 &hs->AnalysiscQMF,
768 hs->anaQmfStates,
769 noCols,
770 hHeaderData->freqBandData.lowSubband,
771 hHeaderData->freqBandData.highSubband,
772 hHeaderData->numberOfAnalysisBands,
773 (qmfFlags & (~QMF_FLAG_KEEP_STATES)) | downSampledFlag
774 );
775 if (qmfErr != 0) {
776 return SBRDEC_UNSUPPORTED_CONFIG;
777 }
778 }
779 if (hs->pSynQmfStates == NULL) {
780 hs->pSynQmfStates = GetRam_sbr_QmfStatesSynthesis(chan);
781 if (hs->pSynQmfStates == NULL)
782 return SBRDEC_MEM_ALLOC_FAILED;
783 }
784
785 {
786 int qmfErr;
787
788 qmfErr = qmfInitSynthesisFilterBank (
789 &hs->SynthesisQMF,
790 hs->pSynQmfStates,
791 noCols,
792 hHeaderData->freqBandData.lowSubband,
793 hHeaderData->freqBandData.highSubband,
794 (64) / downsampleFac,
795 qmfFlags & (~QMF_FLAG_KEEP_STATES)
796 );
797
798 if (qmfErr != 0) {
799 return SBRDEC_UNSUPPORTED_CONFIG;
800 }
801 }
802 initSbrPrevFrameData (&hSbrChannel->prevFrameData, timeSlots);
803
804 /*
805 create transposer
806 */
807 err = createLppTransposer (&hs->LppTrans,
808 pSettings,
809 hHeaderData->freqBandData.lowSubband,
810 hHeaderData->freqBandData.v_k_master,
811 hHeaderData->freqBandData.numMaster,
812 hs->SynthesisQMF.usb,
813 timeSlots,
814 hs->AnalysiscQMF.no_col,
815 hHeaderData->freqBandData.freqBandTableNoise,
816 hHeaderData->freqBandData.nNfb,
817 hHeaderData->sbrProcSmplRate,
818 chan,
819 overlap );
820 if (err != SBRDEC_OK) {
821 return err;
822 }
823
824 /* The CLDFB does not have overlap */
825 if ((qmfFlags & QMF_FLAG_CLDFB) == 0) {
826 if (hs->pSbrOverlapBuffer == NULL) {
827 hs->pSbrOverlapBuffer = GetRam_sbr_OverlapBuffer(chan);
828 if (hs->pSbrOverlapBuffer == NULL) {
829 return SBRDEC_MEM_ALLOC_FAILED;
830 }
831 } else {
832 /* Clear overlap buffer */
833 FDKmemclear( hs->pSbrOverlapBuffer,
834 sizeof(FIXP_DBL) * 2 * (6) * (64)
835 );
836 }
837 }
838
839 /* assign qmf time slots */
840 assignTimeSlots( &hSbrChannel->SbrDec, hHeaderData->numberTimeSlots * hHeaderData->timeStep, qmfFlags & QMF_FLAG_LP);
841
842 return err;
843 }
844
845 /*!
846 \brief Delete sbr decoder structure
847 \return errorCode, 0 if successful
848 */
849 int
850 deleteSbrDec (SBR_CHANNEL * hSbrChannel)
851 {
852 HANDLE_SBR_DEC hs = &hSbrChannel->SbrDec;
853
854 deleteSbrEnvelopeCalc (&hs->SbrCalculateEnvelope);
855
856 /* delete QMF filter states */
857 if (hs->pSynQmfStates != NULL) {
858 FreeRam_sbr_QmfStatesSynthesis(&hs->pSynQmfStates);
859 }
860
861
862 if (hs->pSbrOverlapBuffer != NULL) {
863 FreeRam_sbr_OverlapBuffer(&hs->pSbrOverlapBuffer);
864 }
865
866 return 0;
867 }
868
869
870 /*!
871 \brief resets sbr decoder structure
872 \return errorCode, 0 if successful
873 */
874 SBR_ERROR
875 resetSbrDec (HANDLE_SBR_DEC hSbrDec,
876 HANDLE_SBR_HEADER_DATA hHeaderData,
877 HANDLE_SBR_PREV_FRAME_DATA hPrevFrameData,
878 const int useLP,
879 const int downsampleFac
880 )
881 {
882 SBR_ERROR sbrError = SBRDEC_OK;
883
884 int old_lsb = hSbrDec->SynthesisQMF.lsb;
885 int new_lsb = hHeaderData->freqBandData.lowSubband;
886 int l, startBand, stopBand, startSlot, size;
887
888 int source_scale, target_scale, delta_scale, target_lsb, target_usb, reserve;
889 FIXP_DBL maxVal;
890
891 /* overlapBuffer point to first (6) slots */
892 FIXP_DBL **OverlapBufferReal = hSbrDec->QmfBufferReal;
893 FIXP_DBL **OverlapBufferImag = hSbrDec->QmfBufferImag;
894
895 /* assign qmf time slots */
896 assignTimeSlots( hSbrDec, hHeaderData->numberTimeSlots * hHeaderData->timeStep, useLP);
897
898
899
900 resetSbrEnvelopeCalc (&hSbrDec->SbrCalculateEnvelope);
901
902 hSbrDec->SynthesisQMF.lsb = hHeaderData->freqBandData.lowSubband;
903 hSbrDec->SynthesisQMF.usb = fixMin((INT)hSbrDec->SynthesisQMF.no_channels, (INT)hHeaderData->freqBandData.highSubband);
904
905 hSbrDec->AnalysiscQMF.lsb = hSbrDec->SynthesisQMF.lsb;
906 hSbrDec->AnalysiscQMF.usb = hSbrDec->SynthesisQMF.usb;
907
908
909 /*
910 The following initialization of spectral data in the overlap buffer
911 is required for dynamic x-over or a change of the start-freq for 2 reasons:
912
913 1. If the lowband gets _wider_, unadjusted data would remain
914
915 2. If the lowband becomes _smaller_, the highest bands of the old lowband
916 must be cleared because the whitening would be affected
917 */
918 startBand = old_lsb;
919 stopBand = new_lsb;
920 startSlot = hHeaderData->timeStep * (hPrevFrameData->stopPos - hHeaderData->numberTimeSlots);
921 size = fixMax(0,stopBand-startBand);
922
923 /* keep already adjusted data in the x-over-area */
924 if (!useLP) {
925 for (l=startSlot; l<hSbrDec->LppTrans.pSettings->overlap; l++) {
926 FDKmemclear(&OverlapBufferReal[l][startBand], size*sizeof(FIXP_DBL));
927 FDKmemclear(&OverlapBufferImag[l][startBand], size*sizeof(FIXP_DBL));
928 }
929 } else
930 for (l=startSlot; l<hSbrDec->LppTrans.pSettings->overlap ; l++) {
931 FDKmemclear(&OverlapBufferReal[l][startBand], size*sizeof(FIXP_DBL));
932 }
933
934
935 /*
936 reset LPC filter states
937 */
938 startBand = fixMin(old_lsb,new_lsb);
939 stopBand = fixMax(old_lsb,new_lsb);
940 size = fixMax(0,stopBand-startBand);
941
942 FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesReal[0][startBand], size*sizeof(FIXP_DBL));
943 FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesReal[1][startBand], size*sizeof(FIXP_DBL));
944 if (!useLP) {
945 FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesImag[0][startBand], size*sizeof(FIXP_DBL));
946 FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesImag[1][startBand], size*sizeof(FIXP_DBL));
947 }
948
949
950 /*
951 Rescale already processed spectral data between old and new x-over frequency.
952 This must be done because of the separate scalefactors for lowband and highband.
953 */
954 startBand = fixMin(old_lsb,new_lsb);
955 stopBand = fixMax(old_lsb,new_lsb);
956
957 if (new_lsb > old_lsb) {
958 /* The x-over-area was part of the highband before and will now belong to the lowband */
959 source_scale = hSbrDec->sbrScaleFactor.ov_hb_scale;
960 target_scale = hSbrDec->sbrScaleFactor.ov_lb_scale;
961 target_lsb = 0;
962 target_usb = old_lsb;
963 }
964 else {
965 /* The x-over-area was part of the lowband before and will now belong to the highband */
966 source_scale = hSbrDec->sbrScaleFactor.ov_lb_scale;
967 target_scale = hSbrDec->sbrScaleFactor.ov_hb_scale;
968 /* jdr: The values old_lsb and old_usb might be wrong because the previous frame might have been "upsamling". */
969 target_lsb = hSbrDec->SynthesisQMF.lsb;
970 target_usb = hSbrDec->SynthesisQMF.usb;
971 }
972
973 /* Shift left all samples of the x-over-area as much as possible
974 An unnecessary coarse scale could cause ov_lb_scale or ov_hb_scale to be
975 adapted and the accuracy in the next frame would seriously suffer! */
976
977 maxVal = maxSubbandSample( OverlapBufferReal,
978 (useLP) ? NULL : OverlapBufferImag,
979 startBand,
980 stopBand,
981 0,
982 startSlot);
983
984 reserve = CntLeadingZeros(maxVal)-1;
985 reserve = fixMin(reserve,DFRACT_BITS-1-source_scale);
986
987 rescaleSubbandSamples( OverlapBufferReal,
988 (useLP) ? NULL : OverlapBufferImag,
989 startBand,
990 stopBand,
991 0,
992 startSlot,
993 reserve);
994 source_scale += reserve;
995
996 delta_scale = target_scale - source_scale;
997
998 if (delta_scale > 0) { /* x-over-area is dominant */
999 delta_scale = -delta_scale;
1000 startBand = target_lsb;
1001 stopBand = target_usb;
1002
1003 if (new_lsb > old_lsb) {
1004 /* The lowband has to be rescaled */
1005 hSbrDec->sbrScaleFactor.ov_lb_scale = source_scale;
1006 }
1007 else {
1008 /* The highband has be be rescaled */
1009 hSbrDec->sbrScaleFactor.ov_hb_scale = source_scale;
1010 }
1011 }
1012
1013 FDK_ASSERT(startBand <= stopBand);
1014
1015 if (!useLP) {
1016 for (l=0; l<startSlot; l++) {
1017 scaleValues( OverlapBufferReal[l] + startBand, stopBand-startBand, delta_scale );
1018 scaleValues( OverlapBufferImag[l] + startBand, stopBand-startBand, delta_scale );
1019 }
1020 } else
1021 for (l=0; l<startSlot; l++) {
1022 scaleValues( OverlapBufferReal[l] + startBand, stopBand-startBand, delta_scale );
1023 }
1024
1025
1026 /*
1027 Initialize transposer and limiter
1028 */
1029 sbrError = resetLppTransposer (&hSbrDec->LppTrans,
1030 hHeaderData->freqBandData.lowSubband,
1031 hHeaderData->freqBandData.v_k_master,
1032 hHeaderData->freqBandData.numMaster,
1033 hHeaderData->freqBandData.freqBandTableNoise,
1034 hHeaderData->freqBandData.nNfb,
1035 hHeaderData->freqBandData.highSubband,
1036 hHeaderData->sbrProcSmplRate);
1037 if (sbrError != SBRDEC_OK)
1038 return sbrError;
1039
1040 sbrError = ResetLimiterBands ( hHeaderData->freqBandData.limiterBandTable,
1041 &hHeaderData->freqBandData.noLimiterBands,
1042 hHeaderData->freqBandData.freqBandTable[0],
1043 hHeaderData->freqBandData.nSfb[0],
1044 hSbrDec->LppTrans.pSettings->patchParam,
1045 hSbrDec->LppTrans.pSettings->noOfPatches,
1046 hHeaderData->bs_data.limiterBands);
1047
1048
1049 return sbrError;
1050 }