Imported Debian version 2.5.0~trusty1.1
[deb_ffmpeg.git] / ffmpeg / libavcodec / mpegaudiodec_template.c
CommitLineData
2ba45a60
DM
1/*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * MPEG Audio decoder
25 */
26
27#include "libavutil/attributes.h"
28#include "libavutil/avassert.h"
29#include "libavutil/channel_layout.h"
30#include "libavutil/float_dsp.h"
31#include "libavutil/libm.h"
32#include "avcodec.h"
33#include "get_bits.h"
34#include "internal.h"
35#include "mathops.h"
36#include "mpegaudiodsp.h"
37
38/*
39 * TODO:
40 * - test lsf / mpeg25 extensively.
41 */
42
43#include "mpegaudio.h"
44#include "mpegaudiodecheader.h"
45
46#define BACKSTEP_SIZE 512
47#define EXTRABYTES 24
48#define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
49
50/* layer 3 "granule" */
51typedef struct GranuleDef {
52 uint8_t scfsi;
53 int part2_3_length;
54 int big_values;
55 int global_gain;
56 int scalefac_compress;
57 uint8_t block_type;
58 uint8_t switch_point;
59 int table_select[3];
60 int subblock_gain[3];
61 uint8_t scalefac_scale;
62 uint8_t count1table_select;
63 int region_size[3]; /* number of huffman codes in each region */
64 int preflag;
65 int short_start, long_end; /* long/short band indexes */
66 uint8_t scale_factors[40];
67 DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
68} GranuleDef;
69
70typedef struct MPADecodeContext {
71 MPA_DECODE_HEADER
72 uint8_t last_buf[LAST_BUF_SIZE];
73 int last_buf_size;
74 /* next header (used in free format parsing) */
75 uint32_t free_format_next_header;
76 GetBitContext gb;
77 GetBitContext in_gb;
78 DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
79 int synth_buf_offset[MPA_MAX_CHANNELS];
80 DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
81 INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
82 GranuleDef granules[2][2]; /* Used in Layer 3 */
83 int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
84 int dither_state;
85 int err_recognition;
86 AVCodecContext* avctx;
87 MPADSPContext mpadsp;
f6fa7814 88 AVFloatDSPContext *fdsp;
2ba45a60
DM
89 AVFrame *frame;
90} MPADecodeContext;
91
92#define HEADER_SIZE 4
93
94#include "mpegaudiodata.h"
95#include "mpegaudiodectab.h"
96
97/* vlc structure for decoding layer 3 huffman tables */
98static VLC huff_vlc[16];
99static VLC_TYPE huff_vlc_tables[
100 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
101 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
102 ][2];
103static const int huff_vlc_tables_sizes[16] = {
104 0, 128, 128, 128, 130, 128, 154, 166,
105 142, 204, 190, 170, 542, 460, 662, 414
106};
107static VLC huff_quad_vlc[2];
108static VLC_TYPE huff_quad_vlc_tables[128+16][2];
109static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
110/* computed from band_size_long */
111static uint16_t band_index_long[9][23];
112#include "mpegaudio_tablegen.h"
113/* intensity stereo coef table */
114static INTFLOAT is_table[2][16];
115static INTFLOAT is_table_lsf[2][2][16];
116static INTFLOAT csa_table[8][4];
117
118static int16_t division_tab3[1<<6 ];
119static int16_t division_tab5[1<<8 ];
120static int16_t division_tab9[1<<11];
121
122static int16_t * const division_tabs[4] = {
123 division_tab3, division_tab5, NULL, division_tab9
124};
125
126/* lower 2 bits: modulo 3, higher bits: shift */
127static uint16_t scale_factor_modshift[64];
128/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
129static int32_t scale_factor_mult[15][3];
130/* mult table for layer 2 group quantization */
131
132#define SCALE_GEN(v) \
133{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
134
135static const int32_t scale_factor_mult2[3][3] = {
136 SCALE_GEN(4.0 / 3.0), /* 3 steps */
137 SCALE_GEN(4.0 / 5.0), /* 5 steps */
138 SCALE_GEN(4.0 / 9.0), /* 9 steps */
139};
140
141/**
142 * Convert region offsets to region sizes and truncate
143 * size to big_values.
144 */
145static void region_offset2size(GranuleDef *g)
146{
147 int i, k, j = 0;
148 g->region_size[2] = 576 / 2;
149 for (i = 0; i < 3; i++) {
150 k = FFMIN(g->region_size[i], g->big_values);
151 g->region_size[i] = k - j;
152 j = k;
153 }
154}
155
156static void init_short_region(MPADecodeContext *s, GranuleDef *g)
157{
158 if (g->block_type == 2) {
159 if (s->sample_rate_index != 8)
160 g->region_size[0] = (36 / 2);
161 else
162 g->region_size[0] = (72 / 2);
163 } else {
164 if (s->sample_rate_index <= 2)
165 g->region_size[0] = (36 / 2);
166 else if (s->sample_rate_index != 8)
167 g->region_size[0] = (54 / 2);
168 else
169 g->region_size[0] = (108 / 2);
170 }
171 g->region_size[1] = (576 / 2);
172}
173
174static void init_long_region(MPADecodeContext *s, GranuleDef *g,
175 int ra1, int ra2)
176{
177 int l;
178 g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
179 /* should not overflow */
180 l = FFMIN(ra1 + ra2 + 2, 22);
181 g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
182}
183
184static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
185{
186 if (g->block_type == 2) {
187 if (g->switch_point) {
188 if(s->sample_rate_index == 8)
189 avpriv_request_sample(s->avctx, "switch point in 8khz");
190 /* if switched mode, we handle the 36 first samples as
191 long blocks. For 8000Hz, we handle the 72 first
192 exponents as long blocks */
193 if (s->sample_rate_index <= 2)
194 g->long_end = 8;
195 else
196 g->long_end = 6;
197
198 g->short_start = 3;
199 } else {
200 g->long_end = 0;
201 g->short_start = 0;
202 }
203 } else {
204 g->short_start = 13;
205 g->long_end = 22;
206 }
207}
208
209/* layer 1 unscaling */
210/* n = number of bits of the mantissa minus 1 */
211static inline int l1_unscale(int n, int mant, int scale_factor)
212{
213 int shift, mod;
214 int64_t val;
215
216 shift = scale_factor_modshift[scale_factor];
217 mod = shift & 3;
218 shift >>= 2;
219 val = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]);
220 shift += n;
221 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
222 return (int)((val + (1LL << (shift - 1))) >> shift);
223}
224
225static inline int l2_unscale_group(int steps, int mant, int scale_factor)
226{
227 int shift, mod, val;
228
229 shift = scale_factor_modshift[scale_factor];
230 mod = shift & 3;
231 shift >>= 2;
232
233 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
234 /* NOTE: at this point, 0 <= shift <= 21 */
235 if (shift > 0)
236 val = (val + (1 << (shift - 1))) >> shift;
237 return val;
238}
239
240/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
241static inline int l3_unscale(int value, int exponent)
242{
243 unsigned int m;
244 int e;
245
246 e = table_4_3_exp [4 * value + (exponent & 3)];
247 m = table_4_3_value[4 * value + (exponent & 3)];
248 e -= exponent >> 2;
249#ifdef DEBUG
250 if(e < 1)
251 av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
252#endif
253 if (e > 31)
254 return 0;
255 m = (m + (1 << (e - 1))) >> e;
256
257 return m;
258}
259
260static av_cold void decode_init_static(void)
261{
262 int i, j, k;
263 int offset;
264
265 /* scale factors table for layer 1/2 */
266 for (i = 0; i < 64; i++) {
267 int shift, mod;
268 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
269 shift = i / 3;
270 mod = i % 3;
271 scale_factor_modshift[i] = mod | (shift << 2);
272 }
273
274 /* scale factor multiply for layer 1 */
275 for (i = 0; i < 15; i++) {
276 int n, norm;
277 n = i + 2;
278 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
279 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
280 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
281 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
282 av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
283 scale_factor_mult[i][0],
284 scale_factor_mult[i][1],
285 scale_factor_mult[i][2]);
286 }
287
288 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
289
290 /* huffman decode tables */
291 offset = 0;
292 for (i = 1; i < 16; i++) {
293 const HuffTable *h = &mpa_huff_tables[i];
294 int xsize, x, y;
295 uint8_t tmp_bits [512] = { 0 };
296 uint16_t tmp_codes[512] = { 0 };
297
298 xsize = h->xsize;
299
300 j = 0;
301 for (x = 0; x < xsize; x++) {
302 for (y = 0; y < xsize; y++) {
303 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
304 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
305 }
306 }
307
308 /* XXX: fail test */
309 huff_vlc[i].table = huff_vlc_tables+offset;
310 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
311 init_vlc(&huff_vlc[i], 7, 512,
312 tmp_bits, 1, 1, tmp_codes, 2, 2,
313 INIT_VLC_USE_NEW_STATIC);
314 offset += huff_vlc_tables_sizes[i];
315 }
316 av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
317
318 offset = 0;
319 for (i = 0; i < 2; i++) {
320 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
321 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
322 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
323 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
324 INIT_VLC_USE_NEW_STATIC);
325 offset += huff_quad_vlc_tables_sizes[i];
326 }
327 av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
328
329 for (i = 0; i < 9; i++) {
330 k = 0;
331 for (j = 0; j < 22; j++) {
332 band_index_long[i][j] = k;
333 k += band_size_long[i][j];
334 }
335 band_index_long[i][22] = k;
336 }
337
338 /* compute n ^ (4/3) and store it in mantissa/exp format */
339
340 mpegaudio_tableinit();
341
342 for (i = 0; i < 4; i++) {
343 if (ff_mpa_quant_bits[i] < 0) {
344 for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
345 int val1, val2, val3, steps;
346 int val = j;
347 steps = ff_mpa_quant_steps[i];
348 val1 = val % steps;
349 val /= steps;
350 val2 = val % steps;
351 val3 = val / steps;
352 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
353 }
354 }
355 }
356
357
358 for (i = 0; i < 7; i++) {
359 float f;
360 INTFLOAT v;
361 if (i != 6) {
362 f = tan((double)i * M_PI / 12.0);
363 v = FIXR(f / (1.0 + f));
364 } else {
365 v = FIXR(1.0);
366 }
367 is_table[0][ i] = v;
368 is_table[1][6 - i] = v;
369 }
370 /* invalid values */
371 for (i = 7; i < 16; i++)
372 is_table[0][i] = is_table[1][i] = 0.0;
373
374 for (i = 0; i < 16; i++) {
375 double f;
376 int e, k;
377
378 for (j = 0; j < 2; j++) {
379 e = -(j + 1) * ((i + 1) >> 1);
380 f = exp2(e / 4.0);
381 k = i & 1;
382 is_table_lsf[j][k ^ 1][i] = FIXR(f);
383 is_table_lsf[j][k ][i] = FIXR(1.0);
384 av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
385 i, j, (float) is_table_lsf[j][0][i],
386 (float) is_table_lsf[j][1][i]);
387 }
388 }
389
390 for (i = 0; i < 8; i++) {
391 float ci, cs, ca;
392 ci = ci_table[i];
393 cs = 1.0 / sqrt(1.0 + ci * ci);
394 ca = cs * ci;
395#if !USE_FLOATS
396 csa_table[i][0] = FIXHR(cs/4);
397 csa_table[i][1] = FIXHR(ca/4);
398 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
399 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
400#else
401 csa_table[i][0] = cs;
402 csa_table[i][1] = ca;
403 csa_table[i][2] = ca + cs;
404 csa_table[i][3] = ca - cs;
405#endif
406 }
407}
408
f6fa7814
DM
409#if USE_FLOATS
410static av_cold int decode_close(AVCodecContext * avctx)
411{
412 MPADecodeContext *s = avctx->priv_data;
413 av_freep(&s->fdsp);
414
415 return 0;
416}
417#endif
418
2ba45a60
DM
419static av_cold int decode_init(AVCodecContext * avctx)
420{
421 static int initialized_tables = 0;
422 MPADecodeContext *s = avctx->priv_data;
423
424 if (!initialized_tables) {
425 decode_init_static();
426 initialized_tables = 1;
427 }
428
429 s->avctx = avctx;
430
f6fa7814
DM
431 s->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT);
432 if (!s->fdsp)
433 return AVERROR(ENOMEM);
434
2ba45a60
DM
435 ff_mpadsp_init(&s->mpadsp);
436
437 if (avctx->request_sample_fmt == OUT_FMT &&
438 avctx->codec_id != AV_CODEC_ID_MP3ON4)
439 avctx->sample_fmt = OUT_FMT;
440 else
441 avctx->sample_fmt = OUT_FMT_P;
442 s->err_recognition = avctx->err_recognition;
443
444 if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
445 s->adu_mode = 1;
446
447 return 0;
448}
449
450#define C3 FIXHR(0.86602540378443864676/2)
451#define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
452#define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
453#define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
454
455/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
456 cases. */
457static void imdct12(INTFLOAT *out, INTFLOAT *in)
458{
459 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
460
461 in0 = in[0*3];
462 in1 = in[1*3] + in[0*3];
463 in2 = in[2*3] + in[1*3];
464 in3 = in[3*3] + in[2*3];
465 in4 = in[4*3] + in[3*3];
466 in5 = in[5*3] + in[4*3];
467 in5 += in3;
468 in3 += in1;
469
470 in2 = MULH3(in2, C3, 2);
471 in3 = MULH3(in3, C3, 4);
472
473 t1 = in0 - in4;
474 t2 = MULH3(in1 - in5, C4, 2);
475
476 out[ 7] =
477 out[10] = t1 + t2;
478 out[ 1] =
479 out[ 4] = t1 - t2;
480
481 in0 += SHR(in4, 1);
482 in4 = in0 + in2;
483 in5 += 2*in1;
484 in1 = MULH3(in5 + in3, C5, 1);
485 out[ 8] =
486 out[ 9] = in4 + in1;
487 out[ 2] =
488 out[ 3] = in4 - in1;
489
490 in0 -= in2;
491 in5 = MULH3(in5 - in3, C6, 2);
492 out[ 0] =
493 out[ 5] = in0 - in5;
494 out[ 6] =
495 out[11] = in0 + in5;
496}
497
498/* return the number of decoded frames */
499static int mp_decode_layer1(MPADecodeContext *s)
500{
501 int bound, i, v, n, ch, j, mant;
502 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
503 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
504
505 if (s->mode == MPA_JSTEREO)
506 bound = (s->mode_ext + 1) * 4;
507 else
508 bound = SBLIMIT;
509
510 /* allocation bits */
511 for (i = 0; i < bound; i++) {
512 for (ch = 0; ch < s->nb_channels; ch++) {
513 allocation[ch][i] = get_bits(&s->gb, 4);
514 }
515 }
516 for (i = bound; i < SBLIMIT; i++)
517 allocation[0][i] = get_bits(&s->gb, 4);
518
519 /* scale factors */
520 for (i = 0; i < bound; i++) {
521 for (ch = 0; ch < s->nb_channels; ch++) {
522 if (allocation[ch][i])
523 scale_factors[ch][i] = get_bits(&s->gb, 6);
524 }
525 }
526 for (i = bound; i < SBLIMIT; i++) {
527 if (allocation[0][i]) {
528 scale_factors[0][i] = get_bits(&s->gb, 6);
529 scale_factors[1][i] = get_bits(&s->gb, 6);
530 }
531 }
532
533 /* compute samples */
534 for (j = 0; j < 12; j++) {
535 for (i = 0; i < bound; i++) {
536 for (ch = 0; ch < s->nb_channels; ch++) {
537 n = allocation[ch][i];
538 if (n) {
539 mant = get_bits(&s->gb, n + 1);
540 v = l1_unscale(n, mant, scale_factors[ch][i]);
541 } else {
542 v = 0;
543 }
544 s->sb_samples[ch][j][i] = v;
545 }
546 }
547 for (i = bound; i < SBLIMIT; i++) {
548 n = allocation[0][i];
549 if (n) {
550 mant = get_bits(&s->gb, n + 1);
551 v = l1_unscale(n, mant, scale_factors[0][i]);
552 s->sb_samples[0][j][i] = v;
553 v = l1_unscale(n, mant, scale_factors[1][i]);
554 s->sb_samples[1][j][i] = v;
555 } else {
556 s->sb_samples[0][j][i] = 0;
557 s->sb_samples[1][j][i] = 0;
558 }
559 }
560 }
561 return 12;
562}
563
564static int mp_decode_layer2(MPADecodeContext *s)
565{
566 int sblimit; /* number of used subbands */
567 const unsigned char *alloc_table;
568 int table, bit_alloc_bits, i, j, ch, bound, v;
569 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
570 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
571 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
572 int scale, qindex, bits, steps, k, l, m, b;
573
574 /* select decoding table */
575 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
576 s->sample_rate, s->lsf);
577 sblimit = ff_mpa_sblimit_table[table];
578 alloc_table = ff_mpa_alloc_tables[table];
579
580 if (s->mode == MPA_JSTEREO)
581 bound = (s->mode_ext + 1) * 4;
582 else
583 bound = sblimit;
584
585 av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
586
587 /* sanity check */
588 if (bound > sblimit)
589 bound = sblimit;
590
591 /* parse bit allocation */
592 j = 0;
593 for (i = 0; i < bound; i++) {
594 bit_alloc_bits = alloc_table[j];
595 for (ch = 0; ch < s->nb_channels; ch++)
596 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
597 j += 1 << bit_alloc_bits;
598 }
599 for (i = bound; i < sblimit; i++) {
600 bit_alloc_bits = alloc_table[j];
601 v = get_bits(&s->gb, bit_alloc_bits);
602 bit_alloc[0][i] = v;
603 bit_alloc[1][i] = v;
604 j += 1 << bit_alloc_bits;
605 }
606
607 /* scale codes */
608 for (i = 0; i < sblimit; i++) {
609 for (ch = 0; ch < s->nb_channels; ch++) {
610 if (bit_alloc[ch][i])
611 scale_code[ch][i] = get_bits(&s->gb, 2);
612 }
613 }
614
615 /* scale factors */
616 for (i = 0; i < sblimit; i++) {
617 for (ch = 0; ch < s->nb_channels; ch++) {
618 if (bit_alloc[ch][i]) {
619 sf = scale_factors[ch][i];
620 switch (scale_code[ch][i]) {
621 default:
622 case 0:
623 sf[0] = get_bits(&s->gb, 6);
624 sf[1] = get_bits(&s->gb, 6);
625 sf[2] = get_bits(&s->gb, 6);
626 break;
627 case 2:
628 sf[0] = get_bits(&s->gb, 6);
629 sf[1] = sf[0];
630 sf[2] = sf[0];
631 break;
632 case 1:
633 sf[0] = get_bits(&s->gb, 6);
634 sf[2] = get_bits(&s->gb, 6);
635 sf[1] = sf[0];
636 break;
637 case 3:
638 sf[0] = get_bits(&s->gb, 6);
639 sf[2] = get_bits(&s->gb, 6);
640 sf[1] = sf[2];
641 break;
642 }
643 }
644 }
645 }
646
647 /* samples */
648 for (k = 0; k < 3; k++) {
649 for (l = 0; l < 12; l += 3) {
650 j = 0;
651 for (i = 0; i < bound; i++) {
652 bit_alloc_bits = alloc_table[j];
653 for (ch = 0; ch < s->nb_channels; ch++) {
654 b = bit_alloc[ch][i];
655 if (b) {
656 scale = scale_factors[ch][i][k];
657 qindex = alloc_table[j+b];
658 bits = ff_mpa_quant_bits[qindex];
659 if (bits < 0) {
660 int v2;
661 /* 3 values at the same time */
662 v = get_bits(&s->gb, -bits);
663 v2 = division_tabs[qindex][v];
664 steps = ff_mpa_quant_steps[qindex];
665
666 s->sb_samples[ch][k * 12 + l + 0][i] =
667 l2_unscale_group(steps, v2 & 15, scale);
668 s->sb_samples[ch][k * 12 + l + 1][i] =
669 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
670 s->sb_samples[ch][k * 12 + l + 2][i] =
671 l2_unscale_group(steps, v2 >> 8 , scale);
672 } else {
673 for (m = 0; m < 3; m++) {
674 v = get_bits(&s->gb, bits);
675 v = l1_unscale(bits - 1, v, scale);
676 s->sb_samples[ch][k * 12 + l + m][i] = v;
677 }
678 }
679 } else {
680 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
681 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
682 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
683 }
684 }
685 /* next subband in alloc table */
686 j += 1 << bit_alloc_bits;
687 }
688 /* XXX: find a way to avoid this duplication of code */
689 for (i = bound; i < sblimit; i++) {
690 bit_alloc_bits = alloc_table[j];
691 b = bit_alloc[0][i];
692 if (b) {
693 int mant, scale0, scale1;
694 scale0 = scale_factors[0][i][k];
695 scale1 = scale_factors[1][i][k];
696 qindex = alloc_table[j+b];
697 bits = ff_mpa_quant_bits[qindex];
698 if (bits < 0) {
699 /* 3 values at the same time */
700 v = get_bits(&s->gb, -bits);
701 steps = ff_mpa_quant_steps[qindex];
702 mant = v % steps;
703 v = v / steps;
704 s->sb_samples[0][k * 12 + l + 0][i] =
705 l2_unscale_group(steps, mant, scale0);
706 s->sb_samples[1][k * 12 + l + 0][i] =
707 l2_unscale_group(steps, mant, scale1);
708 mant = v % steps;
709 v = v / steps;
710 s->sb_samples[0][k * 12 + l + 1][i] =
711 l2_unscale_group(steps, mant, scale0);
712 s->sb_samples[1][k * 12 + l + 1][i] =
713 l2_unscale_group(steps, mant, scale1);
714 s->sb_samples[0][k * 12 + l + 2][i] =
715 l2_unscale_group(steps, v, scale0);
716 s->sb_samples[1][k * 12 + l + 2][i] =
717 l2_unscale_group(steps, v, scale1);
718 } else {
719 for (m = 0; m < 3; m++) {
720 mant = get_bits(&s->gb, bits);
721 s->sb_samples[0][k * 12 + l + m][i] =
722 l1_unscale(bits - 1, mant, scale0);
723 s->sb_samples[1][k * 12 + l + m][i] =
724 l1_unscale(bits - 1, mant, scale1);
725 }
726 }
727 } else {
728 s->sb_samples[0][k * 12 + l + 0][i] = 0;
729 s->sb_samples[0][k * 12 + l + 1][i] = 0;
730 s->sb_samples[0][k * 12 + l + 2][i] = 0;
731 s->sb_samples[1][k * 12 + l + 0][i] = 0;
732 s->sb_samples[1][k * 12 + l + 1][i] = 0;
733 s->sb_samples[1][k * 12 + l + 2][i] = 0;
734 }
735 /* next subband in alloc table */
736 j += 1 << bit_alloc_bits;
737 }
738 /* fill remaining samples to zero */
739 for (i = sblimit; i < SBLIMIT; i++) {
740 for (ch = 0; ch < s->nb_channels; ch++) {
741 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
742 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
743 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
744 }
745 }
746 }
747 }
748 return 3 * 12;
749}
750
751#define SPLIT(dst,sf,n) \
752 if (n == 3) { \
753 int m = (sf * 171) >> 9; \
754 dst = sf - 3 * m; \
755 sf = m; \
756 } else if (n == 4) { \
757 dst = sf & 3; \
758 sf >>= 2; \
759 } else if (n == 5) { \
760 int m = (sf * 205) >> 10; \
761 dst = sf - 5 * m; \
762 sf = m; \
763 } else if (n == 6) { \
764 int m = (sf * 171) >> 10; \
765 dst = sf - 6 * m; \
766 sf = m; \
767 } else { \
768 dst = 0; \
769 }
770
771static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
772 int n3)
773{
774 SPLIT(slen[3], sf, n3)
775 SPLIT(slen[2], sf, n2)
776 SPLIT(slen[1], sf, n1)
777 slen[0] = sf;
778}
779
780static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
781 int16_t *exponents)
782{
783 const uint8_t *bstab, *pretab;
784 int len, i, j, k, l, v0, shift, gain, gains[3];
785 int16_t *exp_ptr;
786
787 exp_ptr = exponents;
788 gain = g->global_gain - 210;
789 shift = g->scalefac_scale + 1;
790
791 bstab = band_size_long[s->sample_rate_index];
792 pretab = mpa_pretab[g->preflag];
793 for (i = 0; i < g->long_end; i++) {
794 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
795 len = bstab[i];
796 for (j = len; j > 0; j--)
797 *exp_ptr++ = v0;
798 }
799
800 if (g->short_start < 13) {
801 bstab = band_size_short[s->sample_rate_index];
802 gains[0] = gain - (g->subblock_gain[0] << 3);
803 gains[1] = gain - (g->subblock_gain[1] << 3);
804 gains[2] = gain - (g->subblock_gain[2] << 3);
805 k = g->long_end;
806 for (i = g->short_start; i < 13; i++) {
807 len = bstab[i];
808 for (l = 0; l < 3; l++) {
809 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
810 for (j = len; j > 0; j--)
811 *exp_ptr++ = v0;
812 }
813 }
814 }
815}
816
817/* handle n = 0 too */
818static inline int get_bitsz(GetBitContext *s, int n)
819{
820 return n ? get_bits(s, n) : 0;
821}
822
823
824static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
825 int *end_pos2)
826{
827 if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
828 s->gb = s->in_gb;
829 s->in_gb.buffer = NULL;
830 av_assert2((get_bits_count(&s->gb) & 7) == 0);
831 skip_bits_long(&s->gb, *pos - *end_pos);
832 *end_pos2 =
833 *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
834 *pos = get_bits_count(&s->gb);
835 }
836}
837
838/* Following is a optimized code for
839 INTFLOAT v = *src
840 if(get_bits1(&s->gb))
841 v = -v;
842 *dst = v;
843*/
844#if USE_FLOATS
845#define READ_FLIP_SIGN(dst,src) \
846 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
847 AV_WN32A(dst, v);
848#else
849#define READ_FLIP_SIGN(dst,src) \
850 v = -get_bits1(&s->gb); \
851 *(dst) = (*(src) ^ v) - v;
852#endif
853
854static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
855 int16_t *exponents, int end_pos2)
856{
857 int s_index;
858 int i;
859 int last_pos, bits_left;
860 VLC *vlc;
861 int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
862
863 /* low frequencies (called big values) */
864 s_index = 0;
865 for (i = 0; i < 3; i++) {
866 int j, k, l, linbits;
867 j = g->region_size[i];
868 if (j == 0)
869 continue;
870 /* select vlc table */
871 k = g->table_select[i];
872 l = mpa_huff_data[k][0];
873 linbits = mpa_huff_data[k][1];
874 vlc = &huff_vlc[l];
875
876 if (!l) {
877 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
878 s_index += 2 * j;
879 continue;
880 }
881
882 /* read huffcode and compute each couple */
883 for (; j > 0; j--) {
884 int exponent, x, y;
885 int v;
886 int pos = get_bits_count(&s->gb);
887
888 if (pos >= end_pos){
889 switch_buffer(s, &pos, &end_pos, &end_pos2);
890 if (pos >= end_pos)
891 break;
892 }
893 y = get_vlc2(&s->gb, vlc->table, 7, 3);
894
895 if (!y) {
896 g->sb_hybrid[s_index ] =
897 g->sb_hybrid[s_index+1] = 0;
898 s_index += 2;
899 continue;
900 }
901
902 exponent= exponents[s_index];
903
904 av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
905 i, g->region_size[i] - j, x, y, exponent);
906 if (y & 16) {
907 x = y >> 5;
908 y = y & 0x0f;
909 if (x < 15) {
910 READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
911 } else {
912 x += get_bitsz(&s->gb, linbits);
913 v = l3_unscale(x, exponent);
914 if (get_bits1(&s->gb))
915 v = -v;
916 g->sb_hybrid[s_index] = v;
917 }
918 if (y < 15) {
919 READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
920 } else {
921 y += get_bitsz(&s->gb, linbits);
922 v = l3_unscale(y, exponent);
923 if (get_bits1(&s->gb))
924 v = -v;
925 g->sb_hybrid[s_index+1] = v;
926 }
927 } else {
928 x = y >> 5;
929 y = y & 0x0f;
930 x += y;
931 if (x < 15) {
932 READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
933 } else {
934 x += get_bitsz(&s->gb, linbits);
935 v = l3_unscale(x, exponent);
936 if (get_bits1(&s->gb))
937 v = -v;
938 g->sb_hybrid[s_index+!!y] = v;
939 }
940 g->sb_hybrid[s_index + !y] = 0;
941 }
942 s_index += 2;
943 }
944 }
945
946 /* high frequencies */
947 vlc = &huff_quad_vlc[g->count1table_select];
948 last_pos = 0;
949 while (s_index <= 572) {
950 int pos, code;
951 pos = get_bits_count(&s->gb);
952 if (pos >= end_pos) {
953 if (pos > end_pos2 && last_pos) {
954 /* some encoders generate an incorrect size for this
955 part. We must go back into the data */
956 s_index -= 4;
957 skip_bits_long(&s->gb, last_pos - pos);
958 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
959 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
960 s_index=0;
961 break;
962 }
963 switch_buffer(s, &pos, &end_pos, &end_pos2);
964 if (pos >= end_pos)
965 break;
966 }
967 last_pos = pos;
968
969 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
970 av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
971 g->sb_hybrid[s_index+0] =
972 g->sb_hybrid[s_index+1] =
973 g->sb_hybrid[s_index+2] =
974 g->sb_hybrid[s_index+3] = 0;
975 while (code) {
976 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
977 int v;
978 int pos = s_index + idxtab[code];
979 code ^= 8 >> idxtab[code];
980 READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
981 }
982 s_index += 4;
983 }
984 /* skip extension bits */
985 bits_left = end_pos2 - get_bits_count(&s->gb);
986 if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
987 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
988 s_index=0;
989 } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
990 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
991 s_index = 0;
992 }
993 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
994 skip_bits_long(&s->gb, bits_left);
995
996 i = get_bits_count(&s->gb);
997 switch_buffer(s, &i, &end_pos, &end_pos2);
998
999 return 0;
1000}
1001
1002/* Reorder short blocks from bitstream order to interleaved order. It
1003 would be faster to do it in parsing, but the code would be far more
1004 complicated */
1005static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1006{
1007 int i, j, len;
1008 INTFLOAT *ptr, *dst, *ptr1;
1009 INTFLOAT tmp[576];
1010
1011 if (g->block_type != 2)
1012 return;
1013
1014 if (g->switch_point) {
1015 if (s->sample_rate_index != 8)
1016 ptr = g->sb_hybrid + 36;
1017 else
1018 ptr = g->sb_hybrid + 72;
1019 } else {
1020 ptr = g->sb_hybrid;
1021 }
1022
1023 for (i = g->short_start; i < 13; i++) {
1024 len = band_size_short[s->sample_rate_index][i];
1025 ptr1 = ptr;
1026 dst = tmp;
1027 for (j = len; j > 0; j--) {
1028 *dst++ = ptr[0*len];
1029 *dst++ = ptr[1*len];
1030 *dst++ = ptr[2*len];
1031 ptr++;
1032 }
1033 ptr += 2 * len;
1034 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1035 }
1036}
1037
1038#define ISQRT2 FIXR(0.70710678118654752440)
1039
1040static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
1041{
1042 int i, j, k, l;
1043 int sf_max, sf, len, non_zero_found;
1044 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
1045 int non_zero_found_short[3];
1046
1047 /* intensity stereo */
1048 if (s->mode_ext & MODE_EXT_I_STEREO) {
1049 if (!s->lsf) {
1050 is_tab = is_table;
1051 sf_max = 7;
1052 } else {
1053 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1054 sf_max = 16;
1055 }
1056
1057 tab0 = g0->sb_hybrid + 576;
1058 tab1 = g1->sb_hybrid + 576;
1059
1060 non_zero_found_short[0] = 0;
1061 non_zero_found_short[1] = 0;
1062 non_zero_found_short[2] = 0;
1063 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1064 for (i = 12; i >= g1->short_start; i--) {
1065 /* for last band, use previous scale factor */
1066 if (i != 11)
1067 k -= 3;
1068 len = band_size_short[s->sample_rate_index][i];
1069 for (l = 2; l >= 0; l--) {
1070 tab0 -= len;
1071 tab1 -= len;
1072 if (!non_zero_found_short[l]) {
1073 /* test if non zero band. if so, stop doing i-stereo */
1074 for (j = 0; j < len; j++) {
1075 if (tab1[j] != 0) {
1076 non_zero_found_short[l] = 1;
1077 goto found1;
1078 }
1079 }
1080 sf = g1->scale_factors[k + l];
1081 if (sf >= sf_max)
1082 goto found1;
1083
1084 v1 = is_tab[0][sf];
1085 v2 = is_tab[1][sf];
1086 for (j = 0; j < len; j++) {
1087 tmp0 = tab0[j];
1088 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1089 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1090 }
1091 } else {
1092found1:
1093 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1094 /* lower part of the spectrum : do ms stereo
1095 if enabled */
1096 for (j = 0; j < len; j++) {
1097 tmp0 = tab0[j];
1098 tmp1 = tab1[j];
1099 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1100 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1101 }
1102 }
1103 }
1104 }
1105 }
1106
1107 non_zero_found = non_zero_found_short[0] |
1108 non_zero_found_short[1] |
1109 non_zero_found_short[2];
1110
1111 for (i = g1->long_end - 1;i >= 0;i--) {
1112 len = band_size_long[s->sample_rate_index][i];
1113 tab0 -= len;
1114 tab1 -= len;
1115 /* test if non zero band. if so, stop doing i-stereo */
1116 if (!non_zero_found) {
1117 for (j = 0; j < len; j++) {
1118 if (tab1[j] != 0) {
1119 non_zero_found = 1;
1120 goto found2;
1121 }
1122 }
1123 /* for last band, use previous scale factor */
1124 k = (i == 21) ? 20 : i;
1125 sf = g1->scale_factors[k];
1126 if (sf >= sf_max)
1127 goto found2;
1128 v1 = is_tab[0][sf];
1129 v2 = is_tab[1][sf];
1130 for (j = 0; j < len; j++) {
1131 tmp0 = tab0[j];
1132 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1133 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1134 }
1135 } else {
1136found2:
1137 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1138 /* lower part of the spectrum : do ms stereo
1139 if enabled */
1140 for (j = 0; j < len; j++) {
1141 tmp0 = tab0[j];
1142 tmp1 = tab1[j];
1143 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1144 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1145 }
1146 }
1147 }
1148 }
1149 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1150 /* ms stereo ONLY */
1151 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1152 global gain */
1153#if USE_FLOATS
f6fa7814 1154 s->fdsp->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
2ba45a60
DM
1155#else
1156 tab0 = g0->sb_hybrid;
1157 tab1 = g1->sb_hybrid;
1158 for (i = 0; i < 576; i++) {
1159 tmp0 = tab0[i];
1160 tmp1 = tab1[i];
1161 tab0[i] = tmp0 + tmp1;
1162 tab1[i] = tmp0 - tmp1;
1163 }
1164#endif
1165 }
1166}
1167
1168#if USE_FLOATS
1169#if HAVE_MIPSFPU
1170# include "mips/compute_antialias_float.h"
1171#endif /* HAVE_MIPSFPU */
1172#else
1173#if HAVE_MIPSDSPR1
1174# include "mips/compute_antialias_fixed.h"
1175#endif /* HAVE_MIPSDSPR1 */
1176#endif /* USE_FLOATS */
1177
1178#ifndef compute_antialias
1179#if USE_FLOATS
1180#define AA(j) do { \
1181 float tmp0 = ptr[-1-j]; \
1182 float tmp1 = ptr[ j]; \
1183 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
1184 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
1185 } while (0)
1186#else
1187#define AA(j) do { \
1188 int tmp0 = ptr[-1-j]; \
1189 int tmp1 = ptr[ j]; \
1190 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
1191 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
1192 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
1193 } while (0)
1194#endif
1195
1196static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
1197{
1198 INTFLOAT *ptr;
1199 int n, i;
1200
1201 /* we antialias only "long" bands */
1202 if (g->block_type == 2) {
1203 if (!g->switch_point)
1204 return;
1205 /* XXX: check this for 8000Hz case */
1206 n = 1;
1207 } else {
1208 n = SBLIMIT - 1;
1209 }
1210
1211 ptr = g->sb_hybrid + 18;
1212 for (i = n; i > 0; i--) {
1213 AA(0);
1214 AA(1);
1215 AA(2);
1216 AA(3);
1217 AA(4);
1218 AA(5);
1219 AA(6);
1220 AA(7);
1221
1222 ptr += 18;
1223 }
1224}
1225#endif /* compute_antialias */
1226
1227static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
1228 INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
1229{
1230 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1231 INTFLOAT out2[12];
1232 int i, j, mdct_long_end, sblimit;
1233
1234 /* find last non zero block */
1235 ptr = g->sb_hybrid + 576;
1236 ptr1 = g->sb_hybrid + 2 * 18;
1237 while (ptr >= ptr1) {
1238 int32_t *p;
1239 ptr -= 6;
1240 p = (int32_t*)ptr;
1241 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1242 break;
1243 }
1244 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1245
1246 if (g->block_type == 2) {
1247 /* XXX: check for 8000 Hz */
1248 if (g->switch_point)
1249 mdct_long_end = 2;
1250 else
1251 mdct_long_end = 0;
1252 } else {
1253 mdct_long_end = sblimit;
1254 }
1255
1256 s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
1257 mdct_long_end, g->switch_point,
1258 g->block_type);
1259
1260 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1261 ptr = g->sb_hybrid + 18 * mdct_long_end;
1262
1263 for (j = mdct_long_end; j < sblimit; j++) {
1264 /* select frequency inversion */
1265 win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
1266 out_ptr = sb_samples + j;
1267
1268 for (i = 0; i < 6; i++) {
1269 *out_ptr = buf[4*i];
1270 out_ptr += SBLIMIT;
1271 }
1272 imdct12(out2, ptr + 0);
1273 for (i = 0; i < 6; i++) {
1274 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
1275 buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
1276 out_ptr += SBLIMIT;
1277 }
1278 imdct12(out2, ptr + 1);
1279 for (i = 0; i < 6; i++) {
1280 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
1281 buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
1282 out_ptr += SBLIMIT;
1283 }
1284 imdct12(out2, ptr + 2);
1285 for (i = 0; i < 6; i++) {
1286 buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
1287 buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
1288 buf[4*(i + 6*2)] = 0;
1289 }
1290 ptr += 18;
1291 buf += (j&3) != 3 ? 1 : (4*18-3);
1292 }
1293 /* zero bands */
1294 for (j = sblimit; j < SBLIMIT; j++) {
1295 /* overlap */
1296 out_ptr = sb_samples + j;
1297 for (i = 0; i < 18; i++) {
1298 *out_ptr = buf[4*i];
1299 buf[4*i] = 0;
1300 out_ptr += SBLIMIT;
1301 }
1302 buf += (j&3) != 3 ? 1 : (4*18-3);
1303 }
1304}
1305
1306/* main layer3 decoding function */
1307static int mp_decode_layer3(MPADecodeContext *s)
1308{
1309 int nb_granules, main_data_begin;
1310 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1311 GranuleDef *g;
1312 int16_t exponents[576]; //FIXME try INTFLOAT
1313
1314 /* read side info */
1315 if (s->lsf) {
1316 main_data_begin = get_bits(&s->gb, 8);
1317 skip_bits(&s->gb, s->nb_channels);
1318 nb_granules = 1;
1319 } else {
1320 main_data_begin = get_bits(&s->gb, 9);
1321 if (s->nb_channels == 2)
1322 skip_bits(&s->gb, 3);
1323 else
1324 skip_bits(&s->gb, 5);
1325 nb_granules = 2;
1326 for (ch = 0; ch < s->nb_channels; ch++) {
1327 s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1328 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1329 }
1330 }
1331
1332 for (gr = 0; gr < nb_granules; gr++) {
1333 for (ch = 0; ch < s->nb_channels; ch++) {
1334 av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1335 g = &s->granules[ch][gr];
1336 g->part2_3_length = get_bits(&s->gb, 12);
1337 g->big_values = get_bits(&s->gb, 9);
1338 if (g->big_values > 288) {
1339 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1340 return AVERROR_INVALIDDATA;
1341 }
1342
1343 g->global_gain = get_bits(&s->gb, 8);
1344 /* if MS stereo only is selected, we precompute the
1345 1/sqrt(2) renormalization factor */
1346 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1347 MODE_EXT_MS_STEREO)
1348 g->global_gain -= 2;
1349 if (s->lsf)
1350 g->scalefac_compress = get_bits(&s->gb, 9);
1351 else
1352 g->scalefac_compress = get_bits(&s->gb, 4);
1353 blocksplit_flag = get_bits1(&s->gb);
1354 if (blocksplit_flag) {
1355 g->block_type = get_bits(&s->gb, 2);
1356 if (g->block_type == 0) {
1357 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1358 return AVERROR_INVALIDDATA;
1359 }
1360 g->switch_point = get_bits1(&s->gb);
1361 for (i = 0; i < 2; i++)
1362 g->table_select[i] = get_bits(&s->gb, 5);
1363 for (i = 0; i < 3; i++)
1364 g->subblock_gain[i] = get_bits(&s->gb, 3);
1365 init_short_region(s, g);
1366 } else {
1367 int region_address1, region_address2;
1368 g->block_type = 0;
1369 g->switch_point = 0;
1370 for (i = 0; i < 3; i++)
1371 g->table_select[i] = get_bits(&s->gb, 5);
1372 /* compute huffman coded region sizes */
1373 region_address1 = get_bits(&s->gb, 4);
1374 region_address2 = get_bits(&s->gb, 3);
1375 av_dlog(s->avctx, "region1=%d region2=%d\n",
1376 region_address1, region_address2);
1377 init_long_region(s, g, region_address1, region_address2);
1378 }
1379 region_offset2size(g);
1380 compute_band_indexes(s, g);
1381
1382 g->preflag = 0;
1383 if (!s->lsf)
1384 g->preflag = get_bits1(&s->gb);
1385 g->scalefac_scale = get_bits1(&s->gb);
1386 g->count1table_select = get_bits1(&s->gb);
1387 av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1388 g->block_type, g->switch_point);
1389 }
1390 }
1391
1392 if (!s->adu_mode) {
1393 int skip;
1394 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1395 int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
1396 av_assert1((get_bits_count(&s->gb) & 7) == 0);
1397 /* now we get bits from the main_data_begin offset */
1398 av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
1399 main_data_begin, s->last_buf_size);
1400
1401 memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
1402 s->in_gb = s->gb;
1403 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
1404#if !UNCHECKED_BITSTREAM_READER
1405 s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
1406#endif
1407 s->last_buf_size <<= 3;
1408 for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
1409 for (ch = 0; ch < s->nb_channels; ch++) {
1410 g = &s->granules[ch][gr];
1411 s->last_buf_size += g->part2_3_length;
1412 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1413 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1414 }
1415 }
1416 skip = s->last_buf_size - 8 * main_data_begin;
1417 if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
1418 skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
1419 s->gb = s->in_gb;
1420 s->in_gb.buffer = NULL;
1421 } else {
1422 skip_bits_long(&s->gb, skip);
1423 }
1424 } else {
1425 gr = 0;
1426 }
1427
1428 for (; gr < nb_granules; gr++) {
1429 for (ch = 0; ch < s->nb_channels; ch++) {
1430 g = &s->granules[ch][gr];
1431 bits_pos = get_bits_count(&s->gb);
1432
1433 if (!s->lsf) {
1434 uint8_t *sc;
1435 int slen, slen1, slen2;
1436
1437 /* MPEG1 scale factors */
1438 slen1 = slen_table[0][g->scalefac_compress];
1439 slen2 = slen_table[1][g->scalefac_compress];
1440 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1441 if (g->block_type == 2) {
1442 n = g->switch_point ? 17 : 18;
1443 j = 0;
1444 if (slen1) {
1445 for (i = 0; i < n; i++)
1446 g->scale_factors[j++] = get_bits(&s->gb, slen1);
1447 } else {
1448 for (i = 0; i < n; i++)
1449 g->scale_factors[j++] = 0;
1450 }
1451 if (slen2) {
1452 for (i = 0; i < 18; i++)
1453 g->scale_factors[j++] = get_bits(&s->gb, slen2);
1454 for (i = 0; i < 3; i++)
1455 g->scale_factors[j++] = 0;
1456 } else {
1457 for (i = 0; i < 21; i++)
1458 g->scale_factors[j++] = 0;
1459 }
1460 } else {
1461 sc = s->granules[ch][0].scale_factors;
1462 j = 0;
1463 for (k = 0; k < 4; k++) {
1464 n = k == 0 ? 6 : 5;
1465 if ((g->scfsi & (0x8 >> k)) == 0) {
1466 slen = (k < 2) ? slen1 : slen2;
1467 if (slen) {
1468 for (i = 0; i < n; i++)
1469 g->scale_factors[j++] = get_bits(&s->gb, slen);
1470 } else {
1471 for (i = 0; i < n; i++)
1472 g->scale_factors[j++] = 0;
1473 }
1474 } else {
1475 /* simply copy from last granule */
1476 for (i = 0; i < n; i++) {
1477 g->scale_factors[j] = sc[j];
1478 j++;
1479 }
1480 }
1481 }
1482 g->scale_factors[j++] = 0;
1483 }
1484 } else {
1485 int tindex, tindex2, slen[4], sl, sf;
1486
1487 /* LSF scale factors */
1488 if (g->block_type == 2)
1489 tindex = g->switch_point ? 2 : 1;
1490 else
1491 tindex = 0;
1492
1493 sf = g->scalefac_compress;
1494 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1495 /* intensity stereo case */
1496 sf >>= 1;
1497 if (sf < 180) {
1498 lsf_sf_expand(slen, sf, 6, 6, 0);
1499 tindex2 = 3;
1500 } else if (sf < 244) {
1501 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1502 tindex2 = 4;
1503 } else {
1504 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1505 tindex2 = 5;
1506 }
1507 } else {
1508 /* normal case */
1509 if (sf < 400) {
1510 lsf_sf_expand(slen, sf, 5, 4, 4);
1511 tindex2 = 0;
1512 } else if (sf < 500) {
1513 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1514 tindex2 = 1;
1515 } else {
1516 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1517 tindex2 = 2;
1518 g->preflag = 1;
1519 }
1520 }
1521
1522 j = 0;
1523 for (k = 0; k < 4; k++) {
1524 n = lsf_nsf_table[tindex2][tindex][k];
1525 sl = slen[k];
1526 if (sl) {
1527 for (i = 0; i < n; i++)
1528 g->scale_factors[j++] = get_bits(&s->gb, sl);
1529 } else {
1530 for (i = 0; i < n; i++)
1531 g->scale_factors[j++] = 0;
1532 }
1533 }
1534 /* XXX: should compute exact size */
1535 for (; j < 40; j++)
1536 g->scale_factors[j] = 0;
1537 }
1538
1539 exponents_from_scale_factors(s, g, exponents);
1540
1541 /* read Huffman coded residue */
1542 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1543 } /* ch */
1544
1545 if (s->mode == MPA_JSTEREO)
1546 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1547
1548 for (ch = 0; ch < s->nb_channels; ch++) {
1549 g = &s->granules[ch][gr];
1550
1551 reorder_block(s, g);
1552 compute_antialias(s, g);
1553 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1554 }
1555 } /* gr */
1556 if (get_bits_count(&s->gb) < 0)
1557 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1558 return nb_granules * 18;
1559}
1560
1561static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
1562 const uint8_t *buf, int buf_size)
1563{
1564 int i, nb_frames, ch, ret;
1565 OUT_INT *samples_ptr;
1566
1567 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
1568
1569 /* skip error protection field */
1570 if (s->error_protection)
1571 skip_bits(&s->gb, 16);
1572
1573 switch(s->layer) {
1574 case 1:
1575 s->avctx->frame_size = 384;
1576 nb_frames = mp_decode_layer1(s);
1577 break;
1578 case 2:
1579 s->avctx->frame_size = 1152;
1580 nb_frames = mp_decode_layer2(s);
1581 break;
1582 case 3:
1583 s->avctx->frame_size = s->lsf ? 576 : 1152;
1584 default:
1585 nb_frames = mp_decode_layer3(s);
1586
1587 s->last_buf_size=0;
1588 if (s->in_gb.buffer) {
1589 align_get_bits(&s->gb);
1590 i = get_bits_left(&s->gb)>>3;
1591 if (i >= 0 && i <= BACKSTEP_SIZE) {
1592 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1593 s->last_buf_size=i;
1594 } else
1595 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1596 s->gb = s->in_gb;
1597 s->in_gb.buffer = NULL;
1598 }
1599
1600 align_get_bits(&s->gb);
1601 av_assert1((get_bits_count(&s->gb) & 7) == 0);
1602 i = get_bits_left(&s->gb) >> 3;
1603
1604 if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
1605 if (i < 0)
1606 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
1607 i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
1608 }
1609 av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1610 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
1611 s->last_buf_size += i;
1612 }
1613
1614 if(nb_frames < 0)
1615 return nb_frames;
1616
1617 /* get output buffer */
1618 if (!samples) {
1619 av_assert0(s->frame);
1620 s->frame->nb_samples = s->avctx->frame_size;
1621 if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
1622 return ret;
1623 samples = (OUT_INT **)s->frame->extended_data;
1624 }
1625
1626 /* apply the synthesis filter */
1627 for (ch = 0; ch < s->nb_channels; ch++) {
1628 int sample_stride;
1629 if (s->avctx->sample_fmt == OUT_FMT_P) {
1630 samples_ptr = samples[ch];
1631 sample_stride = 1;
1632 } else {
1633 samples_ptr = samples[0] + ch;
1634 sample_stride = s->nb_channels;
1635 }
1636 for (i = 0; i < nb_frames; i++) {
1637 RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
1638 &(s->synth_buf_offset[ch]),
1639 RENAME(ff_mpa_synth_window),
1640 &s->dither_state, samples_ptr,
1641 sample_stride, s->sb_samples[ch][i]);
1642 samples_ptr += 32 * sample_stride;
1643 }
1644 }
1645
1646 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
1647}
1648
1649static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
1650 AVPacket *avpkt)
1651{
1652 const uint8_t *buf = avpkt->data;
1653 int buf_size = avpkt->size;
1654 MPADecodeContext *s = avctx->priv_data;
1655 uint32_t header;
1656 int ret;
1657
1658 while(buf_size && !*buf){
1659 buf++;
1660 buf_size--;
1661 }
1662
1663 if (buf_size < HEADER_SIZE)
1664 return AVERROR_INVALIDDATA;
1665
1666 header = AV_RB32(buf);
1667 if (header>>8 == AV_RB32("TAG")>>8) {
1668 av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
1669 return buf_size;
1670 }
1671 if (ff_mpa_check_header(header) < 0) {
1672 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
1673 return AVERROR_INVALIDDATA;
1674 }
1675
1676 if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
1677 /* free format: prepare to compute frame size */
1678 s->frame_size = -1;
1679 return AVERROR_INVALIDDATA;
1680 }
1681 /* update codec info */
1682 avctx->channels = s->nb_channels;
1683 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1684 if (!avctx->bit_rate)
1685 avctx->bit_rate = s->bit_rate;
1686
1687 if (s->frame_size <= 0 || s->frame_size > buf_size) {
1688 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1689 return AVERROR_INVALIDDATA;
1690 } else if (s->frame_size < buf_size) {
1691 av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
1692 buf_size= s->frame_size;
1693 }
1694
1695 s->frame = data;
1696
1697 ret = mp_decode_frame(s, NULL, buf, buf_size);
1698 if (ret >= 0) {
1699 s->frame->nb_samples = avctx->frame_size;
1700 *got_frame_ptr = 1;
1701 avctx->sample_rate = s->sample_rate;
1702 //FIXME maybe move the other codec info stuff from above here too
1703 } else {
1704 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1705 /* Only return an error if the bad frame makes up the whole packet or
1706 * the error is related to buffer management.
1707 * If there is more data in the packet, just consume the bad frame
1708 * instead of returning an error, which would discard the whole
1709 * packet. */
1710 *got_frame_ptr = 0;
1711 if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
1712 return ret;
1713 }
1714 s->frame_size = 0;
1715 return buf_size;
1716}
1717
1718static void mp_flush(MPADecodeContext *ctx)
1719{
1720 memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
1721 memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf));
1722 ctx->last_buf_size = 0;
1723 ctx->dither_state = 0;
1724}
1725
1726static void flush(AVCodecContext *avctx)
1727{
1728 mp_flush(avctx->priv_data);
1729}
1730
1731#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1732static int decode_frame_adu(AVCodecContext *avctx, void *data,
1733 int *got_frame_ptr, AVPacket *avpkt)
1734{
1735 const uint8_t *buf = avpkt->data;
1736 int buf_size = avpkt->size;
1737 MPADecodeContext *s = avctx->priv_data;
1738 uint32_t header;
1739 int len, ret;
1740 int av_unused out_size;
1741
1742 len = buf_size;
1743
1744 // Discard too short frames
1745 if (buf_size < HEADER_SIZE) {
1746 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1747 return AVERROR_INVALIDDATA;
1748 }
1749
1750
1751 if (len > MPA_MAX_CODED_FRAME_SIZE)
1752 len = MPA_MAX_CODED_FRAME_SIZE;
1753
1754 // Get header and restore sync word
1755 header = AV_RB32(buf) | 0xffe00000;
1756
1757 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
1758 av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
1759 return AVERROR_INVALIDDATA;
1760 }
1761
1762 avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1763 /* update codec info */
1764 avctx->sample_rate = s->sample_rate;
1765 avctx->channels = s->nb_channels;
1766 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1767 if (!avctx->bit_rate)
1768 avctx->bit_rate = s->bit_rate;
1769
1770 s->frame_size = len;
1771
1772 s->frame = data;
1773
1774 ret = mp_decode_frame(s, NULL, buf, buf_size);
1775 if (ret < 0) {
1776 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1777 return ret;
1778 }
1779
1780 *got_frame_ptr = 1;
1781
1782 return buf_size;
1783}
1784#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
1785
1786#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1787
1788/**
1789 * Context for MP3On4 decoder
1790 */
1791typedef struct MP3On4DecodeContext {
1792 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
1793 int syncword; ///< syncword patch
1794 const uint8_t *coff; ///< channel offsets in output buffer
1795 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
1796} MP3On4DecodeContext;
1797
1798#include "mpeg4audio.h"
1799
1800/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
1801
1802/* number of mp3 decoder instances */
1803static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1804
1805/* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
1806static const uint8_t chan_offset[8][5] = {
1807 { 0 },
1808 { 0 }, // C
1809 { 0 }, // FLR
1810 { 2, 0 }, // C FLR
1811 { 2, 0, 3 }, // C FLR BS
1812 { 2, 0, 3 }, // C FLR BLRS
1813 { 2, 0, 4, 3 }, // C FLR BLRS LFE
1814 { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
1815};
1816
1817/* mp3on4 channel layouts */
1818static const int16_t chan_layout[8] = {
1819 0,
1820 AV_CH_LAYOUT_MONO,
1821 AV_CH_LAYOUT_STEREO,
1822 AV_CH_LAYOUT_SURROUND,
1823 AV_CH_LAYOUT_4POINT0,
1824 AV_CH_LAYOUT_5POINT0,
1825 AV_CH_LAYOUT_5POINT1,
1826 AV_CH_LAYOUT_7POINT1
1827};
1828
1829static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
1830{
1831 MP3On4DecodeContext *s = avctx->priv_data;
1832 int i;
1833
1834 for (i = 0; i < s->frames; i++)
f6fa7814 1835 av_freep(&s->mp3decctx[i]);
2ba45a60
DM
1836
1837 return 0;
1838}
1839
1840
1841static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
1842{
1843 MP3On4DecodeContext *s = avctx->priv_data;
1844 MPEG4AudioConfig cfg;
1845 int i;
1846
1847 if ((avctx->extradata_size < 2) || !avctx->extradata) {
1848 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
1849 return AVERROR_INVALIDDATA;
1850 }
1851
1852 avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
1853 avctx->extradata_size * 8, 1);
1854 if (!cfg.chan_config || cfg.chan_config > 7) {
1855 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
1856 return AVERROR_INVALIDDATA;
1857 }
1858 s->frames = mp3Frames[cfg.chan_config];
1859 s->coff = chan_offset[cfg.chan_config];
1860 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
1861 avctx->channel_layout = chan_layout[cfg.chan_config];
1862
1863 if (cfg.sample_rate < 16000)
1864 s->syncword = 0xffe00000;
1865 else
1866 s->syncword = 0xfff00000;
1867
1868 /* Init the first mp3 decoder in standard way, so that all tables get builded
1869 * We replace avctx->priv_data with the context of the first decoder so that
1870 * decode_init() does not have to be changed.
1871 * Other decoders will be initialized here copying data from the first context
1872 */
1873 // Allocate zeroed memory for the first decoder context
1874 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
1875 if (!s->mp3decctx[0])
1876 goto alloc_fail;
1877 // Put decoder context in place to make init_decode() happy
1878 avctx->priv_data = s->mp3decctx[0];
1879 decode_init(avctx);
1880 // Restore mp3on4 context pointer
1881 avctx->priv_data = s;
1882 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
1883
1884 /* Create a separate codec/context for each frame (first is already ok).
1885 * Each frame is 1 or 2 channels - up to 5 frames allowed
1886 */
1887 for (i = 1; i < s->frames; i++) {
1888 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
1889 if (!s->mp3decctx[i])
1890 goto alloc_fail;
1891 s->mp3decctx[i]->adu_mode = 1;
1892 s->mp3decctx[i]->avctx = avctx;
1893 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1894 }
1895
1896 return 0;
1897alloc_fail:
1898 decode_close_mp3on4(avctx);
1899 return AVERROR(ENOMEM);
1900}
1901
1902
1903static void flush_mp3on4(AVCodecContext *avctx)
1904{
1905 int i;
1906 MP3On4DecodeContext *s = avctx->priv_data;
1907
1908 for (i = 0; i < s->frames; i++)
1909 mp_flush(s->mp3decctx[i]);
1910}
1911
1912
1913static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
1914 int *got_frame_ptr, AVPacket *avpkt)
1915{
1916 AVFrame *frame = data;
1917 const uint8_t *buf = avpkt->data;
1918 int buf_size = avpkt->size;
1919 MP3On4DecodeContext *s = avctx->priv_data;
1920 MPADecodeContext *m;
1921 int fsize, len = buf_size, out_size = 0;
1922 uint32_t header;
1923 OUT_INT **out_samples;
1924 OUT_INT *outptr[2];
1925 int fr, ch, ret;
1926
1927 /* get output buffer */
1928 frame->nb_samples = MPA_FRAME_SIZE;
1929 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1930 return ret;
1931 out_samples = (OUT_INT **)frame->extended_data;
1932
1933 // Discard too short frames
1934 if (buf_size < HEADER_SIZE)
1935 return AVERROR_INVALIDDATA;
1936
1937 avctx->bit_rate = 0;
1938
1939 ch = 0;
1940 for (fr = 0; fr < s->frames; fr++) {
1941 fsize = AV_RB16(buf) >> 4;
1942 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
1943 m = s->mp3decctx[fr];
1944 av_assert1(m);
1945
1946 if (fsize < HEADER_SIZE) {
1947 av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
1948 return AVERROR_INVALIDDATA;
1949 }
1950 header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
1951
1952 if (ff_mpa_check_header(header) < 0) {
1953 av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
1954 return AVERROR_INVALIDDATA;
1955 }
1956
1957 avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
1958
1959 if (ch + m->nb_channels > avctx->channels ||
1960 s->coff[fr] + m->nb_channels > avctx->channels) {
1961 av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
1962 "channel count\n");
1963 return AVERROR_INVALIDDATA;
1964 }
1965 ch += m->nb_channels;
1966
1967 outptr[0] = out_samples[s->coff[fr]];
1968 if (m->nb_channels > 1)
1969 outptr[1] = out_samples[s->coff[fr] + 1];
1970
1971 if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) {
1972 av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch);
1973 memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1974 if (m->nb_channels > 1)
1975 memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1976 ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT);
1977 }
1978
1979 out_size += ret;
1980 buf += fsize;
1981 len -= fsize;
1982
1983 avctx->bit_rate += m->bit_rate;
1984 }
1985 if (ch != avctx->channels) {
1986 av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n");
1987 return AVERROR_INVALIDDATA;
1988 }
1989
1990 /* update codec info */
1991 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
1992
1993 frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
1994 *got_frame_ptr = 1;
1995
1996 return buf_size;
1997}
1998#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */