Imported Debian version 2.5.0~trusty1.1
[deb_ffmpeg.git] / ffmpeg / libavcodec / vp3.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2003-2004 The FFmpeg Project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32#include <stdio.h>
33#include <stdlib.h>
34#include <string.h>
35
36#include "libavutil/imgutils.h"
37
38#include "avcodec.h"
39#include "get_bits.h"
40#include "hpeldsp.h"
41#include "internal.h"
42#include "mathops.h"
43#include "thread.h"
44#include "videodsp.h"
45#include "vp3data.h"
46#include "vp3dsp.h"
47#include "xiph.h"
48
49#define FRAGMENT_PIXELS 8
50
51// FIXME split things out into their own arrays
52typedef struct Vp3Fragment {
53 int16_t dc;
54 uint8_t coding_method;
55 uint8_t qpi;
56} Vp3Fragment;
57
58#define SB_NOT_CODED 0
59#define SB_PARTIALLY_CODED 1
60#define SB_FULLY_CODED 2
61
62// This is the maximum length of a single long bit run that can be encoded
63// for superblock coding or block qps. Theora special-cases this to read a
64// bit instead of flipping the current bit to allow for runs longer than 4129.
65#define MAXIMUM_LONG_BIT_RUN 4129
66
67#define MODE_INTER_NO_MV 0
68#define MODE_INTRA 1
69#define MODE_INTER_PLUS_MV 2
70#define MODE_INTER_LAST_MV 3
71#define MODE_INTER_PRIOR_LAST 4
72#define MODE_USING_GOLDEN 5
73#define MODE_GOLDEN_MV 6
74#define MODE_INTER_FOURMV 7
75#define CODING_MODE_COUNT 8
76
77/* special internal mode */
78#define MODE_COPY 8
79
80static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
81static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
82
83
84/* There are 6 preset schemes, plus a free-form scheme */
85static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
86 /* scheme 1: Last motion vector dominates */
87 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
88 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
89 MODE_INTRA, MODE_USING_GOLDEN,
90 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
91
92 /* scheme 2 */
93 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
94 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
95 MODE_INTRA, MODE_USING_GOLDEN,
96 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
97
98 /* scheme 3 */
99 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
100 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101 MODE_INTRA, MODE_USING_GOLDEN,
102 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
103
104 /* scheme 4 */
105 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
106 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
107 MODE_INTRA, MODE_USING_GOLDEN,
108 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
109
110 /* scheme 5: No motion vector dominates */
111 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
112 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113 MODE_INTRA, MODE_USING_GOLDEN,
114 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
115
116 /* scheme 6 */
117 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
118 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
119 MODE_INTER_PLUS_MV, MODE_INTRA,
120 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
121};
122
123static const uint8_t hilbert_offset[16][2] = {
124 { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
125 { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
126 { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
127 { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
128};
129
130#define MIN_DEQUANT_VAL 2
131
132typedef struct Vp3DecodeContext {
133 AVCodecContext *avctx;
134 int theora, theora_tables;
135 int version;
136 int width, height;
137 int chroma_x_shift, chroma_y_shift;
138 ThreadFrame golden_frame;
139 ThreadFrame last_frame;
140 ThreadFrame current_frame;
141 int keyframe;
142 uint8_t idct_permutation[64];
143 uint8_t idct_scantable[64];
144 HpelDSPContext hdsp;
145 VideoDSPContext vdsp;
146 VP3DSPContext vp3dsp;
147 DECLARE_ALIGNED(16, int16_t, block)[64];
148 int flipped_image;
149 int last_slice_end;
150 int skip_loop_filter;
151
152 int qps[3];
153 int nqps;
154 int last_qps[3];
155
156 int superblock_count;
157 int y_superblock_width;
158 int y_superblock_height;
159 int y_superblock_count;
160 int c_superblock_width;
161 int c_superblock_height;
162 int c_superblock_count;
163 int u_superblock_start;
164 int v_superblock_start;
165 unsigned char *superblock_coding;
166
167 int macroblock_count;
168 int macroblock_width;
169 int macroblock_height;
170
171 int fragment_count;
172 int fragment_width[2];
173 int fragment_height[2];
174
175 Vp3Fragment *all_fragments;
176 int fragment_start[3];
177 int data_offset[3];
178
179 int8_t (*motion_val[2])[2];
180
181 /* tables */
182 uint16_t coded_dc_scale_factor[64];
183 uint32_t coded_ac_scale_factor[64];
184 uint8_t base_matrix[384][64];
185 uint8_t qr_count[2][3];
186 uint8_t qr_size[2][3][64];
187 uint16_t qr_base[2][3][64];
188
189 /**
190 * This is a list of all tokens in bitstream order. Reordering takes place
191 * by pulling from each level during IDCT. As a consequence, IDCT must be
192 * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
193 * otherwise. The 32 different tokens with up to 12 bits of extradata are
194 * collapsed into 3 types, packed as follows:
195 * (from the low to high bits)
196 *
197 * 2 bits: type (0,1,2)
198 * 0: EOB run, 14 bits for run length (12 needed)
199 * 1: zero run, 7 bits for run length
200 * 7 bits for the next coefficient (3 needed)
201 * 2: coefficient, 14 bits (11 needed)
202 *
203 * Coefficients are signed, so are packed in the highest bits for automatic
204 * sign extension.
205 */
206 int16_t *dct_tokens[3][64];
207 int16_t *dct_tokens_base;
208#define TOKEN_EOB(eob_run) ((eob_run) << 2)
209#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
210#define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
211
212 /**
213 * number of blocks that contain DCT coefficients at
214 * the given level or higher
215 */
216 int num_coded_frags[3][64];
217 int total_num_coded_frags;
218
219 /* this is a list of indexes into the all_fragments array indicating
220 * which of the fragments are coded */
221 int *coded_fragment_list[3];
222
223 VLC dc_vlc[16];
224 VLC ac_vlc_1[16];
225 VLC ac_vlc_2[16];
226 VLC ac_vlc_3[16];
227 VLC ac_vlc_4[16];
228
229 VLC superblock_run_length_vlc;
230 VLC fragment_run_length_vlc;
231 VLC mode_code_vlc;
232 VLC motion_vector_vlc;
233
234 /* these arrays need to be on 16-byte boundaries since SSE2 operations
235 * index into them */
236 DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
237
238 /* This table contains superblock_count * 16 entries. Each set of 16
239 * numbers corresponds to the fragment indexes 0..15 of the superblock.
240 * An entry will be -1 to indicate that no entry corresponds to that
241 * index. */
242 int *superblock_fragments;
243
244 /* This is an array that indicates how a particular macroblock
245 * is coded. */
246 unsigned char *macroblock_coding;
247
248 uint8_t *edge_emu_buffer;
249
250 /* Huffman decode */
251 int hti;
252 unsigned int hbits;
253 int entries;
254 int huff_code_size;
255 uint32_t huffman_table[80][32][2];
256
257 uint8_t filter_limit_values[64];
258 DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
259} Vp3DecodeContext;
260
261/************************************************************************
262 * VP3 specific functions
263 ************************************************************************/
264
265static av_cold void free_tables(AVCodecContext *avctx)
266{
267 Vp3DecodeContext *s = avctx->priv_data;
268
269 av_freep(&s->superblock_coding);
270 av_freep(&s->all_fragments);
271 av_freep(&s->coded_fragment_list[0]);
272 av_freep(&s->dct_tokens_base);
273 av_freep(&s->superblock_fragments);
274 av_freep(&s->macroblock_coding);
275 av_freep(&s->motion_val[0]);
276 av_freep(&s->motion_val[1]);
277}
278
279static void vp3_decode_flush(AVCodecContext *avctx)
280{
281 Vp3DecodeContext *s = avctx->priv_data;
282
283 if (s->golden_frame.f)
284 ff_thread_release_buffer(avctx, &s->golden_frame);
285 if (s->last_frame.f)
286 ff_thread_release_buffer(avctx, &s->last_frame);
287 if (s->current_frame.f)
288 ff_thread_release_buffer(avctx, &s->current_frame);
289}
290
291static av_cold int vp3_decode_end(AVCodecContext *avctx)
292{
293 Vp3DecodeContext *s = avctx->priv_data;
294 int i;
295
296 free_tables(avctx);
297 av_freep(&s->edge_emu_buffer);
298
299 s->theora_tables = 0;
300
301 /* release all frames */
302 vp3_decode_flush(avctx);
303 av_frame_free(&s->current_frame.f);
304 av_frame_free(&s->last_frame.f);
305 av_frame_free(&s->golden_frame.f);
306
307 if (avctx->internal->is_copy)
308 return 0;
309
310 for (i = 0; i < 16; i++) {
311 ff_free_vlc(&s->dc_vlc[i]);
312 ff_free_vlc(&s->ac_vlc_1[i]);
313 ff_free_vlc(&s->ac_vlc_2[i]);
314 ff_free_vlc(&s->ac_vlc_3[i]);
315 ff_free_vlc(&s->ac_vlc_4[i]);
316 }
317
318 ff_free_vlc(&s->superblock_run_length_vlc);
319 ff_free_vlc(&s->fragment_run_length_vlc);
320 ff_free_vlc(&s->mode_code_vlc);
321 ff_free_vlc(&s->motion_vector_vlc);
322
323 return 0;
324}
325
326/**
327 * This function sets up all of the various blocks mappings:
328 * superblocks <-> fragments, macroblocks <-> fragments,
329 * superblocks <-> macroblocks
330 *
331 * @return 0 is successful; returns 1 if *anything* went wrong.
332 */
333static int init_block_mapping(Vp3DecodeContext *s)
334{
335 int sb_x, sb_y, plane;
336 int x, y, i, j = 0;
337
338 for (plane = 0; plane < 3; plane++) {
339 int sb_width = plane ? s->c_superblock_width
340 : s->y_superblock_width;
341 int sb_height = plane ? s->c_superblock_height
342 : s->y_superblock_height;
343 int frag_width = s->fragment_width[!!plane];
344 int frag_height = s->fragment_height[!!plane];
345
346 for (sb_y = 0; sb_y < sb_height; sb_y++)
347 for (sb_x = 0; sb_x < sb_width; sb_x++)
348 for (i = 0; i < 16; i++) {
349 x = 4 * sb_x + hilbert_offset[i][0];
350 y = 4 * sb_y + hilbert_offset[i][1];
351
352 if (x < frag_width && y < frag_height)
353 s->superblock_fragments[j++] = s->fragment_start[plane] +
354 y * frag_width + x;
355 else
356 s->superblock_fragments[j++] = -1;
357 }
358 }
359
360 return 0; /* successful path out */
361}
362
363/*
364 * This function sets up the dequantization tables used for a particular
365 * frame.
366 */
367static void init_dequantizer(Vp3DecodeContext *s, int qpi)
368{
369 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
370 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
371 int i, plane, inter, qri, bmi, bmj, qistart;
372
373 for (inter = 0; inter < 2; inter++) {
374 for (plane = 0; plane < 3; plane++) {
375 int sum = 0;
376 for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
377 sum += s->qr_size[inter][plane][qri];
378 if (s->qps[qpi] <= sum)
379 break;
380 }
381 qistart = sum - s->qr_size[inter][plane][qri];
382 bmi = s->qr_base[inter][plane][qri];
383 bmj = s->qr_base[inter][plane][qri + 1];
384 for (i = 0; i < 64; i++) {
385 int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
386 2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
387 s->qr_size[inter][plane][qri]) /
388 (2 * s->qr_size[inter][plane][qri]);
389
390 int qmin = 8 << (inter + !i);
391 int qscale = i ? ac_scale_factor : dc_scale_factor;
392
393 s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
394 av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
395 }
396 /* all DC coefficients use the same quant so as not to interfere
397 * with DC prediction */
398 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
399 }
400 }
401}
402
403/*
404 * This function initializes the loop filter boundary limits if the frame's
405 * quality index is different from the previous frame's.
406 *
407 * The filter_limit_values may not be larger than 127.
408 */
409static void init_loop_filter(Vp3DecodeContext *s)
410{
411 int *bounding_values = s->bounding_values_array + 127;
412 int filter_limit;
413 int x;
414 int value;
415
416 filter_limit = s->filter_limit_values[s->qps[0]];
417 av_assert0(filter_limit < 128U);
418
419 /* set up the bounding values */
420 memset(s->bounding_values_array, 0, 256 * sizeof(int));
421 for (x = 0; x < filter_limit; x++) {
422 bounding_values[-x] = -x;
423 bounding_values[x] = x;
424 }
425 for (x = value = filter_limit; x < 128 && value; x++, value--) {
426 bounding_values[ x] = value;
427 bounding_values[-x] = -value;
428 }
429 if (value)
430 bounding_values[128] = value;
431 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
432}
433
434/*
435 * This function unpacks all of the superblock/macroblock/fragment coding
436 * information from the bitstream.
437 */
438static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
439{
440 int superblock_starts[3] = {
441 0, s->u_superblock_start, s->v_superblock_start
442 };
443 int bit = 0;
444 int current_superblock = 0;
445 int current_run = 0;
446 int num_partial_superblocks = 0;
447
448 int i, j;
449 int current_fragment;
450 int plane;
451
452 if (s->keyframe) {
453 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
454 } else {
455 /* unpack the list of partially-coded superblocks */
456 bit = get_bits1(gb) ^ 1;
457 current_run = 0;
458
459 while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
460 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
461 bit = get_bits1(gb);
462 else
463 bit ^= 1;
464
465 current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
466 6, 2) + 1;
467 if (current_run == 34)
468 current_run += get_bits(gb, 12);
469
470 if (current_superblock + current_run > s->superblock_count) {
471 av_log(s->avctx, AV_LOG_ERROR,
472 "Invalid partially coded superblock run length\n");
473 return -1;
474 }
475
476 memset(s->superblock_coding + current_superblock, bit, current_run);
477
478 current_superblock += current_run;
479 if (bit)
480 num_partial_superblocks += current_run;
481 }
482
483 /* unpack the list of fully coded superblocks if any of the blocks were
484 * not marked as partially coded in the previous step */
485 if (num_partial_superblocks < s->superblock_count) {
486 int superblocks_decoded = 0;
487
488 current_superblock = 0;
489 bit = get_bits1(gb) ^ 1;
490 current_run = 0;
491
492 while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
493 get_bits_left(gb) > 0) {
494 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
495 bit = get_bits1(gb);
496 else
497 bit ^= 1;
498
499 current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
500 6, 2) + 1;
501 if (current_run == 34)
502 current_run += get_bits(gb, 12);
503
504 for (j = 0; j < current_run; current_superblock++) {
505 if (current_superblock >= s->superblock_count) {
506 av_log(s->avctx, AV_LOG_ERROR,
507 "Invalid fully coded superblock run length\n");
508 return -1;
509 }
510
511 /* skip any superblocks already marked as partially coded */
512 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
513 s->superblock_coding[current_superblock] = 2 * bit;
514 j++;
515 }
516 }
517 superblocks_decoded += current_run;
518 }
519 }
520
521 /* if there were partial blocks, initialize bitstream for
522 * unpacking fragment codings */
523 if (num_partial_superblocks) {
524 current_run = 0;
525 bit = get_bits1(gb);
526 /* toggle the bit because as soon as the first run length is
527 * fetched the bit will be toggled again */
528 bit ^= 1;
529 }
530 }
531
532 /* figure out which fragments are coded; iterate through each
533 * superblock (all planes) */
534 s->total_num_coded_frags = 0;
535 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
536
537 for (plane = 0; plane < 3; plane++) {
538 int sb_start = superblock_starts[plane];
539 int sb_end = sb_start + (plane ? s->c_superblock_count
540 : s->y_superblock_count);
541 int num_coded_frags = 0;
542
543 for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
544 /* iterate through all 16 fragments in a superblock */
545 for (j = 0; j < 16; j++) {
546 /* if the fragment is in bounds, check its coding status */
547 current_fragment = s->superblock_fragments[i * 16 + j];
548 if (current_fragment != -1) {
549 int coded = s->superblock_coding[i];
550
551 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
552 /* fragment may or may not be coded; this is the case
553 * that cares about the fragment coding runs */
554 if (current_run-- == 0) {
555 bit ^= 1;
556 current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
557 }
558 coded = bit;
559 }
560
561 if (coded) {
562 /* default mode; actual mode will be decoded in
563 * the next phase */
564 s->all_fragments[current_fragment].coding_method =
565 MODE_INTER_NO_MV;
566 s->coded_fragment_list[plane][num_coded_frags++] =
567 current_fragment;
568 } else {
569 /* not coded; copy this fragment from the prior frame */
570 s->all_fragments[current_fragment].coding_method =
571 MODE_COPY;
572 }
573 }
574 }
575 }
576 s->total_num_coded_frags += num_coded_frags;
577 for (i = 0; i < 64; i++)
578 s->num_coded_frags[plane][i] = num_coded_frags;
579 if (plane < 2)
580 s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
581 num_coded_frags;
582 }
583 return 0;
584}
585
586/*
587 * This function unpacks all the coding mode data for individual macroblocks
588 * from the bitstream.
589 */
590static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
591{
592 int i, j, k, sb_x, sb_y;
593 int scheme;
594 int current_macroblock;
595 int current_fragment;
596 int coding_mode;
597 int custom_mode_alphabet[CODING_MODE_COUNT];
598 const int *alphabet;
599 Vp3Fragment *frag;
600
601 if (s->keyframe) {
602 for (i = 0; i < s->fragment_count; i++)
603 s->all_fragments[i].coding_method = MODE_INTRA;
604 } else {
605 /* fetch the mode coding scheme for this frame */
606 scheme = get_bits(gb, 3);
607
608 /* is it a custom coding scheme? */
609 if (scheme == 0) {
610 for (i = 0; i < 8; i++)
611 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
612 for (i = 0; i < 8; i++)
613 custom_mode_alphabet[get_bits(gb, 3)] = i;
614 alphabet = custom_mode_alphabet;
615 } else
616 alphabet = ModeAlphabet[scheme - 1];
617
618 /* iterate through all of the macroblocks that contain 1 or more
619 * coded fragments */
620 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
621 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
622 if (get_bits_left(gb) <= 0)
623 return -1;
624
625 for (j = 0; j < 4; j++) {
626 int mb_x = 2 * sb_x + (j >> 1);
627 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
628 current_macroblock = mb_y * s->macroblock_width + mb_x;
629
630 if (mb_x >= s->macroblock_width ||
631 mb_y >= s->macroblock_height)
632 continue;
633
634#define BLOCK_X (2 * mb_x + (k & 1))
635#define BLOCK_Y (2 * mb_y + (k >> 1))
636 /* coding modes are only stored if the macroblock has
637 * at least one luma block coded, otherwise it must be
638 * INTER_NO_MV */
639 for (k = 0; k < 4; k++) {
640 current_fragment = BLOCK_Y *
641 s->fragment_width[0] + BLOCK_X;
642 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
643 break;
644 }
645 if (k == 4) {
646 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
647 continue;
648 }
649
650 /* mode 7 means get 3 bits for each coding mode */
651 if (scheme == 7)
652 coding_mode = get_bits(gb, 3);
653 else
654 coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
655
656 s->macroblock_coding[current_macroblock] = coding_mode;
657 for (k = 0; k < 4; k++) {
658 frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
659 if (frag->coding_method != MODE_COPY)
660 frag->coding_method = coding_mode;
661 }
662
663#define SET_CHROMA_MODES \
664 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
665 frag[s->fragment_start[1]].coding_method = coding_mode; \
666 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
667 frag[s->fragment_start[2]].coding_method = coding_mode;
668
669 if (s->chroma_y_shift) {
670 frag = s->all_fragments + mb_y *
671 s->fragment_width[1] + mb_x;
672 SET_CHROMA_MODES
673 } else if (s->chroma_x_shift) {
674 frag = s->all_fragments +
675 2 * mb_y * s->fragment_width[1] + mb_x;
676 for (k = 0; k < 2; k++) {
677 SET_CHROMA_MODES
678 frag += s->fragment_width[1];
679 }
680 } else {
681 for (k = 0; k < 4; k++) {
682 frag = s->all_fragments +
683 BLOCK_Y * s->fragment_width[1] + BLOCK_X;
684 SET_CHROMA_MODES
685 }
686 }
687 }
688 }
689 }
690 }
691
692 return 0;
693}
694
695/*
696 * This function unpacks all the motion vectors for the individual
697 * macroblocks from the bitstream.
698 */
699static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
700{
701 int j, k, sb_x, sb_y;
702 int coding_mode;
703 int motion_x[4];
704 int motion_y[4];
705 int last_motion_x = 0;
706 int last_motion_y = 0;
707 int prior_last_motion_x = 0;
708 int prior_last_motion_y = 0;
709 int current_macroblock;
710 int current_fragment;
711 int frag;
712
713 if (s->keyframe)
714 return 0;
715
716 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
717 coding_mode = get_bits1(gb);
718
719 /* iterate through all of the macroblocks that contain 1 or more
720 * coded fragments */
721 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
722 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
723 if (get_bits_left(gb) <= 0)
724 return -1;
725
726 for (j = 0; j < 4; j++) {
727 int mb_x = 2 * sb_x + (j >> 1);
728 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
729 current_macroblock = mb_y * s->macroblock_width + mb_x;
730
731 if (mb_x >= s->macroblock_width ||
732 mb_y >= s->macroblock_height ||
733 s->macroblock_coding[current_macroblock] == MODE_COPY)
734 continue;
735
736 switch (s->macroblock_coding[current_macroblock]) {
737 case MODE_INTER_PLUS_MV:
738 case MODE_GOLDEN_MV:
739 /* all 6 fragments use the same motion vector */
740 if (coding_mode == 0) {
741 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
742 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
743 } else {
744 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
745 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
746 }
747
748 /* vector maintenance, only on MODE_INTER_PLUS_MV */
749 if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
750 prior_last_motion_x = last_motion_x;
751 prior_last_motion_y = last_motion_y;
752 last_motion_x = motion_x[0];
753 last_motion_y = motion_y[0];
754 }
755 break;
756
757 case MODE_INTER_FOURMV:
758 /* vector maintenance */
759 prior_last_motion_x = last_motion_x;
760 prior_last_motion_y = last_motion_y;
761
762 /* fetch 4 vectors from the bitstream, one for each
763 * Y fragment, then average for the C fragment vectors */
764 for (k = 0; k < 4; k++) {
765 current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
766 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
767 if (coding_mode == 0) {
768 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
769 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
770 } else {
771 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
772 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
773 }
774 last_motion_x = motion_x[k];
775 last_motion_y = motion_y[k];
776 } else {
777 motion_x[k] = 0;
778 motion_y[k] = 0;
779 }
780 }
781 break;
782
783 case MODE_INTER_LAST_MV:
784 /* all 6 fragments use the last motion vector */
785 motion_x[0] = last_motion_x;
786 motion_y[0] = last_motion_y;
787
788 /* no vector maintenance (last vector remains the
789 * last vector) */
790 break;
791
792 case MODE_INTER_PRIOR_LAST:
793 /* all 6 fragments use the motion vector prior to the
794 * last motion vector */
795 motion_x[0] = prior_last_motion_x;
796 motion_y[0] = prior_last_motion_y;
797
798 /* vector maintenance */
799 prior_last_motion_x = last_motion_x;
800 prior_last_motion_y = last_motion_y;
801 last_motion_x = motion_x[0];
802 last_motion_y = motion_y[0];
803 break;
804
805 default:
806 /* covers intra, inter without MV, golden without MV */
807 motion_x[0] = 0;
808 motion_y[0] = 0;
809
810 /* no vector maintenance */
811 break;
812 }
813
814 /* assign the motion vectors to the correct fragments */
815 for (k = 0; k < 4; k++) {
816 current_fragment =
817 BLOCK_Y * s->fragment_width[0] + BLOCK_X;
818 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
819 s->motion_val[0][current_fragment][0] = motion_x[k];
820 s->motion_val[0][current_fragment][1] = motion_y[k];
821 } else {
822 s->motion_val[0][current_fragment][0] = motion_x[0];
823 s->motion_val[0][current_fragment][1] = motion_y[0];
824 }
825 }
826
827 if (s->chroma_y_shift) {
828 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
829 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
830 motion_x[2] + motion_x[3], 2);
831 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
832 motion_y[2] + motion_y[3], 2);
833 }
834 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
835 motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
836 frag = mb_y * s->fragment_width[1] + mb_x;
837 s->motion_val[1][frag][0] = motion_x[0];
838 s->motion_val[1][frag][1] = motion_y[0];
839 } else if (s->chroma_x_shift) {
840 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
841 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
842 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
843 motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
844 motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
845 } else {
846 motion_x[1] = motion_x[0];
847 motion_y[1] = motion_y[0];
848 }
849 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
850 motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
851
852 frag = 2 * mb_y * s->fragment_width[1] + mb_x;
853 for (k = 0; k < 2; k++) {
854 s->motion_val[1][frag][0] = motion_x[k];
855 s->motion_val[1][frag][1] = motion_y[k];
856 frag += s->fragment_width[1];
857 }
858 } else {
859 for (k = 0; k < 4; k++) {
860 frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
861 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
862 s->motion_val[1][frag][0] = motion_x[k];
863 s->motion_val[1][frag][1] = motion_y[k];
864 } else {
865 s->motion_val[1][frag][0] = motion_x[0];
866 s->motion_val[1][frag][1] = motion_y[0];
867 }
868 }
869 }
870 }
871 }
872 }
873
874 return 0;
875}
876
877static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
878{
879 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
880 int num_blocks = s->total_num_coded_frags;
881
882 for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
883 i = blocks_decoded = num_blocks_at_qpi = 0;
884
885 bit = get_bits1(gb) ^ 1;
886 run_length = 0;
887
888 do {
889 if (run_length == MAXIMUM_LONG_BIT_RUN)
890 bit = get_bits1(gb);
891 else
892 bit ^= 1;
893
894 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
895 if (run_length == 34)
896 run_length += get_bits(gb, 12);
897 blocks_decoded += run_length;
898
899 if (!bit)
900 num_blocks_at_qpi += run_length;
901
902 for (j = 0; j < run_length; i++) {
903 if (i >= s->total_num_coded_frags)
904 return -1;
905
906 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
907 s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
908 j++;
909 }
910 }
911 } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
912
913 num_blocks -= num_blocks_at_qpi;
914 }
915
916 return 0;
917}
918
919/*
920 * This function is called by unpack_dct_coeffs() to extract the VLCs from
921 * the bitstream. The VLCs encode tokens which are used to unpack DCT
922 * data. This function unpacks all the VLCs for either the Y plane or both
923 * C planes, and is called for DC coefficients or different AC coefficient
924 * levels (since different coefficient types require different VLC tables.
925 *
926 * This function returns a residual eob run. E.g, if a particular token gave
927 * instructions to EOB the next 5 fragments and there were only 2 fragments
928 * left in the current fragment range, 3 would be returned so that it could
929 * be passed into the next call to this same function.
930 */
931static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
932 VLC *table, int coeff_index,
933 int plane,
934 int eob_run)
935{
936 int i, j = 0;
937 int token;
938 int zero_run = 0;
939 int16_t coeff = 0;
940 int bits_to_get;
941 int blocks_ended;
942 int coeff_i = 0;
943 int num_coeffs = s->num_coded_frags[plane][coeff_index];
944 int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
945
946 /* local references to structure members to avoid repeated deferences */
947 int *coded_fragment_list = s->coded_fragment_list[plane];
948 Vp3Fragment *all_fragments = s->all_fragments;
949 VLC_TYPE(*vlc_table)[2] = table->table;
950
951 if (num_coeffs < 0)
952 av_log(s->avctx, AV_LOG_ERROR,
953 "Invalid number of coefficents at level %d\n", coeff_index);
954
955 if (eob_run > num_coeffs) {
956 coeff_i =
957 blocks_ended = num_coeffs;
958 eob_run -= num_coeffs;
959 } else {
960 coeff_i =
961 blocks_ended = eob_run;
962 eob_run = 0;
963 }
964
965 // insert fake EOB token to cover the split between planes or zzi
966 if (blocks_ended)
967 dct_tokens[j++] = blocks_ended << 2;
968
969 while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
970 /* decode a VLC into a token */
971 token = get_vlc2(gb, vlc_table, 11, 3);
972 /* use the token to get a zero run, a coefficient, and an eob run */
973 if ((unsigned) token <= 6U) {
974 eob_run = eob_run_base[token];
975 if (eob_run_get_bits[token])
976 eob_run += get_bits(gb, eob_run_get_bits[token]);
977
978 // record only the number of blocks ended in this plane,
979 // any spill will be recorded in the next plane.
980 if (eob_run > num_coeffs - coeff_i) {
981 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
982 blocks_ended += num_coeffs - coeff_i;
983 eob_run -= num_coeffs - coeff_i;
984 coeff_i = num_coeffs;
985 } else {
986 dct_tokens[j++] = TOKEN_EOB(eob_run);
987 blocks_ended += eob_run;
988 coeff_i += eob_run;
989 eob_run = 0;
990 }
991 } else if (token >= 0) {
992 bits_to_get = coeff_get_bits[token];
993 if (bits_to_get)
994 bits_to_get = get_bits(gb, bits_to_get);
995 coeff = coeff_tables[token][bits_to_get];
996
997 zero_run = zero_run_base[token];
998 if (zero_run_get_bits[token])
999 zero_run += get_bits(gb, zero_run_get_bits[token]);
1000
1001 if (zero_run) {
1002 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1003 } else {
1004 // Save DC into the fragment structure. DC prediction is
1005 // done in raster order, so the actual DC can't be in with
1006 // other tokens. We still need the token in dct_tokens[]
1007 // however, or else the structure collapses on itself.
1008 if (!coeff_index)
1009 all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1010
1011 dct_tokens[j++] = TOKEN_COEFF(coeff);
1012 }
1013
1014 if (coeff_index + zero_run > 64) {
1015 av_log(s->avctx, AV_LOG_DEBUG,
1016 "Invalid zero run of %d with %d coeffs left\n",
1017 zero_run, 64 - coeff_index);
1018 zero_run = 64 - coeff_index;
1019 }
1020
1021 // zero runs code multiple coefficients,
1022 // so don't try to decode coeffs for those higher levels
1023 for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1024 s->num_coded_frags[plane][i]--;
1025 coeff_i++;
1026 } else {
1027 av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1028 return -1;
1029 }
1030 }
1031
1032 if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1033 av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1034
1035 // decrement the number of blocks that have higher coefficients for each
1036 // EOB run at this level
1037 if (blocks_ended)
1038 for (i = coeff_index + 1; i < 64; i++)
1039 s->num_coded_frags[plane][i] -= blocks_ended;
1040
1041 // setup the next buffer
1042 if (plane < 2)
1043 s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1044 else if (coeff_index < 63)
1045 s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1046
1047 return eob_run;
1048}
1049
1050static void reverse_dc_prediction(Vp3DecodeContext *s,
1051 int first_fragment,
1052 int fragment_width,
1053 int fragment_height);
1054/*
1055 * This function unpacks all of the DCT coefficient data from the
1056 * bitstream.
1057 */
1058static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1059{
1060 int i;
1061 int dc_y_table;
1062 int dc_c_table;
1063 int ac_y_table;
1064 int ac_c_table;
1065 int residual_eob_run = 0;
1066 VLC *y_tables[64];
1067 VLC *c_tables[64];
1068
1069 s->dct_tokens[0][0] = s->dct_tokens_base;
1070
1071 /* fetch the DC table indexes */
1072 dc_y_table = get_bits(gb, 4);
1073 dc_c_table = get_bits(gb, 4);
1074
1075 /* unpack the Y plane DC coefficients */
1076 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1077 0, residual_eob_run);
1078 if (residual_eob_run < 0)
1079 return residual_eob_run;
1080
1081 /* reverse prediction of the Y-plane DC coefficients */
1082 reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
1083
1084 /* unpack the C plane DC coefficients */
1085 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1086 1, residual_eob_run);
1087 if (residual_eob_run < 0)
1088 return residual_eob_run;
1089 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1090 2, residual_eob_run);
1091 if (residual_eob_run < 0)
1092 return residual_eob_run;
1093
1094 /* reverse prediction of the C-plane DC coefficients */
1095 if (!(s->avctx->flags & CODEC_FLAG_GRAY)) {
1096 reverse_dc_prediction(s, s->fragment_start[1],
1097 s->fragment_width[1], s->fragment_height[1]);
1098 reverse_dc_prediction(s, s->fragment_start[2],
1099 s->fragment_width[1], s->fragment_height[1]);
1100 }
1101
1102 /* fetch the AC table indexes */
1103 ac_y_table = get_bits(gb, 4);
1104 ac_c_table = get_bits(gb, 4);
1105
1106 /* build tables of AC VLC tables */
1107 for (i = 1; i <= 5; i++) {
1108 y_tables[i] = &s->ac_vlc_1[ac_y_table];
1109 c_tables[i] = &s->ac_vlc_1[ac_c_table];
1110 }
1111 for (i = 6; i <= 14; i++) {
1112 y_tables[i] = &s->ac_vlc_2[ac_y_table];
1113 c_tables[i] = &s->ac_vlc_2[ac_c_table];
1114 }
1115 for (i = 15; i <= 27; i++) {
1116 y_tables[i] = &s->ac_vlc_3[ac_y_table];
1117 c_tables[i] = &s->ac_vlc_3[ac_c_table];
1118 }
1119 for (i = 28; i <= 63; i++) {
1120 y_tables[i] = &s->ac_vlc_4[ac_y_table];
1121 c_tables[i] = &s->ac_vlc_4[ac_c_table];
1122 }
1123
1124 /* decode all AC coefficents */
1125 for (i = 1; i <= 63; i++) {
1126 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1127 0, residual_eob_run);
1128 if (residual_eob_run < 0)
1129 return residual_eob_run;
1130
1131 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1132 1, residual_eob_run);
1133 if (residual_eob_run < 0)
1134 return residual_eob_run;
1135 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1136 2, residual_eob_run);
1137 if (residual_eob_run < 0)
1138 return residual_eob_run;
1139 }
1140
1141 return 0;
1142}
1143
1144/*
1145 * This function reverses the DC prediction for each coded fragment in
1146 * the frame. Much of this function is adapted directly from the original
1147 * VP3 source code.
1148 */
1149#define COMPATIBLE_FRAME(x) \
1150 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1151#define DC_COEFF(u) s->all_fragments[u].dc
1152
1153static void reverse_dc_prediction(Vp3DecodeContext *s,
1154 int first_fragment,
1155 int fragment_width,
1156 int fragment_height)
1157{
1158#define PUL 8
1159#define PU 4
1160#define PUR 2
1161#define PL 1
1162
1163 int x, y;
1164 int i = first_fragment;
1165
1166 int predicted_dc;
1167
1168 /* DC values for the left, up-left, up, and up-right fragments */
1169 int vl, vul, vu, vur;
1170
1171 /* indexes for the left, up-left, up, and up-right fragments */
1172 int l, ul, u, ur;
1173
1174 /*
1175 * The 6 fields mean:
1176 * 0: up-left multiplier
1177 * 1: up multiplier
1178 * 2: up-right multiplier
1179 * 3: left multiplier
1180 */
1181 static const int predictor_transform[16][4] = {
1182 { 0, 0, 0, 0 },
1183 { 0, 0, 0, 128 }, // PL
1184 { 0, 0, 128, 0 }, // PUR
1185 { 0, 0, 53, 75 }, // PUR|PL
1186 { 0, 128, 0, 0 }, // PU
1187 { 0, 64, 0, 64 }, // PU |PL
1188 { 0, 128, 0, 0 }, // PU |PUR
1189 { 0, 0, 53, 75 }, // PU |PUR|PL
1190 { 128, 0, 0, 0 }, // PUL
1191 { 0, 0, 0, 128 }, // PUL|PL
1192 { 64, 0, 64, 0 }, // PUL|PUR
1193 { 0, 0, 53, 75 }, // PUL|PUR|PL
1194 { 0, 128, 0, 0 }, // PUL|PU
1195 { -104, 116, 0, 116 }, // PUL|PU |PL
1196 { 24, 80, 24, 0 }, // PUL|PU |PUR
1197 { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1198 };
1199
1200 /* This table shows which types of blocks can use other blocks for
1201 * prediction. For example, INTRA is the only mode in this table to
1202 * have a frame number of 0. That means INTRA blocks can only predict
1203 * from other INTRA blocks. There are 2 golden frame coding types;
1204 * blocks encoding in these modes can only predict from other blocks
1205 * that were encoded with these 1 of these 2 modes. */
1206 static const unsigned char compatible_frame[9] = {
1207 1, /* MODE_INTER_NO_MV */
1208 0, /* MODE_INTRA */
1209 1, /* MODE_INTER_PLUS_MV */
1210 1, /* MODE_INTER_LAST_MV */
1211 1, /* MODE_INTER_PRIOR_MV */
1212 2, /* MODE_USING_GOLDEN */
1213 2, /* MODE_GOLDEN_MV */
1214 1, /* MODE_INTER_FOUR_MV */
1215 3 /* MODE_COPY */
1216 };
1217 int current_frame_type;
1218
1219 /* there is a last DC predictor for each of the 3 frame types */
1220 short last_dc[3];
1221
1222 int transform = 0;
1223
1224 vul =
1225 vu =
1226 vur =
1227 vl = 0;
1228 last_dc[0] =
1229 last_dc[1] =
1230 last_dc[2] = 0;
1231
1232 /* for each fragment row... */
1233 for (y = 0; y < fragment_height; y++) {
1234 /* for each fragment in a row... */
1235 for (x = 0; x < fragment_width; x++, i++) {
1236
1237 /* reverse prediction if this block was coded */
1238 if (s->all_fragments[i].coding_method != MODE_COPY) {
1239 current_frame_type =
1240 compatible_frame[s->all_fragments[i].coding_method];
1241
1242 transform = 0;
1243 if (x) {
1244 l = i - 1;
1245 vl = DC_COEFF(l);
1246 if (COMPATIBLE_FRAME(l))
1247 transform |= PL;
1248 }
1249 if (y) {
1250 u = i - fragment_width;
1251 vu = DC_COEFF(u);
1252 if (COMPATIBLE_FRAME(u))
1253 transform |= PU;
1254 if (x) {
1255 ul = i - fragment_width - 1;
1256 vul = DC_COEFF(ul);
1257 if (COMPATIBLE_FRAME(ul))
1258 transform |= PUL;
1259 }
1260 if (x + 1 < fragment_width) {
1261 ur = i - fragment_width + 1;
1262 vur = DC_COEFF(ur);
1263 if (COMPATIBLE_FRAME(ur))
1264 transform |= PUR;
1265 }
1266 }
1267
1268 if (transform == 0) {
1269 /* if there were no fragments to predict from, use last
1270 * DC saved */
1271 predicted_dc = last_dc[current_frame_type];
1272 } else {
1273 /* apply the appropriate predictor transform */
1274 predicted_dc =
1275 (predictor_transform[transform][0] * vul) +
1276 (predictor_transform[transform][1] * vu) +
1277 (predictor_transform[transform][2] * vur) +
1278 (predictor_transform[transform][3] * vl);
1279
1280 predicted_dc /= 128;
1281
1282 /* check for outranging on the [ul u l] and
1283 * [ul u ur l] predictors */
1284 if ((transform == 15) || (transform == 13)) {
1285 if (FFABS(predicted_dc - vu) > 128)
1286 predicted_dc = vu;
1287 else if (FFABS(predicted_dc - vl) > 128)
1288 predicted_dc = vl;
1289 else if (FFABS(predicted_dc - vul) > 128)
1290 predicted_dc = vul;
1291 }
1292 }
1293
1294 /* at long last, apply the predictor */
1295 DC_COEFF(i) += predicted_dc;
1296 /* save the DC */
1297 last_dc[current_frame_type] = DC_COEFF(i);
1298 }
1299 }
1300 }
1301}
1302
1303static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1304 int ystart, int yend)
1305{
1306 int x, y;
1307 int *bounding_values = s->bounding_values_array + 127;
1308
1309 int width = s->fragment_width[!!plane];
1310 int height = s->fragment_height[!!plane];
1311 int fragment = s->fragment_start[plane] + ystart * width;
1312 ptrdiff_t stride = s->current_frame.f->linesize[plane];
1313 uint8_t *plane_data = s->current_frame.f->data[plane];
1314 if (!s->flipped_image)
1315 stride = -stride;
1316 plane_data += s->data_offset[plane] + 8 * ystart * stride;
1317
1318 for (y = ystart; y < yend; y++) {
1319 for (x = 0; x < width; x++) {
1320 /* This code basically just deblocks on the edges of coded blocks.
1321 * However, it has to be much more complicated because of the
1322 * braindamaged deblock ordering used in VP3/Theora. Order matters
1323 * because some pixels get filtered twice. */
1324 if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1325 /* do not perform left edge filter for left columns frags */
1326 if (x > 0) {
1327 s->vp3dsp.h_loop_filter(
1328 plane_data + 8 * x,
1329 stride, bounding_values);
1330 }
1331
1332 /* do not perform top edge filter for top row fragments */
1333 if (y > 0) {
1334 s->vp3dsp.v_loop_filter(
1335 plane_data + 8 * x,
1336 stride, bounding_values);
1337 }
1338
1339 /* do not perform right edge filter for right column
1340 * fragments or if right fragment neighbor is also coded
1341 * in this frame (it will be filtered in next iteration) */
1342 if ((x < width - 1) &&
1343 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1344 s->vp3dsp.h_loop_filter(
1345 plane_data + 8 * x + 8,
1346 stride, bounding_values);
1347 }
1348
1349 /* do not perform bottom edge filter for bottom row
1350 * fragments or if bottom fragment neighbor is also coded
1351 * in this frame (it will be filtered in the next row) */
1352 if ((y < height - 1) &&
1353 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1354 s->vp3dsp.v_loop_filter(
1355 plane_data + 8 * x + 8 * stride,
1356 stride, bounding_values);
1357 }
1358 }
1359
1360 fragment++;
1361 }
1362 plane_data += 8 * stride;
1363 }
1364}
1365
1366/**
1367 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1368 * for the next block in coding order
1369 */
1370static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1371 int plane, int inter, int16_t block[64])
1372{
1373 int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1374 uint8_t *perm = s->idct_scantable;
1375 int i = 0;
1376
1377 do {
1378 int token = *s->dct_tokens[plane][i];
1379 switch (token & 3) {
1380 case 0: // EOB
1381 if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1382 s->dct_tokens[plane][i]++;
1383 else
1384 *s->dct_tokens[plane][i] = token & ~3;
1385 goto end;
1386 case 1: // zero run
1387 s->dct_tokens[plane][i]++;
1388 i += (token >> 2) & 0x7f;
1389 if (i > 63) {
1390 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1391 return i;
1392 }
1393 block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1394 i++;
1395 break;
1396 case 2: // coeff
1397 block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1398 s->dct_tokens[plane][i++]++;
1399 break;
1400 default: // shouldn't happen
1401 return i;
1402 }
1403 } while (i < 64);
1404 // return value is expected to be a valid level
1405 i--;
1406end:
1407 // the actual DC+prediction is in the fragment structure
1408 block[0] = frag->dc * s->qmat[0][inter][plane][0];
1409 return i;
1410}
1411
1412/**
1413 * called when all pixels up to row y are complete
1414 */
1415static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1416{
1417 int h, cy, i;
1418 int offset[AV_NUM_DATA_POINTERS];
1419
1420 if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1421 int y_flipped = s->flipped_image ? s->avctx->height - y : y;
1422
1423 /* At the end of the frame, report INT_MAX instead of the height of
1424 * the frame. This makes the other threads' ff_thread_await_progress()
1425 * calls cheaper, because they don't have to clip their values. */
1426 ff_thread_report_progress(&s->current_frame,
1427 y_flipped == s->avctx->height ? INT_MAX
1428 : y_flipped - 1,
1429 0);
1430 }
1431
1432 if (!s->avctx->draw_horiz_band)
1433 return;
1434
1435 h = y - s->last_slice_end;
1436 s->last_slice_end = y;
1437 y -= h;
1438
1439 if (!s->flipped_image)
1440 y = s->avctx->height - y - h;
1441
1442 cy = y >> s->chroma_y_shift;
1443 offset[0] = s->current_frame.f->linesize[0] * y;
1444 offset[1] = s->current_frame.f->linesize[1] * cy;
1445 offset[2] = s->current_frame.f->linesize[2] * cy;
1446 for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1447 offset[i] = 0;
1448
1449 emms_c();
1450 s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1451}
1452
1453/**
1454 * Wait for the reference frame of the current fragment.
1455 * The progress value is in luma pixel rows.
1456 */
1457static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment,
1458 int motion_y, int y)
1459{
1460 ThreadFrame *ref_frame;
1461 int ref_row;
1462 int border = motion_y & 1;
1463
1464 if (fragment->coding_method == MODE_USING_GOLDEN ||
1465 fragment->coding_method == MODE_GOLDEN_MV)
1466 ref_frame = &s->golden_frame;
1467 else
1468 ref_frame = &s->last_frame;
1469
1470 ref_row = y + (motion_y >> 1);
1471 ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1472
1473 ff_thread_await_progress(ref_frame, ref_row, 0);
1474}
1475
1476/*
1477 * Perform the final rendering for a particular slice of data.
1478 * The slice number ranges from 0..(c_superblock_height - 1).
1479 */
1480static void render_slice(Vp3DecodeContext *s, int slice)
1481{
1482 int x, y, i, j, fragment;
1483 int16_t *block = s->block;
1484 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1485 int motion_halfpel_index;
1486 uint8_t *motion_source;
1487 int plane, first_pixel;
1488
1489 if (slice >= s->c_superblock_height)
1490 return;
1491
1492 for (plane = 0; plane < 3; plane++) {
1493 uint8_t *output_plane = s->current_frame.f->data[plane] +
1494 s->data_offset[plane];
1495 uint8_t *last_plane = s->last_frame.f->data[plane] +
1496 s->data_offset[plane];
1497 uint8_t *golden_plane = s->golden_frame.f->data[plane] +
1498 s->data_offset[plane];
1499 ptrdiff_t stride = s->current_frame.f->linesize[plane];
1500 int plane_width = s->width >> (plane && s->chroma_x_shift);
1501 int plane_height = s->height >> (plane && s->chroma_y_shift);
1502 int8_t(*motion_val)[2] = s->motion_val[!!plane];
1503
1504 int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1505 int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1506 int slice_width = plane ? s->c_superblock_width
1507 : s->y_superblock_width;
1508
1509 int fragment_width = s->fragment_width[!!plane];
1510 int fragment_height = s->fragment_height[!!plane];
1511 int fragment_start = s->fragment_start[plane];
1512
1513 int do_await = !plane && HAVE_THREADS &&
1514 (s->avctx->active_thread_type & FF_THREAD_FRAME);
1515
1516 if (!s->flipped_image)
1517 stride = -stride;
1518 if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1519 continue;
1520
1521 /* for each superblock row in the slice (both of them)... */
1522 for (; sb_y < slice_height; sb_y++) {
1523 /* for each superblock in a row... */
1524 for (sb_x = 0; sb_x < slice_width; sb_x++) {
1525 /* for each block in a superblock... */
1526 for (j = 0; j < 16; j++) {
1527 x = 4 * sb_x + hilbert_offset[j][0];
1528 y = 4 * sb_y + hilbert_offset[j][1];
1529 fragment = y * fragment_width + x;
1530
1531 i = fragment_start + fragment;
1532
1533 // bounds check
1534 if (x >= fragment_width || y >= fragment_height)
1535 continue;
1536
1537 first_pixel = 8 * y * stride + 8 * x;
1538
1539 if (do_await &&
1540 s->all_fragments[i].coding_method != MODE_INTRA)
1541 await_reference_row(s, &s->all_fragments[i],
1542 motion_val[fragment][1],
1543 (16 * y) >> s->chroma_y_shift);
1544
1545 /* transform if this block was coded */
1546 if (s->all_fragments[i].coding_method != MODE_COPY) {
1547 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1548 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1549 motion_source = golden_plane;
1550 else
1551 motion_source = last_plane;
1552
1553 motion_source += first_pixel;
1554 motion_halfpel_index = 0;
1555
1556 /* sort out the motion vector if this fragment is coded
1557 * using a motion vector method */
1558 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1559 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1560 int src_x, src_y;
1561 motion_x = motion_val[fragment][0];
1562 motion_y = motion_val[fragment][1];
1563
1564 src_x = (motion_x >> 1) + 8 * x;
1565 src_y = (motion_y >> 1) + 8 * y;
1566
1567 motion_halfpel_index = motion_x & 0x01;
1568 motion_source += (motion_x >> 1);
1569
1570 motion_halfpel_index |= (motion_y & 0x01) << 1;
1571 motion_source += ((motion_y >> 1) * stride);
1572
1573 if (src_x < 0 || src_y < 0 ||
1574 src_x + 9 >= plane_width ||
1575 src_y + 9 >= plane_height) {
1576 uint8_t *temp = s->edge_emu_buffer;
1577 if (stride < 0)
1578 temp -= 8 * stride;
1579
1580 s->vdsp.emulated_edge_mc(temp, motion_source,
1581 stride, stride,
1582 9, 9, src_x, src_y,
1583 plane_width,
1584 plane_height);
1585 motion_source = temp;
1586 }
1587 }
1588
1589 /* first, take care of copying a block from either the
1590 * previous or the golden frame */
1591 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1592 /* Note, it is possible to implement all MC cases
1593 * with put_no_rnd_pixels_l2 which would look more
1594 * like the VP3 source but this would be slower as
1595 * put_no_rnd_pixels_tab is better optimzed */
1596 if (motion_halfpel_index != 3) {
1597 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1598 output_plane + first_pixel,
1599 motion_source, stride, 8);
1600 } else {
1601 /* d is 0 if motion_x and _y have the same sign,
1602 * else -1 */
1603 int d = (motion_x ^ motion_y) >> 31;
1604 s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
1605 motion_source - d,
1606 motion_source + stride + 1 + d,
1607 stride, 8);
1608 }
1609 }
1610
1611 /* invert DCT and place (or add) in final output */
1612
1613 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1614 vp3_dequant(s, s->all_fragments + i,
1615 plane, 0, block);
1616 s->vp3dsp.idct_put(output_plane + first_pixel,
1617 stride,
1618 block);
1619 } else {
1620 if (vp3_dequant(s, s->all_fragments + i,
1621 plane, 1, block)) {
1622 s->vp3dsp.idct_add(output_plane + first_pixel,
1623 stride,
1624 block);
1625 } else {
1626 s->vp3dsp.idct_dc_add(output_plane + first_pixel,
1627 stride, block);
1628 }
1629 }
1630 } else {
1631 /* copy directly from the previous frame */
1632 s->hdsp.put_pixels_tab[1][0](
1633 output_plane + first_pixel,
1634 last_plane + first_pixel,
1635 stride, 8);
1636 }
1637 }
1638 }
1639
1640 // Filter up to the last row in the superblock row
1641 if (!s->skip_loop_filter)
1642 apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
1643 FFMIN(4 * sb_y + 3, fragment_height - 1));
1644 }
1645 }
1646
1647 /* this looks like a good place for slice dispatch... */
1648 /* algorithm:
1649 * if (slice == s->macroblock_height - 1)
1650 * dispatch (both last slice & 2nd-to-last slice);
1651 * else if (slice > 0)
1652 * dispatch (slice - 1);
1653 */
1654
1655 vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
1656 s->height - 16));
1657}
1658
1659/// Allocate tables for per-frame data in Vp3DecodeContext
1660static av_cold int allocate_tables(AVCodecContext *avctx)
1661{
1662 Vp3DecodeContext *s = avctx->priv_data;
1663 int y_fragment_count, c_fragment_count;
1664
1665 free_tables(avctx);
1666
1667 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1668 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1669
1670 s->superblock_coding = av_mallocz(s->superblock_count);
1671 s->all_fragments = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment));
1672
1673 s->coded_fragment_list[0] = av_mallocz_array(s->fragment_count, sizeof(int));
1674
1675 s->dct_tokens_base = av_mallocz_array(s->fragment_count,
1676 64 * sizeof(*s->dct_tokens_base));
1677 s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
1678 s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
1679
1680 /* work out the block mapping tables */
1681 s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
1682 s->macroblock_coding = av_mallocz(s->macroblock_count + 1);
1683
1684 if (!s->superblock_coding || !s->all_fragments ||
1685 !s->dct_tokens_base || !s->coded_fragment_list[0] ||
1686 !s->superblock_fragments || !s->macroblock_coding ||
1687 !s->motion_val[0] || !s->motion_val[1]) {
1688 vp3_decode_end(avctx);
1689 return -1;
1690 }
1691
1692 init_block_mapping(s);
1693
1694 return 0;
1695}
1696
1697static av_cold int init_frames(Vp3DecodeContext *s)
1698{
1699 s->current_frame.f = av_frame_alloc();
1700 s->last_frame.f = av_frame_alloc();
1701 s->golden_frame.f = av_frame_alloc();
1702
1703 if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1704 av_frame_free(&s->current_frame.f);
1705 av_frame_free(&s->last_frame.f);
1706 av_frame_free(&s->golden_frame.f);
1707 return AVERROR(ENOMEM);
1708 }
1709
1710 return 0;
1711}
1712
1713static av_cold int vp3_decode_init(AVCodecContext *avctx)
1714{
1715 Vp3DecodeContext *s = avctx->priv_data;
1716 int i, inter, plane, ret;
1717 int c_width;
1718 int c_height;
1719 int y_fragment_count, c_fragment_count;
1720
1721 ret = init_frames(s);
1722 if (ret < 0)
1723 return ret;
1724
1725 avctx->internal->allocate_progress = 1;
1726
1727 if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
1728 s->version = 0;
1729 else
1730 s->version = 1;
1731
1732 s->avctx = avctx;
1733 s->width = FFALIGN(avctx->width, 16);
1734 s->height = FFALIGN(avctx->height, 16);
1735 if (avctx->codec_id != AV_CODEC_ID_THEORA)
1736 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1737 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1738 ff_hpeldsp_init(&s->hdsp, avctx->flags | CODEC_FLAG_BITEXACT);
1739 ff_videodsp_init(&s->vdsp, 8);
1740 ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1741
1742 for (i = 0; i < 64; i++) {
1743#define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
1744 s->idct_permutation[i] = TRANSPOSE(i);
1745 s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]);
1746#undef TRANSPOSE
1747 }
1748
1749 /* initialize to an impossible value which will force a recalculation
1750 * in the first frame decode */
1751 for (i = 0; i < 3; i++)
1752 s->qps[i] = -1;
1753
1754 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1755
1756 s->y_superblock_width = (s->width + 31) / 32;
1757 s->y_superblock_height = (s->height + 31) / 32;
1758 s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1759
1760 /* work out the dimensions for the C planes */
1761 c_width = s->width >> s->chroma_x_shift;
1762 c_height = s->height >> s->chroma_y_shift;
1763 s->c_superblock_width = (c_width + 31) / 32;
1764 s->c_superblock_height = (c_height + 31) / 32;
1765 s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1766
1767 s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1768 s->u_superblock_start = s->y_superblock_count;
1769 s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1770
1771 s->macroblock_width = (s->width + 15) / 16;
1772 s->macroblock_height = (s->height + 15) / 16;
1773 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1774
1775 s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1776 s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1777 s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1778 s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1779
1780 /* fragment count covers all 8x8 blocks for all 3 planes */
1781 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1782 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1783 s->fragment_count = y_fragment_count + 2 * c_fragment_count;
1784 s->fragment_start[1] = y_fragment_count;
1785 s->fragment_start[2] = y_fragment_count + c_fragment_count;
1786
1787 if (!s->theora_tables) {
1788 for (i = 0; i < 64; i++) {
1789 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1790 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1791 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1792 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1793 s->base_matrix[2][i] = vp31_inter_dequant[i];
1794 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1795 }
1796
1797 for (inter = 0; inter < 2; inter++) {
1798 for (plane = 0; plane < 3; plane++) {
1799 s->qr_count[inter][plane] = 1;
1800 s->qr_size[inter][plane][0] = 63;
1801 s->qr_base[inter][plane][0] =
1802 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
1803 }
1804 }
1805
1806 /* init VLC tables */
1807 for (i = 0; i < 16; i++) {
1808 /* DC histograms */
1809 init_vlc(&s->dc_vlc[i], 11, 32,
1810 &dc_bias[i][0][1], 4, 2,
1811 &dc_bias[i][0][0], 4, 2, 0);
1812
1813 /* group 1 AC histograms */
1814 init_vlc(&s->ac_vlc_1[i], 11, 32,
1815 &ac_bias_0[i][0][1], 4, 2,
1816 &ac_bias_0[i][0][0], 4, 2, 0);
1817
1818 /* group 2 AC histograms */
1819 init_vlc(&s->ac_vlc_2[i], 11, 32,
1820 &ac_bias_1[i][0][1], 4, 2,
1821 &ac_bias_1[i][0][0], 4, 2, 0);
1822
1823 /* group 3 AC histograms */
1824 init_vlc(&s->ac_vlc_3[i], 11, 32,
1825 &ac_bias_2[i][0][1], 4, 2,
1826 &ac_bias_2[i][0][0], 4, 2, 0);
1827
1828 /* group 4 AC histograms */
1829 init_vlc(&s->ac_vlc_4[i], 11, 32,
1830 &ac_bias_3[i][0][1], 4, 2,
1831 &ac_bias_3[i][0][0], 4, 2, 0);
1832 }
1833 } else {
1834 for (i = 0; i < 16; i++) {
1835 /* DC histograms */
1836 if (init_vlc(&s->dc_vlc[i], 11, 32,
1837 &s->huffman_table[i][0][1], 8, 4,
1838 &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1839 goto vlc_fail;
1840
1841 /* group 1 AC histograms */
1842 if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1843 &s->huffman_table[i + 16][0][1], 8, 4,
1844 &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
1845 goto vlc_fail;
1846
1847 /* group 2 AC histograms */
1848 if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1849 &s->huffman_table[i + 16 * 2][0][1], 8, 4,
1850 &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
1851 goto vlc_fail;
1852
1853 /* group 3 AC histograms */
1854 if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1855 &s->huffman_table[i + 16 * 3][0][1], 8, 4,
1856 &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
1857 goto vlc_fail;
1858
1859 /* group 4 AC histograms */
1860 if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1861 &s->huffman_table[i + 16 * 4][0][1], 8, 4,
1862 &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
1863 goto vlc_fail;
1864 }
1865 }
1866
1867 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1868 &superblock_run_length_vlc_table[0][1], 4, 2,
1869 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1870
1871 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1872 &fragment_run_length_vlc_table[0][1], 4, 2,
1873 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1874
1875 init_vlc(&s->mode_code_vlc, 3, 8,
1876 &mode_code_vlc_table[0][1], 2, 1,
1877 &mode_code_vlc_table[0][0], 2, 1, 0);
1878
1879 init_vlc(&s->motion_vector_vlc, 6, 63,
1880 &motion_vector_vlc_table[0][1], 2, 1,
1881 &motion_vector_vlc_table[0][0], 2, 1, 0);
1882
1883 return allocate_tables(avctx);
1884
1885vlc_fail:
1886 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1887 return -1;
1888}
1889
1890/// Release and shuffle frames after decode finishes
1891static int update_frames(AVCodecContext *avctx)
1892{
1893 Vp3DecodeContext *s = avctx->priv_data;
1894 int ret = 0;
1895
1896 /* shuffle frames (last = current) */
1897 ff_thread_release_buffer(avctx, &s->last_frame);
1898 ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
1899 if (ret < 0)
1900 goto fail;
1901
1902 if (s->keyframe) {
1903 ff_thread_release_buffer(avctx, &s->golden_frame);
1904 ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
1905 }
1906
1907fail:
1908 ff_thread_release_buffer(avctx, &s->current_frame);
1909 return ret;
1910}
1911
1912static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
1913{
1914 ff_thread_release_buffer(s->avctx, dst);
1915 if (src->f->data[0])
1916 return ff_thread_ref_frame(dst, src);
1917 return 0;
1918}
1919
1920static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
1921{
1922 int ret;
1923 if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1924 (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
1925 (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
1926 return ret;
1927 return 0;
1928}
1929
1930static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1931{
1932 Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1933 int qps_changed = 0, i, err;
1934
1935#define copy_fields(to, from, start_field, end_field) \
1936 memcpy(&to->start_field, &from->start_field, \
1937 (char *) &to->end_field - (char *) &to->start_field)
1938
1939 if (!s1->current_frame.f->data[0] ||
1940 s->width != s1->width || s->height != s1->height) {
1941 if (s != s1)
1942 ref_frames(s, s1);
1943 return -1;
1944 }
1945
1946 if (s != s1) {
1947 // init tables if the first frame hasn't been decoded
1948 if (!s->current_frame.f->data[0]) {
1949 int y_fragment_count, c_fragment_count;
1950 s->avctx = dst;
1951 err = allocate_tables(dst);
1952 if (err)
1953 return err;
1954 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1955 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1956 memcpy(s->motion_val[0], s1->motion_val[0],
1957 y_fragment_count * sizeof(*s->motion_val[0]));
1958 memcpy(s->motion_val[1], s1->motion_val[1],
1959 c_fragment_count * sizeof(*s->motion_val[1]));
1960 }
1961
1962 // copy previous frame data
1963 if ((err = ref_frames(s, s1)) < 0)
1964 return err;
1965
1966 s->keyframe = s1->keyframe;
1967
1968 // copy qscale data if necessary
1969 for (i = 0; i < 3; i++) {
1970 if (s->qps[i] != s1->qps[1]) {
1971 qps_changed = 1;
1972 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1973 }
1974 }
1975
1976 if (s->qps[0] != s1->qps[0])
1977 memcpy(&s->bounding_values_array, &s1->bounding_values_array,
1978 sizeof(s->bounding_values_array));
1979
1980 if (qps_changed)
1981 copy_fields(s, s1, qps, superblock_count);
1982#undef copy_fields
1983 }
1984
1985 return update_frames(dst);
1986}
1987
1988static int vp3_decode_frame(AVCodecContext *avctx,
1989 void *data, int *got_frame,
1990 AVPacket *avpkt)
1991{
1992 const uint8_t *buf = avpkt->data;
1993 int buf_size = avpkt->size;
1994 Vp3DecodeContext *s = avctx->priv_data;
1995 GetBitContext gb;
1996 int i, ret;
1997
1998 init_get_bits(&gb, buf, buf_size * 8);
1999
2000#if CONFIG_THEORA_DECODER
2001 if (s->theora && get_bits1(&gb)) {
2002 int type = get_bits(&gb, 7);
2003 skip_bits_long(&gb, 6*8); /* "theora" */
2004
2005 if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
2006 av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2007 return AVERROR_PATCHWELCOME;
2008 }
2009 if (type == 0) {
2010 vp3_decode_end(avctx);
2011 ret = theora_decode_header(avctx, &gb);
2012
2013 if (ret < 0) {
2014 vp3_decode_end(avctx);
2015 } else
2016 ret = vp3_decode_init(avctx);
2017 return ret;
2018 } else if (type == 2) {
2019 ret = theora_decode_tables(avctx, &gb);
2020 if (ret < 0) {
2021 vp3_decode_end(avctx);
2022 } else
2023 ret = vp3_decode_init(avctx);
2024 return ret;
2025 }
2026
2027 av_log(avctx, AV_LOG_ERROR,
2028 "Header packet passed to frame decoder, skipping\n");
2029 return -1;
2030 }
2031#endif
2032
2033 s->keyframe = !get_bits1(&gb);
2034 if (!s->all_fragments) {
2035 av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2036 return -1;
2037 }
2038 if (!s->theora)
2039 skip_bits(&gb, 1);
2040 for (i = 0; i < 3; i++)
2041 s->last_qps[i] = s->qps[i];
2042
2043 s->nqps = 0;
2044 do {
2045 s->qps[s->nqps++] = get_bits(&gb, 6);
2046 } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2047 for (i = s->nqps; i < 3; i++)
2048 s->qps[i] = -1;
2049
2050 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2051 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2052 s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2053
2054 s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2055 avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2056 : AVDISCARD_NONKEY);
2057
2058 if (s->qps[0] != s->last_qps[0])
2059 init_loop_filter(s);
2060
2061 for (i = 0; i < s->nqps; i++)
2062 // reinit all dequantizers if the first one changed, because
2063 // the DC of the first quantizer must be used for all matrices
2064 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2065 init_dequantizer(s, i);
2066
2067 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2068 return buf_size;
2069
2070 s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
2071 : AV_PICTURE_TYPE_P;
2072 s->current_frame.f->key_frame = s->keyframe;
2073 if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
2074 goto error;
2075
2076 if (!s->edge_emu_buffer)
2077 s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
2078
2079 if (s->keyframe) {
2080 if (!s->theora) {
2081 skip_bits(&gb, 4); /* width code */
2082 skip_bits(&gb, 4); /* height code */
2083 if (s->version) {
2084 s->version = get_bits(&gb, 5);
2085 if (avctx->frame_number == 0)
2086 av_log(s->avctx, AV_LOG_DEBUG,
2087 "VP version: %d\n", s->version);
2088 }
2089 }
2090 if (s->version || s->theora) {
2091 if (get_bits1(&gb))
2092 av_log(s->avctx, AV_LOG_ERROR,
2093 "Warning, unsupported keyframe coding type?!\n");
2094 skip_bits(&gb, 2); /* reserved? */
2095 }
2096 } else {
2097 if (!s->golden_frame.f->data[0]) {
2098 av_log(s->avctx, AV_LOG_WARNING,
2099 "vp3: first frame not a keyframe\n");
2100
2101 s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2102 if (ff_thread_get_buffer(avctx, &s->golden_frame,
2103 AV_GET_BUFFER_FLAG_REF) < 0)
2104 goto error;
2105 ff_thread_release_buffer(avctx, &s->last_frame);
2106 if ((ret = ff_thread_ref_frame(&s->last_frame,
2107 &s->golden_frame)) < 0)
2108 goto error;
2109 ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2110 }
2111 }
2112
2113 memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2114 ff_thread_finish_setup(avctx);
2115
2116 if (unpack_superblocks(s, &gb)) {
2117 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2118 goto error;
2119 }
2120 if (unpack_modes(s, &gb)) {
2121 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2122 goto error;
2123 }
2124 if (unpack_vectors(s, &gb)) {
2125 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2126 goto error;
2127 }
2128 if (unpack_block_qpis(s, &gb)) {
2129 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2130 goto error;
2131 }
2132 if (unpack_dct_coeffs(s, &gb)) {
2133 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2134 goto error;
2135 }
2136
2137 for (i = 0; i < 3; i++) {
2138 int height = s->height >> (i && s->chroma_y_shift);
2139 if (s->flipped_image)
2140 s->data_offset[i] = 0;
2141 else
2142 s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2143 }
2144
2145 s->last_slice_end = 0;
2146 for (i = 0; i < s->c_superblock_height; i++)
2147 render_slice(s, i);
2148
2149 // filter the last row
2150 for (i = 0; i < 3; i++) {
2151 int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2152 apply_loop_filter(s, i, row, row + 1);
2153 }
2154 vp3_draw_horiz_band(s, s->avctx->height);
2155
2156 if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2157 return ret;
2158 *got_frame = 1;
2159
2160 if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2161 ret = update_frames(avctx);
2162 if (ret < 0)
2163 return ret;
2164 }
2165
2166 return buf_size;
2167
2168error:
2169 ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2170
2171 if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2172 av_frame_unref(s->current_frame.f);
2173
2174 return -1;
2175}
2176
2177static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2178{
2179 Vp3DecodeContext *s = avctx->priv_data;
2180
2181 if (get_bits1(gb)) {
2182 int token;
2183 if (s->entries >= 32) { /* overflow */
2184 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2185 return -1;
2186 }
2187 token = get_bits(gb, 5);
2188 av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2189 s->hti, s->hbits, token, s->entries, s->huff_code_size);
2190 s->huffman_table[s->hti][token][0] = s->hbits;
2191 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2192 s->entries++;
2193 } else {
2194 if (s->huff_code_size >= 32) { /* overflow */
2195 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2196 return -1;
2197 }
2198 s->huff_code_size++;
2199 s->hbits <<= 1;
2200 if (read_huffman_tree(avctx, gb))
2201 return -1;
2202 s->hbits |= 1;
2203 if (read_huffman_tree(avctx, gb))
2204 return -1;
2205 s->hbits >>= 1;
2206 s->huff_code_size--;
2207 }
2208 return 0;
2209}
2210
2211static int vp3_init_thread_copy(AVCodecContext *avctx)
2212{
2213 Vp3DecodeContext *s = avctx->priv_data;
2214
2215 s->superblock_coding = NULL;
2216 s->all_fragments = NULL;
2217 s->coded_fragment_list[0] = NULL;
2218 s->dct_tokens_base = NULL;
2219 s->superblock_fragments = NULL;
2220 s->macroblock_coding = NULL;
2221 s->motion_val[0] = NULL;
2222 s->motion_val[1] = NULL;
2223 s->edge_emu_buffer = NULL;
2224
2225 return init_frames(s);
2226}
2227
2228#if CONFIG_THEORA_DECODER
2229static const enum AVPixelFormat theora_pix_fmts[4] = {
2230 AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
2231};
2232
2233static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2234{
2235 Vp3DecodeContext *s = avctx->priv_data;
2236 int visible_width, visible_height, colorspace;
2237 int offset_x = 0, offset_y = 0;
2238 int ret;
2239 AVRational fps, aspect;
2240
2241 s->theora = get_bits_long(gb, 24);
2242 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2243
2244 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2245 * but previous versions have the image flipped relative to vp3 */
2246 if (s->theora < 0x030200) {
2247 s->flipped_image = 1;
2248 av_log(avctx, AV_LOG_DEBUG,
2249 "Old (<alpha3) Theora bitstream, flipped image\n");
2250 }
2251
2252 visible_width =
2253 s->width = get_bits(gb, 16) << 4;
2254 visible_height =
2255 s->height = get_bits(gb, 16) << 4;
2256
2257 if (s->theora >= 0x030200) {
2258 visible_width = get_bits_long(gb, 24);
2259 visible_height = get_bits_long(gb, 24);
2260
2261 offset_x = get_bits(gb, 8); /* offset x */
2262 offset_y = get_bits(gb, 8); /* offset y, from bottom */
2263 }
2264
2265 fps.num = get_bits_long(gb, 32);
2266 fps.den = get_bits_long(gb, 32);
2267 if (fps.num && fps.den) {
2268 if (fps.num < 0 || fps.den < 0) {
2269 av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2270 return AVERROR_INVALIDDATA;
2271 }
f6fa7814 2272 av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2ba45a60
DM
2273 fps.den, fps.num, 1 << 30);
2274 }
2275
2276 aspect.num = get_bits_long(gb, 24);
2277 aspect.den = get_bits_long(gb, 24);
2278 if (aspect.num && aspect.den) {
2279 av_reduce(&avctx->sample_aspect_ratio.num,
2280 &avctx->sample_aspect_ratio.den,
2281 aspect.num, aspect.den, 1 << 30);
2282 ff_set_sar(avctx, avctx->sample_aspect_ratio);
2283 }
2284
2285 if (s->theora < 0x030200)
2286 skip_bits(gb, 5); /* keyframe frequency force */
2287 colorspace = get_bits(gb, 8);
2288 skip_bits(gb, 24); /* bitrate */
2289
2290 skip_bits(gb, 6); /* quality hint */
2291
2292 if (s->theora >= 0x030200) {
2293 skip_bits(gb, 5); /* keyframe frequency force */
2294 avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2295 if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2296 av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2297 return AVERROR_INVALIDDATA;
2298 }
2299 skip_bits(gb, 3); /* reserved */
2300 }
2301
2302// align_get_bits(gb);
2303
2304 if (visible_width <= s->width && visible_width > s->width - 16 &&
2305 visible_height <= s->height && visible_height > s->height - 16 &&
2306 !offset_x && (offset_y == s->height - visible_height))
2307 ret = ff_set_dimensions(avctx, visible_width, visible_height);
2308 else
2309 ret = ff_set_dimensions(avctx, s->width, s->height);
2310 if (ret < 0)
2311 return ret;
2312
2313 if (colorspace == 1)
2314 avctx->color_primaries = AVCOL_PRI_BT470M;
2315 else if (colorspace == 2)
2316 avctx->color_primaries = AVCOL_PRI_BT470BG;
2317
2318 if (colorspace == 1 || colorspace == 2) {
2319 avctx->colorspace = AVCOL_SPC_BT470BG;
2320 avctx->color_trc = AVCOL_TRC_BT709;
2321 }
2322
2323 return 0;
2324}
2325
2326static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2327{
2328 Vp3DecodeContext *s = avctx->priv_data;
2329 int i, n, matrices, inter, plane;
2330
2331 if (s->theora >= 0x030200) {
2332 n = get_bits(gb, 3);
2333 /* loop filter limit values table */
2334 if (n)
2335 for (i = 0; i < 64; i++)
2336 s->filter_limit_values[i] = get_bits(gb, n);
2337 }
2338
2339 if (s->theora >= 0x030200)
2340 n = get_bits(gb, 4) + 1;
2341 else
2342 n = 16;
2343 /* quality threshold table */
2344 for (i = 0; i < 64; i++)
2345 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2346
2347 if (s->theora >= 0x030200)
2348 n = get_bits(gb, 4) + 1;
2349 else
2350 n = 16;
2351 /* dc scale factor table */
2352 for (i = 0; i < 64; i++)
2353 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2354
2355 if (s->theora >= 0x030200)
2356 matrices = get_bits(gb, 9) + 1;
2357 else
2358 matrices = 3;
2359
2360 if (matrices > 384) {
2361 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2362 return -1;
2363 }
2364
2365 for (n = 0; n < matrices; n++)
2366 for (i = 0; i < 64; i++)
2367 s->base_matrix[n][i] = get_bits(gb, 8);
2368
2369 for (inter = 0; inter <= 1; inter++) {
2370 for (plane = 0; plane <= 2; plane++) {
2371 int newqr = 1;
2372 if (inter || plane > 0)
2373 newqr = get_bits1(gb);
2374 if (!newqr) {
2375 int qtj, plj;
2376 if (inter && get_bits1(gb)) {
2377 qtj = 0;
2378 plj = plane;
2379 } else {
2380 qtj = (3 * inter + plane - 1) / 3;
2381 plj = (plane + 2) % 3;
2382 }
2383 s->qr_count[inter][plane] = s->qr_count[qtj][plj];
2384 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
2385 sizeof(s->qr_size[0][0]));
2386 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
2387 sizeof(s->qr_base[0][0]));
2388 } else {
2389 int qri = 0;
2390 int qi = 0;
2391
2392 for (;;) {
2393 i = get_bits(gb, av_log2(matrices - 1) + 1);
2394 if (i >= matrices) {
2395 av_log(avctx, AV_LOG_ERROR,
2396 "invalid base matrix index\n");
2397 return -1;
2398 }
2399 s->qr_base[inter][plane][qri] = i;
2400 if (qi >= 63)
2401 break;
2402 i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
2403 s->qr_size[inter][plane][qri++] = i;
2404 qi += i;
2405 }
2406
2407 if (qi > 63) {
2408 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2409 return -1;
2410 }
2411 s->qr_count[inter][plane] = qri;
2412 }
2413 }
2414 }
2415
2416 /* Huffman tables */
2417 for (s->hti = 0; s->hti < 80; s->hti++) {
2418 s->entries = 0;
2419 s->huff_code_size = 1;
2420 if (!get_bits1(gb)) {
2421 s->hbits = 0;
2422 if (read_huffman_tree(avctx, gb))
2423 return -1;
2424 s->hbits = 1;
2425 if (read_huffman_tree(avctx, gb))
2426 return -1;
2427 }
2428 }
2429
2430 s->theora_tables = 1;
2431
2432 return 0;
2433}
2434
2435static av_cold int theora_decode_init(AVCodecContext *avctx)
2436{
2437 Vp3DecodeContext *s = avctx->priv_data;
2438 GetBitContext gb;
2439 int ptype;
2440 uint8_t *header_start[3];
2441 int header_len[3];
2442 int i;
2443
2444 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2445
2446 s->theora = 1;
2447
2448 if (!avctx->extradata_size) {
2449 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2450 return -1;
2451 }
2452
2453 if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2454 42, header_start, header_len) < 0) {
2455 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2456 return -1;
2457 }
2458
2459 for (i = 0; i < 3; i++) {
2460 if (header_len[i] <= 0)
2461 continue;
2462 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2463
2464 ptype = get_bits(&gb, 8);
2465
2466 if (!(ptype & 0x80)) {
2467 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2468// return -1;
2469 }
2470
2471 // FIXME: Check for this as well.
2472 skip_bits_long(&gb, 6 * 8); /* "theora" */
2473
2474 switch (ptype) {
2475 case 0x80:
2476 if (theora_decode_header(avctx, &gb) < 0)
2477 return -1;
2478 break;
2479 case 0x81:
2480// FIXME: is this needed? it breaks sometimes
2481// theora_decode_comments(avctx, gb);
2482 break;
2483 case 0x82:
2484 if (theora_decode_tables(avctx, &gb))
2485 return -1;
2486 break;
2487 default:
2488 av_log(avctx, AV_LOG_ERROR,
2489 "Unknown Theora config packet: %d\n", ptype & ~0x80);
2490 break;
2491 }
2492 if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
2493 av_log(avctx, AV_LOG_WARNING,
2494 "%d bits left in packet %X\n",
2495 8 * header_len[i] - get_bits_count(&gb), ptype);
2496 if (s->theora < 0x030200)
2497 break;
2498 }
2499
2500 return vp3_decode_init(avctx);
2501}
2502
2503AVCodec ff_theora_decoder = {
2504 .name = "theora",
2505 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2506 .type = AVMEDIA_TYPE_VIDEO,
2507 .id = AV_CODEC_ID_THEORA,
2508 .priv_data_size = sizeof(Vp3DecodeContext),
2509 .init = theora_decode_init,
2510 .close = vp3_decode_end,
2511 .decode = vp3_decode_frame,
2512 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2513 CODEC_CAP_FRAME_THREADS,
2514 .flush = vp3_decode_flush,
2515 .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2516 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2517};
2518#endif
2519
2520AVCodec ff_vp3_decoder = {
2521 .name = "vp3",
2522 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2523 .type = AVMEDIA_TYPE_VIDEO,
2524 .id = AV_CODEC_ID_VP3,
2525 .priv_data_size = sizeof(Vp3DecodeContext),
2526 .init = vp3_decode_init,
2527 .close = vp3_decode_end,
2528 .decode = vp3_decode_frame,
2529 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2530 CODEC_CAP_FRAME_THREADS,
2531 .flush = vp3_decode_flush,
2532 .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2533 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2534};