| 1 | /* |
| 2 | * ALAC (Apple Lossless Audio Codec) decoder |
| 3 | * Copyright (c) 2005 David Hammerton |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * This is the actual decoder. |
| 7 | * |
| 8 | * http://crazney.net/programs/itunes/alac.html |
| 9 | * |
| 10 | * Permission is hereby granted, free of charge, to any person |
| 11 | * obtaining a copy of this software and associated documentation |
| 12 | * files (the "Software"), to deal in the Software without |
| 13 | * restriction, including without limitation the rights to use, |
| 14 | * copy, modify, merge, publish, distribute, sublicense, and/or |
| 15 | * sell copies of the Software, and to permit persons to whom the |
| 16 | * Software is furnished to do so, subject to the following conditions: |
| 17 | * |
| 18 | * The above copyright notice and this permission notice shall be |
| 19 | * included in all copies or substantial portions of the Software. |
| 20 | * |
| 21 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 22 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
| 23 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 24 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
| 25 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| 26 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 27 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 28 | * OTHER DEALINGS IN THE SOFTWARE. |
| 29 | * |
| 30 | */ |
| 31 | |
| 32 | #ifdef __BIG_ENDIAN__ |
| 33 | static const int host_bigendian = 1; |
| 34 | #else |
| 35 | static const int host_bigendian = 0; |
| 36 | #endif |
| 37 | |
| 38 | #include <stdio.h> |
| 39 | #include <stdlib.h> |
| 40 | #include <string.h> |
| 41 | #ifdef _WIN32 |
| 42 | #include "stdint_win.h" |
| 43 | #else |
| 44 | #include <stdint.h> |
| 45 | #endif |
| 46 | |
| 47 | #include "alac.h" |
| 48 | |
| 49 | #define _Swap32(v) do { \ |
| 50 | v = (((v) & 0x000000FF) << 0x18) | \ |
| 51 | (((v) & 0x0000FF00) << 0x08) | \ |
| 52 | (((v) & 0x00FF0000) >> 0x08) | \ |
| 53 | (((v) & 0xFF000000) >> 0x18); } while(0) |
| 54 | |
| 55 | #define _Swap16(v) do { \ |
| 56 | v = (((v) & 0x00FF) << 0x08) | \ |
| 57 | (((v) & 0xFF00) >> 0x08); } while (0) |
| 58 | |
| 59 | struct {signed int x:24;} se_struct_24; |
| 60 | #define SignExtend24(val) (se_struct_24.x = val) |
| 61 | |
| 62 | struct alac_file |
| 63 | { |
| 64 | unsigned char *input_buffer; |
| 65 | int input_buffer_bitaccumulator; /* used so we can do arbitary |
| 66 | bit reads */ |
| 67 | |
| 68 | int samplesize; |
| 69 | int numchannels; |
| 70 | int bytespersample; |
| 71 | |
| 72 | |
| 73 | /* buffers */ |
| 74 | int32_t *predicterror_buffer_a; |
| 75 | int32_t *predicterror_buffer_b; |
| 76 | |
| 77 | int32_t *outputsamples_buffer_a; |
| 78 | int32_t *outputsamples_buffer_b; |
| 79 | |
| 80 | int32_t *uncompressed_bytes_buffer_a; |
| 81 | int32_t *uncompressed_bytes_buffer_b; |
| 82 | |
| 83 | |
| 84 | |
| 85 | /* stuff from setinfo */ |
| 86 | uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */ |
| 87 | uint8_t setinfo_7a; /* 0x00 */ |
| 88 | uint8_t setinfo_sample_size; /* 0x10 */ |
| 89 | uint8_t setinfo_rice_historymult; /* 0x28 */ |
| 90 | uint8_t setinfo_rice_initialhistory; /* 0x0a */ |
| 91 | uint8_t setinfo_rice_kmodifier; /* 0x0e */ |
| 92 | uint8_t setinfo_7f; /* 0x02 */ |
| 93 | uint16_t setinfo_80; /* 0x00ff */ |
| 94 | uint32_t setinfo_82; /* 0x000020e7 */ /* max sample size?? */ |
| 95 | uint32_t setinfo_86; /* 0x00069fe4 */ /* bit rate (avarge)?? */ |
| 96 | uint32_t setinfo_8a_rate; /* 0x0000ac44 */ |
| 97 | /* end setinfo stuff */ |
| 98 | |
| 99 | }; |
| 100 | |
| 101 | |
| 102 | static void allocate_buffers(alac_file *alac) |
| 103 | { |
| 104 | alac->predicterror_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4); |
| 105 | alac->predicterror_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4); |
| 106 | |
| 107 | alac->outputsamples_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4); |
| 108 | alac->outputsamples_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4); |
| 109 | |
| 110 | alac->uncompressed_bytes_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4); |
| 111 | alac->uncompressed_bytes_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4); |
| 112 | } |
| 113 | |
| 114 | void alac_set_info(alac_file *alac, char *inputbuffer) |
| 115 | { |
| 116 | char *ptr = inputbuffer; |
| 117 | ptr += 4; /* size */ |
| 118 | ptr += 4; /* frma */ |
| 119 | ptr += 4; /* alac */ |
| 120 | ptr += 4; /* size */ |
| 121 | ptr += 4; /* alac */ |
| 122 | |
| 123 | ptr += 4; /* 0 ? */ |
| 124 | |
| 125 | alac->setinfo_max_samples_per_frame = *(uint32_t*)ptr; /* buffer size / 2 ? */ |
| 126 | if (!host_bigendian) |
| 127 | _Swap32(alac->setinfo_max_samples_per_frame); |
| 128 | ptr += 4; |
| 129 | alac->setinfo_7a = *(uint8_t*)ptr; |
| 130 | ptr += 1; |
| 131 | alac->setinfo_sample_size = *(uint8_t*)ptr; |
| 132 | ptr += 1; |
| 133 | alac->setinfo_rice_historymult = *(uint8_t*)ptr; |
| 134 | ptr += 1; |
| 135 | alac->setinfo_rice_initialhistory = *(uint8_t*)ptr; |
| 136 | ptr += 1; |
| 137 | alac->setinfo_rice_kmodifier = *(uint8_t*)ptr; |
| 138 | ptr += 1; |
| 139 | alac->setinfo_7f = *(uint8_t*)ptr; |
| 140 | ptr += 1; |
| 141 | alac->setinfo_80 = *(uint16_t*)ptr; |
| 142 | if (!host_bigendian) |
| 143 | _Swap16(alac->setinfo_80); |
| 144 | ptr += 2; |
| 145 | alac->setinfo_82 = *(uint32_t*)ptr; |
| 146 | if (!host_bigendian) |
| 147 | _Swap32(alac->setinfo_82); |
| 148 | ptr += 4; |
| 149 | alac->setinfo_86 = *(uint32_t*)ptr; |
| 150 | if (!host_bigendian) |
| 151 | _Swap32(alac->setinfo_86); |
| 152 | ptr += 4; |
| 153 | alac->setinfo_8a_rate = *(uint32_t*)ptr; |
| 154 | if (!host_bigendian) |
| 155 | _Swap32(alac->setinfo_8a_rate); |
| 156 | ptr += 4; |
| 157 | |
| 158 | allocate_buffers(alac); |
| 159 | |
| 160 | } |
| 161 | |
| 162 | /* stream reading */ |
| 163 | |
| 164 | /* supports reading 1 to 16 bits, in big endian format */ |
| 165 | static uint32_t readbits_16(alac_file *alac, int bits) |
| 166 | { |
| 167 | uint32_t result; |
| 168 | int new_accumulator; |
| 169 | |
| 170 | result = (alac->input_buffer[0] << 16) | |
| 171 | (alac->input_buffer[1] << 8) | |
| 172 | (alac->input_buffer[2]); |
| 173 | |
| 174 | /* shift left by the number of bits we've already read, |
| 175 | * so that the top 'n' bits of the 24 bits we read will |
| 176 | * be the return bits */ |
| 177 | result = result << alac->input_buffer_bitaccumulator; |
| 178 | |
| 179 | result = result & 0x00ffffff; |
| 180 | |
| 181 | /* and then only want the top 'n' bits from that, where |
| 182 | * n is 'bits' */ |
| 183 | result = result >> (24 - bits); |
| 184 | |
| 185 | new_accumulator = (alac->input_buffer_bitaccumulator + bits); |
| 186 | |
| 187 | /* increase the buffer pointer if we've read over n bytes. */ |
| 188 | alac->input_buffer += (new_accumulator >> 3); |
| 189 | |
| 190 | /* and the remainder goes back into the bit accumulator */ |
| 191 | alac->input_buffer_bitaccumulator = (new_accumulator & 7); |
| 192 | |
| 193 | return result; |
| 194 | } |
| 195 | |
| 196 | /* supports reading 1 to 32 bits, in big endian format */ |
| 197 | static uint32_t readbits(alac_file *alac, int bits) |
| 198 | { |
| 199 | int32_t result = 0; |
| 200 | |
| 201 | if (bits > 16) |
| 202 | { |
| 203 | bits -= 16; |
| 204 | result = readbits_16(alac, 16) << bits; |
| 205 | } |
| 206 | |
| 207 | result |= readbits_16(alac, bits); |
| 208 | |
| 209 | return result; |
| 210 | } |
| 211 | |
| 212 | /* reads a single bit */ |
| 213 | static int readbit(alac_file *alac) |
| 214 | { |
| 215 | int result; |
| 216 | int new_accumulator; |
| 217 | |
| 218 | result = alac->input_buffer[0]; |
| 219 | |
| 220 | result = result << alac->input_buffer_bitaccumulator; |
| 221 | |
| 222 | result = result >> 7 & 1; |
| 223 | |
| 224 | new_accumulator = (alac->input_buffer_bitaccumulator + 1); |
| 225 | |
| 226 | alac->input_buffer += (new_accumulator / 8); |
| 227 | |
| 228 | alac->input_buffer_bitaccumulator = (new_accumulator % 8); |
| 229 | |
| 230 | return result; |
| 231 | } |
| 232 | |
| 233 | static void unreadbits(alac_file *alac, int bits) |
| 234 | { |
| 235 | int new_accumulator = (alac->input_buffer_bitaccumulator - bits); |
| 236 | |
| 237 | alac->input_buffer += (new_accumulator >> 3); |
| 238 | |
| 239 | alac->input_buffer_bitaccumulator = (new_accumulator & 7); |
| 240 | if (alac->input_buffer_bitaccumulator < 0) |
| 241 | alac->input_buffer_bitaccumulator *= -1; |
| 242 | } |
| 243 | |
| 244 | /* various implementations of count_leading_zero: |
| 245 | * the first one is the original one, the simplest and most |
| 246 | * obvious for what it's doing. never use this. |
| 247 | * then there are the asm ones. fill in as necessary |
| 248 | * and finally an unrolled and optimised c version |
| 249 | * to fall back to |
| 250 | */ |
| 251 | #if 0 |
| 252 | /* hideously inefficient. could use a bitmask search, |
| 253 | * alternatively bsr on x86, |
| 254 | */ |
| 255 | static int count_leading_zeros(int32_t input) |
| 256 | { |
| 257 | int i = 0; |
| 258 | while (!(0x80000000 & input) && i < 32) |
| 259 | { |
| 260 | i++; |
| 261 | input = input << 1; |
| 262 | } |
| 263 | return i; |
| 264 | } |
| 265 | #elif defined(__GNUC__) && (defined(_X86) || defined(__i386) || defined(i386)) |
| 266 | /* for some reason the unrolled version (below) is |
| 267 | * actually faster than this. yay intel! |
| 268 | */ |
| 269 | static int count_leading_zeros(int input) |
| 270 | { |
| 271 | int output = 0; |
| 272 | if (!input) return 32; |
| 273 | __asm("bsr %1, %0\n" |
| 274 | : "=r" (output) |
| 275 | : "r" (input)); |
| 276 | return (0x1f - output); |
| 277 | } |
| 278 | #elif defined(__GNUC__) |
| 279 | static int count_leading_zeros(int input) |
| 280 | { |
| 281 | return __builtin_clz(input); |
| 282 | } |
| 283 | #elif defined(_MSC_VER) && defined(_M_IX86) |
| 284 | static int count_leading_zeros(int input) |
| 285 | { |
| 286 | int output = 0; |
| 287 | if (!input) return 32; |
| 288 | __asm |
| 289 | { |
| 290 | mov eax, input; |
| 291 | mov edx, 0x1f; |
| 292 | bsr ecx, eax; |
| 293 | sub edx, ecx; |
| 294 | mov output, edx; |
| 295 | } |
| 296 | return output; |
| 297 | } |
| 298 | #else |
| 299 | #warning using generic count leading zeroes. You may wish to write one for your CPU / compiler |
| 300 | static int count_leading_zeros(int input) |
| 301 | { |
| 302 | int output = 0; |
| 303 | int curbyte = 0; |
| 304 | |
| 305 | curbyte = input >> 24; |
| 306 | if (curbyte) goto found; |
| 307 | output += 8; |
| 308 | |
| 309 | curbyte = input >> 16; |
| 310 | if (curbyte & 0xff) goto found; |
| 311 | output += 8; |
| 312 | |
| 313 | curbyte = input >> 8; |
| 314 | if (curbyte & 0xff) goto found; |
| 315 | output += 8; |
| 316 | |
| 317 | curbyte = input; |
| 318 | if (curbyte & 0xff) goto found; |
| 319 | output += 8; |
| 320 | |
| 321 | return output; |
| 322 | |
| 323 | found: |
| 324 | if (!(curbyte & 0xf0)) |
| 325 | { |
| 326 | output += 4; |
| 327 | } |
| 328 | else |
| 329 | curbyte >>= 4; |
| 330 | |
| 331 | if (curbyte & 0x8) |
| 332 | return output; |
| 333 | if (curbyte & 0x4) |
| 334 | return output + 1; |
| 335 | if (curbyte & 0x2) |
| 336 | return output + 2; |
| 337 | if (curbyte & 0x1) |
| 338 | return output + 3; |
| 339 | |
| 340 | /* shouldn't get here: */ |
| 341 | return output + 4; |
| 342 | } |
| 343 | #endif |
| 344 | |
| 345 | #define RICE_THRESHOLD 8 // maximum number of bits for a rice prefix. |
| 346 | |
| 347 | int32_t entropy_decode_value(alac_file* alac, |
| 348 | int readSampleSize, |
| 349 | int k, |
| 350 | int rice_kmodifier_mask) |
| 351 | { |
| 352 | int32_t x = 0; // decoded value |
| 353 | |
| 354 | // read x, number of 1s before 0 represent the rice value. |
| 355 | while (x <= RICE_THRESHOLD && readbit(alac)) |
| 356 | { |
| 357 | x++; |
| 358 | } |
| 359 | |
| 360 | if (x > RICE_THRESHOLD) |
| 361 | { |
| 362 | // read the number from the bit stream (raw value) |
| 363 | int32_t value; |
| 364 | |
| 365 | value = readbits(alac, readSampleSize); |
| 366 | |
| 367 | // mask value |
| 368 | value &= (((uint32_t)0xffffffff) >> (32 - readSampleSize)); |
| 369 | |
| 370 | x = value; |
| 371 | } |
| 372 | else |
| 373 | { |
| 374 | if (k != 1) |
| 375 | { |
| 376 | int extraBits = readbits(alac, k); |
| 377 | |
| 378 | // x = x * (2^k - 1) |
| 379 | x *= (((1 << k) - 1) & rice_kmodifier_mask); |
| 380 | |
| 381 | if (extraBits > 1) |
| 382 | x += extraBits - 1; |
| 383 | else |
| 384 | unreadbits(alac, 1); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | return x; |
| 389 | } |
| 390 | |
| 391 | void entropy_rice_decode(alac_file* alac, |
| 392 | int32_t* outputBuffer, |
| 393 | int outputSize, |
| 394 | int readSampleSize, |
| 395 | int rice_initialhistory, |
| 396 | int rice_kmodifier, |
| 397 | int rice_historymult, |
| 398 | int rice_kmodifier_mask) |
| 399 | { |
| 400 | int outputCount; |
| 401 | int history = rice_initialhistory; |
| 402 | int signModifier = 0; |
| 403 | |
| 404 | for (outputCount = 0; outputCount < outputSize; outputCount++) |
| 405 | { |
| 406 | int32_t decodedValue; |
| 407 | int32_t finalValue; |
| 408 | int32_t k; |
| 409 | |
| 410 | k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3); |
| 411 | |
| 412 | if (k < 0) k += rice_kmodifier; |
| 413 | else k = rice_kmodifier; |
| 414 | |
| 415 | // note: don't use rice_kmodifier_mask here (set mask to 0xFFFFFFFF) |
| 416 | decodedValue = entropy_decode_value(alac, readSampleSize, k, 0xFFFFFFFF); |
| 417 | |
| 418 | decodedValue += signModifier; |
| 419 | finalValue = (decodedValue + 1) / 2; // inc by 1 and shift out sign bit |
| 420 | if (decodedValue & 1) // the sign is stored in the low bit |
| 421 | finalValue *= -1; |
| 422 | |
| 423 | outputBuffer[outputCount] = finalValue; |
| 424 | |
| 425 | signModifier = 0; |
| 426 | |
| 427 | // update history |
| 428 | history += (decodedValue * rice_historymult) |
| 429 | - ((history * rice_historymult) >> 9); |
| 430 | |
| 431 | if (decodedValue > 0xFFFF) |
| 432 | history = 0xFFFF; |
| 433 | |
| 434 | // special case, for compressed blocks of 0 |
| 435 | if ((history < 128) && (outputCount + 1 < outputSize)) |
| 436 | { |
| 437 | int32_t blockSize; |
| 438 | |
| 439 | signModifier = 1; |
| 440 | |
| 441 | k = count_leading_zeros(history) + ((history + 16) / 64) - 24; |
| 442 | |
| 443 | // note: blockSize is always 16bit |
| 444 | blockSize = entropy_decode_value(alac, 16, k, rice_kmodifier_mask); |
| 445 | |
| 446 | // got blockSize 0s |
| 447 | if (blockSize > 0) |
| 448 | { |
| 449 | memset(&outputBuffer[outputCount + 1], 0, blockSize * sizeof(*outputBuffer)); |
| 450 | outputCount += blockSize; |
| 451 | } |
| 452 | |
| 453 | if (blockSize > 0xFFFF) |
| 454 | signModifier = 0; |
| 455 | |
| 456 | history = 0; |
| 457 | } |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | #define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits)) |
| 462 | |
| 463 | #define SIGN_ONLY(v) \ |
| 464 | ((v < 0) ? (-1) : \ |
| 465 | ((v > 0) ? (1) : \ |
| 466 | (0))) |
| 467 | |
| 468 | static void predictor_decompress_fir_adapt(int32_t *error_buffer, |
| 469 | int32_t *buffer_out, |
| 470 | int output_size, |
| 471 | int readsamplesize, |
| 472 | int16_t *predictor_coef_table, |
| 473 | int predictor_coef_num, |
| 474 | int predictor_quantitization) |
| 475 | { |
| 476 | int i; |
| 477 | |
| 478 | /* first sample always copies */ |
| 479 | *buffer_out = *error_buffer; |
| 480 | |
| 481 | if (!predictor_coef_num) |
| 482 | { |
| 483 | if (output_size <= 1) return; |
| 484 | memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4); |
| 485 | return; |
| 486 | } |
| 487 | |
| 488 | if (predictor_coef_num == 0x1f) /* 11111 - max value of predictor_coef_num */ |
| 489 | { /* second-best case scenario for fir decompression, |
| 490 | * error describes a small difference from the previous sample only |
| 491 | */ |
| 492 | if (output_size <= 1) return; |
| 493 | for (i = 0; i < output_size - 1; i++) |
| 494 | { |
| 495 | int32_t prev_value; |
| 496 | int32_t error_value; |
| 497 | |
| 498 | prev_value = buffer_out[i]; |
| 499 | error_value = error_buffer[i+1]; |
| 500 | buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize); |
| 501 | } |
| 502 | return; |
| 503 | } |
| 504 | |
| 505 | /* read warm-up samples */ |
| 506 | if (predictor_coef_num > 0) |
| 507 | { |
| 508 | int i; |
| 509 | for (i = 0; i < predictor_coef_num; i++) |
| 510 | { |
| 511 | int32_t val; |
| 512 | |
| 513 | val = buffer_out[i] + error_buffer[i+1]; |
| 514 | |
| 515 | val = SIGN_EXTENDED32(val, readsamplesize); |
| 516 | |
| 517 | buffer_out[i+1] = val; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | #if 0 |
| 522 | /* 4 and 8 are very common cases (the only ones i've seen). these |
| 523 | * should be unrolled and optimised |
| 524 | */ |
| 525 | if (predictor_coef_num == 4) |
| 526 | { |
| 527 | /* FIXME: optimised general case */ |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | if (predictor_coef_table == 8) |
| 532 | { |
| 533 | /* FIXME: optimised general case */ |
| 534 | return; |
| 535 | } |
| 536 | #endif |
| 537 | |
| 538 | |
| 539 | /* general case */ |
| 540 | if (predictor_coef_num > 0) |
| 541 | { |
| 542 | for (i = predictor_coef_num + 1; |
| 543 | i < output_size; |
| 544 | i++) |
| 545 | { |
| 546 | int j; |
| 547 | int sum = 0; |
| 548 | int outval; |
| 549 | int error_val = error_buffer[i]; |
| 550 | |
| 551 | for (j = 0; j < predictor_coef_num; j++) |
| 552 | { |
| 553 | sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) * |
| 554 | predictor_coef_table[j]; |
| 555 | } |
| 556 | |
| 557 | outval = (1 << (predictor_quantitization-1)) + sum; |
| 558 | outval = outval >> predictor_quantitization; |
| 559 | outval = outval + buffer_out[0] + error_val; |
| 560 | outval = SIGN_EXTENDED32(outval, readsamplesize); |
| 561 | |
| 562 | buffer_out[predictor_coef_num+1] = outval; |
| 563 | |
| 564 | if (error_val > 0) |
| 565 | { |
| 566 | int predictor_num = predictor_coef_num - 1; |
| 567 | |
| 568 | while (predictor_num >= 0 && error_val > 0) |
| 569 | { |
| 570 | int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num]; |
| 571 | int sign = SIGN_ONLY(val); |
| 572 | |
| 573 | predictor_coef_table[predictor_num] -= sign; |
| 574 | |
| 575 | val *= sign; /* absolute value */ |
| 576 | |
| 577 | error_val -= ((val >> predictor_quantitization) * |
| 578 | (predictor_coef_num - predictor_num)); |
| 579 | |
| 580 | predictor_num--; |
| 581 | } |
| 582 | } |
| 583 | else if (error_val < 0) |
| 584 | { |
| 585 | int predictor_num = predictor_coef_num - 1; |
| 586 | |
| 587 | while (predictor_num >= 0 && error_val < 0) |
| 588 | { |
| 589 | int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num]; |
| 590 | int sign = - SIGN_ONLY(val); |
| 591 | |
| 592 | predictor_coef_table[predictor_num] -= sign; |
| 593 | |
| 594 | val *= sign; /* neg value */ |
| 595 | |
| 596 | error_val -= ((val >> predictor_quantitization) * |
| 597 | (predictor_coef_num - predictor_num)); |
| 598 | |
| 599 | predictor_num--; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | buffer_out++; |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b, |
| 609 | int16_t *buffer_out, |
| 610 | int numchannels, int numsamples, |
| 611 | uint8_t interlacing_shift, |
| 612 | uint8_t interlacing_leftweight) |
| 613 | { |
| 614 | int i; |
| 615 | if (numsamples <= 0) return; |
| 616 | |
| 617 | /* weighted interlacing */ |
| 618 | if (interlacing_leftweight) |
| 619 | { |
| 620 | for (i = 0; i < numsamples; i++) |
| 621 | { |
| 622 | int32_t difference, midright; |
| 623 | int16_t left; |
| 624 | int16_t right; |
| 625 | |
| 626 | midright = buffer_a[i]; |
| 627 | difference = buffer_b[i]; |
| 628 | |
| 629 | |
| 630 | right = midright - ((difference * interlacing_leftweight) >> interlacing_shift); |
| 631 | left = right + difference; |
| 632 | |
| 633 | /* output is always little endian */ |
| 634 | if (host_bigendian) |
| 635 | { |
| 636 | _Swap16(left); |
| 637 | _Swap16(right); |
| 638 | } |
| 639 | |
| 640 | buffer_out[i*numchannels] = left; |
| 641 | buffer_out[i*numchannels + 1] = right; |
| 642 | } |
| 643 | |
| 644 | return; |
| 645 | } |
| 646 | |
| 647 | /* otherwise basic interlacing took place */ |
| 648 | for (i = 0; i < numsamples; i++) |
| 649 | { |
| 650 | int16_t left, right; |
| 651 | |
| 652 | left = buffer_a[i]; |
| 653 | right = buffer_b[i]; |
| 654 | |
| 655 | /* output is always little endian */ |
| 656 | if (host_bigendian) |
| 657 | { |
| 658 | _Swap16(left); |
| 659 | _Swap16(right); |
| 660 | } |
| 661 | |
| 662 | buffer_out[i*numchannels] = left; |
| 663 | buffer_out[i*numchannels + 1] = right; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | void deinterlace_24(int32_t *buffer_a, int32_t *buffer_b, |
| 668 | int uncompressed_bytes, |
| 669 | int32_t *uncompressed_bytes_buffer_a, int32_t *uncompressed_bytes_buffer_b, |
| 670 | void *buffer_out, |
| 671 | int numchannels, int numsamples, |
| 672 | uint8_t interlacing_shift, |
| 673 | uint8_t interlacing_leftweight) |
| 674 | { |
| 675 | int i; |
| 676 | if (numsamples <= 0) return; |
| 677 | |
| 678 | /* weighted interlacing */ |
| 679 | if (interlacing_leftweight) |
| 680 | { |
| 681 | for (i = 0; i < numsamples; i++) |
| 682 | { |
| 683 | int32_t difference, midright; |
| 684 | int32_t left; |
| 685 | int32_t right; |
| 686 | |
| 687 | midright = buffer_a[i]; |
| 688 | difference = buffer_b[i]; |
| 689 | |
| 690 | right = midright - ((difference * interlacing_leftweight) >> interlacing_shift); |
| 691 | left = right + difference; |
| 692 | |
| 693 | if (uncompressed_bytes) |
| 694 | { |
| 695 | uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8)); |
| 696 | left <<= (uncompressed_bytes * 8); |
| 697 | right <<= (uncompressed_bytes * 8); |
| 698 | |
| 699 | left |= uncompressed_bytes_buffer_a[i] & mask; |
| 700 | right |= uncompressed_bytes_buffer_b[i] & mask; |
| 701 | } |
| 702 | |
| 703 | ((uint8_t*)buffer_out)[i * numchannels * 3] = (left) & 0xFF; |
| 704 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF; |
| 705 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF; |
| 706 | |
| 707 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 3] = (right) & 0xFF; |
| 708 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF; |
| 709 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF; |
| 710 | } |
| 711 | |
| 712 | return; |
| 713 | } |
| 714 | |
| 715 | /* otherwise basic interlacing took place */ |
| 716 | for (i = 0; i < numsamples; i++) |
| 717 | { |
| 718 | int32_t left, right; |
| 719 | |
| 720 | left = buffer_a[i]; |
| 721 | right = buffer_b[i]; |
| 722 | |
| 723 | if (uncompressed_bytes) |
| 724 | { |
| 725 | uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8)); |
| 726 | left <<= (uncompressed_bytes * 8); |
| 727 | right <<= (uncompressed_bytes * 8); |
| 728 | |
| 729 | left |= uncompressed_bytes_buffer_a[i] & mask; |
| 730 | right |= uncompressed_bytes_buffer_b[i] & mask; |
| 731 | } |
| 732 | |
| 733 | ((uint8_t*)buffer_out)[i * numchannels * 3] = (left) & 0xFF; |
| 734 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF; |
| 735 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF; |
| 736 | |
| 737 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 3] = (right) & 0xFF; |
| 738 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF; |
| 739 | ((uint8_t*)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF; |
| 740 | |
| 741 | } |
| 742 | |
| 743 | } |
| 744 | |
| 745 | void decode_frame(alac_file *alac, |
| 746 | unsigned char *inbuffer, |
| 747 | void *outbuffer, int *outputsize) |
| 748 | { |
| 749 | int channels; |
| 750 | int32_t outputsamples = alac->setinfo_max_samples_per_frame; |
| 751 | |
| 752 | /* setup the stream */ |
| 753 | alac->input_buffer = inbuffer; |
| 754 | alac->input_buffer_bitaccumulator = 0; |
| 755 | |
| 756 | channels = readbits(alac, 3); |
| 757 | |
| 758 | *outputsize = outputsamples * alac->bytespersample; |
| 759 | |
| 760 | switch(channels) |
| 761 | { |
| 762 | case 0: /* 1 channel */ |
| 763 | { |
| 764 | int hassize; |
| 765 | int isnotcompressed; |
| 766 | int readsamplesize; |
| 767 | |
| 768 | int uncompressed_bytes; |
| 769 | int ricemodifier; |
| 770 | |
| 771 | /* 2^result = something to do with output waiting. |
| 772 | * perhaps matters if we read > 1 frame in a pass? |
| 773 | */ |
| 774 | readbits(alac, 4); |
| 775 | |
| 776 | readbits(alac, 12); /* unknown, skip 12 bits */ |
| 777 | |
| 778 | hassize = readbits(alac, 1); /* the output sample size is stored soon */ |
| 779 | |
| 780 | uncompressed_bytes = readbits(alac, 2); /* number of bytes in the (compressed) stream that are not compressed */ |
| 781 | |
| 782 | isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */ |
| 783 | |
| 784 | if (hassize) |
| 785 | { |
| 786 | /* now read the number of samples, |
| 787 | * as a 32bit integer */ |
| 788 | outputsamples = readbits(alac, 32); |
| 789 | *outputsize = outputsamples * alac->bytespersample; |
| 790 | } |
| 791 | |
| 792 | readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8); |
| 793 | |
| 794 | if (!isnotcompressed) |
| 795 | { /* so it is compressed */ |
| 796 | int16_t predictor_coef_table[32]; |
| 797 | int predictor_coef_num; |
| 798 | int prediction_type; |
| 799 | int prediction_quantitization; |
| 800 | int i; |
| 801 | |
| 802 | /* skip 16 bits, not sure what they are. seem to be used in |
| 803 | * two channel case */ |
| 804 | readbits(alac, 8); |
| 805 | readbits(alac, 8); |
| 806 | |
| 807 | prediction_type = readbits(alac, 4); |
| 808 | prediction_quantitization = readbits(alac, 4); |
| 809 | |
| 810 | ricemodifier = readbits(alac, 3); |
| 811 | predictor_coef_num = readbits(alac, 5); |
| 812 | |
| 813 | /* read the predictor table */ |
| 814 | for (i = 0; i < predictor_coef_num; i++) |
| 815 | { |
| 816 | predictor_coef_table[i] = (int16_t)readbits(alac, 16); |
| 817 | } |
| 818 | |
| 819 | if (uncompressed_bytes) |
| 820 | { |
| 821 | int i; |
| 822 | for (i = 0; i < outputsamples; i++) |
| 823 | { |
| 824 | alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | entropy_rice_decode(alac, |
| 829 | alac->predicterror_buffer_a, |
| 830 | outputsamples, |
| 831 | readsamplesize, |
| 832 | alac->setinfo_rice_initialhistory, |
| 833 | alac->setinfo_rice_kmodifier, |
| 834 | ricemodifier * alac->setinfo_rice_historymult / 4, |
| 835 | (1 << alac->setinfo_rice_kmodifier) - 1); |
| 836 | |
| 837 | if (prediction_type == 0) |
| 838 | { /* adaptive fir */ |
| 839 | predictor_decompress_fir_adapt(alac->predicterror_buffer_a, |
| 840 | alac->outputsamples_buffer_a, |
| 841 | outputsamples, |
| 842 | readsamplesize, |
| 843 | predictor_coef_table, |
| 844 | predictor_coef_num, |
| 845 | prediction_quantitization); |
| 846 | } |
| 847 | else |
| 848 | { |
| 849 | fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type); |
| 850 | /* i think the only other prediction type (or perhaps this is just a |
| 851 | * boolean?) runs adaptive fir twice.. like: |
| 852 | * predictor_decompress_fir_adapt(predictor_error, tempout, ...) |
| 853 | * predictor_decompress_fir_adapt(predictor_error, outputsamples ...) |
| 854 | * little strange.. |
| 855 | */ |
| 856 | } |
| 857 | |
| 858 | } |
| 859 | else |
| 860 | { /* not compressed, easy case */ |
| 861 | if (alac->setinfo_sample_size <= 16) |
| 862 | { |
| 863 | int i; |
| 864 | for (i = 0; i < outputsamples; i++) |
| 865 | { |
| 866 | int32_t audiobits = readbits(alac, alac->setinfo_sample_size); |
| 867 | |
| 868 | audiobits = SIGN_EXTENDED32(audiobits, alac->setinfo_sample_size); |
| 869 | |
| 870 | alac->outputsamples_buffer_a[i] = audiobits; |
| 871 | } |
| 872 | } |
| 873 | else |
| 874 | { |
| 875 | int i; |
| 876 | for (i = 0; i < outputsamples; i++) |
| 877 | { |
| 878 | int32_t audiobits; |
| 879 | |
| 880 | audiobits = readbits(alac, 16); |
| 881 | /* special case of sign extension.. |
| 882 | * as we'll be ORing the low 16bits into this */ |
| 883 | audiobits = audiobits << (alac->setinfo_sample_size - 16); |
| 884 | audiobits |= readbits(alac, alac->setinfo_sample_size - 16); |
| 885 | audiobits = SignExtend24(audiobits); |
| 886 | |
| 887 | alac->outputsamples_buffer_a[i] = audiobits; |
| 888 | } |
| 889 | } |
| 890 | uncompressed_bytes = 0; // always 0 for uncompressed |
| 891 | } |
| 892 | |
| 893 | switch(alac->setinfo_sample_size) |
| 894 | { |
| 895 | case 16: |
| 896 | { |
| 897 | int i; |
| 898 | for (i = 0; i < outputsamples; i++) |
| 899 | { |
| 900 | int16_t sample = alac->outputsamples_buffer_a[i]; |
| 901 | if (host_bigendian) |
| 902 | _Swap16(sample); |
| 903 | ((int16_t*)outbuffer)[i * alac->numchannels] = sample; |
| 904 | } |
| 905 | break; |
| 906 | } |
| 907 | case 24: |
| 908 | { |
| 909 | int i; |
| 910 | for (i = 0; i < outputsamples; i++) |
| 911 | { |
| 912 | int32_t sample = alac->outputsamples_buffer_a[i]; |
| 913 | |
| 914 | if (uncompressed_bytes) |
| 915 | { |
| 916 | uint32_t mask; |
| 917 | sample = sample << (uncompressed_bytes * 8); |
| 918 | mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8)); |
| 919 | sample |= alac->uncompressed_bytes_buffer_a[i] & mask; |
| 920 | } |
| 921 | |
| 922 | ((uint8_t*)outbuffer)[i * alac->numchannels * 3] = (sample) & 0xFF; |
| 923 | ((uint8_t*)outbuffer)[i * alac->numchannels * 3 + 1] = (sample >> 8) & 0xFF; |
| 924 | ((uint8_t*)outbuffer)[i * alac->numchannels * 3 + 2] = (sample >> 16) & 0xFF; |
| 925 | } |
| 926 | break; |
| 927 | } |
| 928 | case 20: |
| 929 | case 32: |
| 930 | fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size); |
| 931 | break; |
| 932 | default: |
| 933 | break; |
| 934 | } |
| 935 | break; |
| 936 | } |
| 937 | case 1: /* 2 channels */ |
| 938 | { |
| 939 | int hassize; |
| 940 | int isnotcompressed; |
| 941 | int readsamplesize; |
| 942 | |
| 943 | int uncompressed_bytes; |
| 944 | |
| 945 | uint8_t interlacing_shift; |
| 946 | uint8_t interlacing_leftweight; |
| 947 | |
| 948 | /* 2^result = something to do with output waiting. |
| 949 | * perhaps matters if we read > 1 frame in a pass? |
| 950 | */ |
| 951 | readbits(alac, 4); |
| 952 | |
| 953 | readbits(alac, 12); /* unknown, skip 12 bits */ |
| 954 | |
| 955 | hassize = readbits(alac, 1); /* the output sample size is stored soon */ |
| 956 | |
| 957 | uncompressed_bytes = readbits(alac, 2); /* the number of bytes in the (compressed) stream that are not compressed */ |
| 958 | |
| 959 | isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */ |
| 960 | |
| 961 | if (hassize) |
| 962 | { |
| 963 | /* now read the number of samples, |
| 964 | * as a 32bit integer */ |
| 965 | outputsamples = readbits(alac, 32); |
| 966 | *outputsize = outputsamples * alac->bytespersample; |
| 967 | } |
| 968 | |
| 969 | readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8) + 1; |
| 970 | |
| 971 | if (!isnotcompressed) |
| 972 | { /* compressed */ |
| 973 | int16_t predictor_coef_table_a[32]; |
| 974 | int predictor_coef_num_a; |
| 975 | int prediction_type_a; |
| 976 | int prediction_quantitization_a; |
| 977 | int ricemodifier_a; |
| 978 | |
| 979 | int16_t predictor_coef_table_b[32]; |
| 980 | int predictor_coef_num_b; |
| 981 | int prediction_type_b; |
| 982 | int prediction_quantitization_b; |
| 983 | int ricemodifier_b; |
| 984 | |
| 985 | int i; |
| 986 | |
| 987 | interlacing_shift = readbits(alac, 8); |
| 988 | interlacing_leftweight = readbits(alac, 8); |
| 989 | |
| 990 | /******** channel 1 ***********/ |
| 991 | prediction_type_a = readbits(alac, 4); |
| 992 | prediction_quantitization_a = readbits(alac, 4); |
| 993 | |
| 994 | ricemodifier_a = readbits(alac, 3); |
| 995 | predictor_coef_num_a = readbits(alac, 5); |
| 996 | |
| 997 | /* read the predictor table */ |
| 998 | for (i = 0; i < predictor_coef_num_a; i++) |
| 999 | { |
| 1000 | predictor_coef_table_a[i] = (int16_t)readbits(alac, 16); |
| 1001 | } |
| 1002 | |
| 1003 | /******** channel 2 *********/ |
| 1004 | prediction_type_b = readbits(alac, 4); |
| 1005 | prediction_quantitization_b = readbits(alac, 4); |
| 1006 | |
| 1007 | ricemodifier_b = readbits(alac, 3); |
| 1008 | predictor_coef_num_b = readbits(alac, 5); |
| 1009 | |
| 1010 | /* read the predictor table */ |
| 1011 | for (i = 0; i < predictor_coef_num_b; i++) |
| 1012 | { |
| 1013 | predictor_coef_table_b[i] = (int16_t)readbits(alac, 16); |
| 1014 | } |
| 1015 | |
| 1016 | /*********************/ |
| 1017 | if (uncompressed_bytes) |
| 1018 | { /* see mono case */ |
| 1019 | int i; |
| 1020 | for (i = 0; i < outputsamples; i++) |
| 1021 | { |
| 1022 | alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8); |
| 1023 | alac->uncompressed_bytes_buffer_b[i] = readbits(alac, uncompressed_bytes * 8); |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | /* channel 1 */ |
| 1028 | entropy_rice_decode(alac, |
| 1029 | alac->predicterror_buffer_a, |
| 1030 | outputsamples, |
| 1031 | readsamplesize, |
| 1032 | alac->setinfo_rice_initialhistory, |
| 1033 | alac->setinfo_rice_kmodifier, |
| 1034 | ricemodifier_a * alac->setinfo_rice_historymult / 4, |
| 1035 | (1 << alac->setinfo_rice_kmodifier) - 1); |
| 1036 | |
| 1037 | if (prediction_type_a == 0) |
| 1038 | { /* adaptive fir */ |
| 1039 | predictor_decompress_fir_adapt(alac->predicterror_buffer_a, |
| 1040 | alac->outputsamples_buffer_a, |
| 1041 | outputsamples, |
| 1042 | readsamplesize, |
| 1043 | predictor_coef_table_a, |
| 1044 | predictor_coef_num_a, |
| 1045 | prediction_quantitization_a); |
| 1046 | } |
| 1047 | else |
| 1048 | { /* see mono case */ |
| 1049 | fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_a); |
| 1050 | } |
| 1051 | |
| 1052 | /* channel 2 */ |
| 1053 | entropy_rice_decode(alac, |
| 1054 | alac->predicterror_buffer_b, |
| 1055 | outputsamples, |
| 1056 | readsamplesize, |
| 1057 | alac->setinfo_rice_initialhistory, |
| 1058 | alac->setinfo_rice_kmodifier, |
| 1059 | ricemodifier_b * alac->setinfo_rice_historymult / 4, |
| 1060 | (1 << alac->setinfo_rice_kmodifier) - 1); |
| 1061 | |
| 1062 | if (prediction_type_b == 0) |
| 1063 | { /* adaptive fir */ |
| 1064 | predictor_decompress_fir_adapt(alac->predicterror_buffer_b, |
| 1065 | alac->outputsamples_buffer_b, |
| 1066 | outputsamples, |
| 1067 | readsamplesize, |
| 1068 | predictor_coef_table_b, |
| 1069 | predictor_coef_num_b, |
| 1070 | prediction_quantitization_b); |
| 1071 | } |
| 1072 | else |
| 1073 | { |
| 1074 | fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_b); |
| 1075 | } |
| 1076 | } |
| 1077 | else |
| 1078 | { /* not compressed, easy case */ |
| 1079 | if (alac->setinfo_sample_size <= 16) |
| 1080 | { |
| 1081 | int i; |
| 1082 | for (i = 0; i < outputsamples; i++) |
| 1083 | { |
| 1084 | int32_t audiobits_a, audiobits_b; |
| 1085 | |
| 1086 | audiobits_a = readbits(alac, alac->setinfo_sample_size); |
| 1087 | audiobits_b = readbits(alac, alac->setinfo_sample_size); |
| 1088 | |
| 1089 | audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size); |
| 1090 | audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size); |
| 1091 | |
| 1092 | alac->outputsamples_buffer_a[i] = audiobits_a; |
| 1093 | alac->outputsamples_buffer_b[i] = audiobits_b; |
| 1094 | } |
| 1095 | } |
| 1096 | else |
| 1097 | { |
| 1098 | int i; |
| 1099 | for (i = 0; i < outputsamples; i++) |
| 1100 | { |
| 1101 | int32_t audiobits_a, audiobits_b; |
| 1102 | |
| 1103 | audiobits_a = readbits(alac, 16); |
| 1104 | audiobits_a = audiobits_a << (alac->setinfo_sample_size - 16); |
| 1105 | audiobits_a |= readbits(alac, alac->setinfo_sample_size - 16); |
| 1106 | audiobits_a = SignExtend24(audiobits_a); |
| 1107 | |
| 1108 | audiobits_b = readbits(alac, 16); |
| 1109 | audiobits_b = audiobits_b << (alac->setinfo_sample_size - 16); |
| 1110 | audiobits_b |= readbits(alac, alac->setinfo_sample_size - 16); |
| 1111 | audiobits_b = SignExtend24(audiobits_b); |
| 1112 | |
| 1113 | alac->outputsamples_buffer_a[i] = audiobits_a; |
| 1114 | alac->outputsamples_buffer_b[i] = audiobits_b; |
| 1115 | } |
| 1116 | } |
| 1117 | uncompressed_bytes = 0; // always 0 for uncompressed |
| 1118 | interlacing_shift = 0; |
| 1119 | interlacing_leftweight = 0; |
| 1120 | } |
| 1121 | |
| 1122 | switch(alac->setinfo_sample_size) |
| 1123 | { |
| 1124 | case 16: |
| 1125 | { |
| 1126 | deinterlace_16(alac->outputsamples_buffer_a, |
| 1127 | alac->outputsamples_buffer_b, |
| 1128 | (int16_t*)outbuffer, |
| 1129 | alac->numchannels, |
| 1130 | outputsamples, |
| 1131 | interlacing_shift, |
| 1132 | interlacing_leftweight); |
| 1133 | break; |
| 1134 | } |
| 1135 | case 24: |
| 1136 | { |
| 1137 | deinterlace_24(alac->outputsamples_buffer_a, |
| 1138 | alac->outputsamples_buffer_b, |
| 1139 | uncompressed_bytes, |
| 1140 | alac->uncompressed_bytes_buffer_a, |
| 1141 | alac->uncompressed_bytes_buffer_b, |
| 1142 | (int16_t*)outbuffer, |
| 1143 | alac->numchannels, |
| 1144 | outputsamples, |
| 1145 | interlacing_shift, |
| 1146 | interlacing_leftweight); |
| 1147 | break; |
| 1148 | } |
| 1149 | case 20: |
| 1150 | case 32: |
| 1151 | fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size); |
| 1152 | break; |
| 1153 | default: |
| 1154 | break; |
| 1155 | } |
| 1156 | |
| 1157 | break; |
| 1158 | } |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | alac_file *create_alac(int samplesize, int numchannels) |
| 1163 | { |
| 1164 | alac_file *newfile = malloc(sizeof(alac_file)); |
| 1165 | |
| 1166 | newfile->samplesize = samplesize; |
| 1167 | newfile->numchannels = numchannels; |
| 1168 | newfile->bytespersample = (samplesize / 8) * numchannels; |
| 1169 | |
| 1170 | return newfile; |
| 1171 | } |
| 1172 | |