Add TP3 exo3 and TP4 exo1.
[TP_AA.git] / TP3 / exo3 / tp3_exo3.py
1 #!/usr/bin/env python3
2
3 # -*- coding: utf-8 -*-
4 import numpy as np
5 from numpy.random import rand
6 import pylab as pl
7
8
9 def generateData(n):
10 """
11 Generates a 2D linearly separable dataset with 2n samples.
12 The third element of the sample is the label
13 """
14 linear_offset = 0.6
15 xb = (rand(n) * 2 - 1) / 2 - linear_offset
16 yb = (rand(n) * 2 - 1) / 2 + linear_offset
17 xr = (rand(n) * 2 - 1) / 2 + linear_offset
18 yr = (rand(n) * 2 - 1) / 2 - linear_offset
19 inputs = []
20 for i in range(n):
21 inputs.append([xb[i], yb[i], -1])
22 inputs.append([xr[i], yr[i], 1])
23 return inputs
24
25
26 def generateData2(n):
27 """
28 Generates a 2D linearly separable dataset with 2n samples.
29 The third element of the sample is the label
30 """
31 xb = (rand(n) * 2 - 1) / 2 + 0.5
32 yb = (rand(n) * 2 - 1) / 2
33 xr = (rand(n) * 2 - 1) / 2 + 1.5
34 yr = (rand(n) * 2 - 1) / 2 - 0.5
35 inputs = []
36 for i in range(n):
37 inputs.append([xb[i], yb[i], -1])
38 inputs.append([xr[i], yr[i], 1])
39 return inputs
40
41
42 def generateData3(n):
43 """
44 Generates a 2D linearly separable dataset with about 2n samples.
45 The third element of the sample is the label
46 """
47 # (xb, yb) est dans le carré centré à l’origine de côté 1
48 xb = (rand(n) * 2 - 1) / 2
49 yb = (rand(n) * 2 - 1) / 2
50 # (xr, yr) est dans le carré centré à l’origine de côté 3
51 xr = 3 * (rand(4 * n) * 2 - 1) / 2
52 yr = 3 * (rand(4 * n) * 2 - 1) / 2
53 inputs = []
54 for i in range(n):
55 inputs.append([xb[i], yb[i], -1])
56 for i in range(4 * n):
57 # on ne conserve que les points extérieurs au carré centré à l’origine
58 # de côté 2
59 if abs(xr[i]) >= 1 or abs(yr[i]) >= 1:
60 inputs.append([xr[i], yr[i], 1])
61 return inputs
62
63
64 def readData(file):
65 f = open(file, "r")
66 training_set = []
67 x = f.readline()
68 while x:
69 x_eval = eval(x)
70 training_set.append([x_eval[0][0], x_eval[0][1], x_eval[1]])
71 x = f.readline()
72 f.close()
73 return training_set
74
75
76 training_set_size = 150
77 # training_set = generateData3(training_set_size)
78 training_set = readData("learn.data")
79 data = np.array(training_set)
80 X = data[:, 0:2]
81 Y = data[:, -1]
82
83
84 def perceptron_nobias(X, Y):
85 w = np.zeros([len(X[0])])
86 # Go in the loop at least one time
87 classification_error = 1
88 while not classification_error == 0:
89 classification_error = 0
90 for x, y in zip(X, Y):
91 if y * np.dot(w, x) <= 0:
92 classification_error += 1
93 w = w + y * x
94 print(classification_error)
95 return w
96
97
98 def complete(sample):
99 new_sample = np.insert(sample, len(sample[0]), [1], axis=1)
100 return np.array(new_sample)
101
102
103 def plongement_phi(sample_element):
104 return [1, sample_element[0], sample_element[1], sample_element[0]**2,
105 sample_element[0] * sample_element[1], sample_element[1]**2]
106
107
108 def apply_plongement(sample, p):
109 output = []
110 for i in range(sample.shape[0]):
111 current = p(sample[i])
112 output.append(current)
113 return np.array(output)
114
115
116 def f_from_k(coeffs, support_set, k, x):
117 output = 0
118 for c, s in zip(coeffs, support_set):
119 output += c * s[1] * k(s[0], x)
120 return output
121
122
123 def k1(X1, X2):
124 return 1 + X1[0] * X2[0] + X1[1] * X2[1] + X1[0]**2 * X2[0]**2 \
125 + X1[0] * X1[1] * X2[0] * X2[1] + X1[1]**2 * X2[1]**2
126
127
128 def kg(x, y):
129 # sigma = 20 # do not converge
130 # sigma = 10 # do not converge
131 sigma = 1 # overfitting
132 # sigma = 0.5 # overfitting
133 # sigma = 0.2 # overfitting
134 return np.exp(-((x[0] - y[0])**2 + (x[1] - y[1])**2) / sigma**2)
135
136
137 def perceptron_k(X, Y, k):
138 coeffs = []
139 support_set = []
140 # Go in the loop at least one time
141 classification_error = 1
142 while not classification_error == 0:
143 classification_error = 0
144 for x, y in zip(X, Y):
145 if y * f_from_k(coeffs, support_set, k, x) <= 0:
146 if x not in support_set:
147 support_set.append((x, y))
148 coeffs.append(1)
149 else:
150 coeffs[support_set.index((x, y))] += 1
151 classification_error += 1
152 print(classification_error)
153 return np.array(coeffs), np.array(support_set)
154
155
156 def f(w, x, y):
157 return w[0] + w[1] * x + w[2] * y + w[3] * x**2 + w[4] * x * y + w[5] * y**2
158
159
160 pl.scatter(X[:, 0], X[:, 1], c=Y)
161 pl.title(u"Perceptron - prolontaged hyperplan")
162
163 # k = k1
164 # coeffs, support_set = perceptron_k(X, Y, k)
165 k = kg
166 coeffs, support_set = perceptron_k(X, Y, k)
167 res = training_set_size
168 for x in range(res):
169 for y in range(res):
170 if abs(f_from_k(coeffs, support_set, k, [-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res])) < 0.01:
171 pl.plot(-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res, 'xr')
172
173 # X = apply_plongement(X, plongement_phi)
174 # w = perceptron_nobias(X, Y)
175 # for x in range(res):
176 # for y in range(res):
177 # if abs(f(w, -3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res)) < 0.01:
178 # pl.plot(-3 / 2 + 3 * x / res, -3 / 2 + 3 * y / res, 'xb')
179
180 pl.show()