Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / doc / snow.txt
CommitLineData
2ba45a60
DM
1=============================================
2Snow Video Codec Specification Draft 20080110
3=============================================
4
5Introduction:
6=============
7This specification describes the Snow bitstream syntax and semantics as
8well as the formal Snow decoding process.
9
10The decoding process is described precisely and any compliant decoder
11MUST produce the exact same output for a spec-conformant Snow stream.
12For encoding, though, any process which generates a stream compliant to
13the syntactical and semantic requirements and which is decodable by
14the process described in this spec shall be considered a conformant
15Snow encoder.
16
17Definitions:
18============
19
20MUST the specific part must be done to conform to this standard
21SHOULD it is recommended to be done that way, but not strictly required
22
23ilog2(x) is the rounded down logarithm of x with basis 2
24ilog2(0) = 0
25
26Type definitions:
27=================
28
29b 1-bit range coded
30u unsigned scalar value range coded
31s signed scalar value range coded
32
33
34Bitstream syntax:
35=================
36
37frame:
38 header
39 prediction
40 residual
41
42header:
43 keyframe b MID_STATE
44 if(keyframe || always_reset)
45 reset_contexts
46 if(keyframe){
47 version u header_state
48 always_reset b header_state
49 temporal_decomposition_type u header_state
50 temporal_decomposition_count u header_state
51 spatial_decomposition_count u header_state
52 colorspace_type u header_state
53 if (nb_planes > 2) {
54 chroma_h_shift u header_state
55 chroma_v_shift u header_state
56 }
57 spatial_scalability b header_state
58 max_ref_frames-1 u header_state
59 qlogs
60 }
61 if(!keyframe){
62 update_mc b header_state
63 if(update_mc){
64 for(plane=0; plane<nb_plane_types; plane++){
65 diag_mc b header_state
66 htaps/2-1 u header_state
67 for(i= p->htaps/2; i; i--)
68 |hcoeff[i]| u header_state
69 }
70 }
71 update_qlogs b header_state
72 if(update_qlogs){
73 spatial_decomposition_count u header_state
74 qlogs
75 }
76 }
77
78 spatial_decomposition_type s header_state
79 qlog s header_state
80 mv_scale s header_state
81 qbias s header_state
82 block_max_depth s header_state
83
84qlogs:
85 for(plane=0; plane<nb_plane_types; plane++){
86 quant_table[plane][0][0] s header_state
87 for(level=0; level < spatial_decomposition_count; level++){
88 quant_table[plane][level][1]s header_state
89 quant_table[plane][level][3]s header_state
90 }
91 }
92
93reset_contexts
94 *_state[*]= MID_STATE
95
96prediction:
97 for(y=0; y<block_count_vertical; y++)
98 for(x=0; x<block_count_horizontal; x++)
99 block(0)
100
101block(level):
102 mvx_diff=mvy_diff=y_diff=cb_diff=cr_diff=0
103 if(keyframe){
104 intra=1
105 }else{
106 if(level!=max_block_depth){
107 s_context= 2*left->level + 2*top->level + topleft->level + topright->level
108 leaf b block_state[4 + s_context]
109 }
110 if(level==max_block_depth || leaf){
111 intra b block_state[1 + left->intra + top->intra]
112 if(intra){
113 y_diff s block_state[32]
114 cb_diff s block_state[64]
115 cr_diff s block_state[96]
116 }else{
117 ref_context= ilog2(2*left->ref) + ilog2(2*top->ref)
118 if(ref_frames > 1)
119 ref u block_state[128 + 1024 + 32*ref_context]
120 mx_context= ilog2(2*abs(left->mx - top->mx))
121 my_context= ilog2(2*abs(left->my - top->my))
122 mvx_diff s block_state[128 + 32*(mx_context + 16*!!ref)]
123 mvy_diff s block_state[128 + 32*(my_context + 16*!!ref)]
124 }
125 }else{
126 block(level+1)
127 block(level+1)
128 block(level+1)
129 block(level+1)
130 }
131 }
132
133
134residual:
135 residual2(luma)
136 if (nb_planes > 2) {
137 residual2(chroma_cr)
138 residual2(chroma_cb)
139 }
140
141residual2:
142 for(level=0; level<spatial_decomposition_count; level++){
143 if(level==0)
144 subband(LL, 0)
145 subband(HL, level)
146 subband(LH, level)
147 subband(HH, level)
148 }
149
150subband:
151 FIXME
152
153nb_plane_types = gray ? 1 : 2;
154
155Tag description:
156----------------
157
158version
159 0
160 this MUST NOT change within a bitstream
161
162always_reset
163 if 1 then the range coder contexts will be reset after each frame
164
165temporal_decomposition_type
166 0
167
168temporal_decomposition_count
169 0
170
171spatial_decomposition_count
172 FIXME
173
174colorspace_type
175 0 unspecified YcbCr
176 1 Gray
177 2 Gray + Alpha
178 3 GBR
179 4 GBRA
180 this MUST NOT change within a bitstream
181
182chroma_h_shift
183 log2(luma.width / chroma.width)
184 this MUST NOT change within a bitstream
185
186chroma_v_shift
187 log2(luma.height / chroma.height)
188 this MUST NOT change within a bitstream
189
190spatial_scalability
191 0
192
193max_ref_frames
194 maximum number of reference frames
195 this MUST NOT change within a bitstream
196
197update_mc
198 indicates that motion compensation filter parameters are stored in the
199 header
200
201diag_mc
202 flag to enable faster diagonal interpolation
203 this SHOULD be 1 unless it turns out to be covered by a valid patent
204
205htaps
206 number of half pel interpolation filter taps, MUST be even, >0 and <10
207
208hcoeff
209 half pel interpolation filter coefficients, hcoeff[0] are the 2 middle
210 coefficients [1] are the next outer ones and so on, resulting in a filter
211 like: ...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ...
212 the sign of the coefficients is not explicitly stored but alternates
213 after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,...
214 hcoeff[0] is not explicitly stored but found by subtracting the sum
215 of all stored coefficients with signs from 32
216 hcoeff[0]= 32 - hcoeff[1] - hcoeff[2] - ...
217 a good choice for hcoeff and htaps is
218 htaps= 6
219 hcoeff={40,-10,2}
220 an alternative which requires more computations at both encoder and
221 decoder side and may or may not be better is
222 htaps= 8
223 hcoeff={42,-14,6,-2}
224
225
226ref_frames
227 minimum of the number of available reference frames and max_ref_frames
228 for example the first frame after a key frame always has ref_frames=1
229
230spatial_decomposition_type
231 wavelet type
232 0 is a 9/7 symmetric compact integer wavelet
233 1 is a 5/3 symmetric compact integer wavelet
234 others are reserved
235 stored as delta from last, last is reset to 0 if always_reset || keyframe
236
237qlog
238 quality (logarthmic quantizer scale)
239 stored as delta from last, last is reset to 0 if always_reset || keyframe
240
241mv_scale
242 stored as delta from last, last is reset to 0 if always_reset || keyframe
243 FIXME check that everything works fine if this changes between frames
244
245qbias
246 dequantization bias
247 stored as delta from last, last is reset to 0 if always_reset || keyframe
248
249block_max_depth
250 maximum depth of the block tree
251 stored as delta from last, last is reset to 0 if always_reset || keyframe
252
253quant_table
254 quantiztation table
255
256
257Highlevel bitstream structure:
258=============================
259 --------------------------------------------
260| Header |
261 --------------------------------------------
262| ------------------------------------ |
263| | Block0 | |
264| | split? | |
265| | yes no | |
266| | ......... intra? | |
267| | : Block01 : yes no | |
268| | : Block02 : ....... .......... | |
269| | : Block03 : : y DC : : ref index: | |
270| | : Block04 : : cb DC : : motion x : | |
271| | ......... : cr DC : : motion y : | |
272| | ....... .......... | |
273| ------------------------------------ |
274| ------------------------------------ |
275| | Block1 | |
276| ... |
277 --------------------------------------------
278| ------------ ------------ ------------ |
279|| Y subbands | | Cb subbands| | Cr subbands||
280|| --- --- | | --- --- | | --- --- ||
281|| |LL0||HL0| | | |LL0||HL0| | | |LL0||HL0| ||
282|| --- --- | | --- --- | | --- --- ||
283|| --- --- | | --- --- | | --- --- ||
284|| |LH0||HH0| | | |LH0||HH0| | | |LH0||HH0| ||
285|| --- --- | | --- --- | | --- --- ||
286|| --- --- | | --- --- | | --- --- ||
287|| |HL1||LH1| | | |HL1||LH1| | | |HL1||LH1| ||
288|| --- --- | | --- --- | | --- --- ||
289|| --- --- | | --- --- | | --- --- ||
290|| |HH1||HL2| | | |HH1||HL2| | | |HH1||HL2| ||
291|| ... | | ... | | ... ||
292| ------------ ------------ ------------ |
293 --------------------------------------------
294
295Decoding process:
296=================
297
298 ------------
299 | |
300 | Subbands |
301 ------------ | |
302 | | ------------
303 | Intra DC | |
304 | | LL0 subband prediction
305 ------------ |
306 \ Dequantizaton
307 ------------------- \ |
308| Reference frames | \ IDWT
309| ------- ------- | Motion \ |
310||Frame 0| |Frame 1|| Compensation . OBMC v -------
311| ------- ------- | --------------. \------> + --->|Frame n|-->output
312| ------- ------- | -------
313||Frame 2| |Frame 3||<----------------------------------/
314| ... |
315 -------------------
316
317
318Range Coder:
319============
320
321Binary Range Coder:
322-------------------
323The implemented range coder is an adapted version based upon "Range encoding:
324an algorithm for removing redundancy from a digitised message." by G. N. N.
325Martin.
326The symbols encoded by the Snow range coder are bits (0|1). The
327associated probabilities are not fix but change depending on the symbol mix
328seen so far.
329
330
331bit seen | new state
332---------+-----------------------------------------------
333 0 | 256 - state_transition_table[256 - old_state];
334 1 | state_transition_table[ old_state];
335
336state_transition_table = {
337 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27,
338 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,
339 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,
340 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
341 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
342 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
343104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118,
344119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133,
345134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
346150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
347165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179,
348180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194,
349195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209,
350210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225,
351226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240,
352241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};
353
354FIXME
355
356
357Range Coding of integers:
358-------------------------
359FIXME
360
361
362Neighboring Blocks:
363===================
364left and top are set to the respective blocks unless they are outside of
365the image in which case they are set to the Null block
366
367top-left is set to the top left block unless it is outside of the image in
368which case it is set to the left block
369
370if this block has no larger parent block or it is at the left side of its
371parent block and the top right block is not outside of the image then the
372top right block is used for top-right else the top-left block is used
373
374Null block
375y,cb,cr are 128
376level, ref, mx and my are 0
377
378
379Motion Vector Prediction:
380=========================
3811. the motion vectors of all the neighboring blocks are scaled to
382compensate for the difference of reference frames
383
384scaled_mv= (mv * (256 * (current_reference+1) / (mv.reference+1)) + 128)>>8
385
3862. the median of the scaled left, top and top-right vectors is used as
387motion vector prediction
388
3893. the used motion vector is the sum of the predictor and
390 (mvx_diff, mvy_diff)*mv_scale
391
392
393Intra DC Predicton:
394======================
395the luma and chroma values of the left block are used as predictors
396
397the used luma and chroma is the sum of the predictor and y_diff, cb_diff, cr_diff
398to reverse this in the decoder apply the following:
399block[y][x].dc[0] = block[y][x-1].dc[0] + y_diff;
400block[y][x].dc[1] = block[y][x-1].dc[1] + cb_diff;
401block[y][x].dc[2] = block[y][x-1].dc[2] + cr_diff;
402block[*][-1].dc[*]= 128;
403
404
405Motion Compensation:
406====================
407
408Halfpel interpolation:
409----------------------
410halfpel interpolation is done by convolution with the halfpel filter stored
411in the header:
412
413horizontal halfpel samples are found by
414H1[y][x] = hcoeff[0]*(F[y][x ] + F[y][x+1])
415 + hcoeff[1]*(F[y][x-1] + F[y][x+2])
416 + hcoeff[2]*(F[y][x-2] + F[y][x+3])
417 + ...
418h1[y][x] = (H1[y][x] + 32)>>6;
419
420vertical halfpel samples are found by
421H2[y][x] = hcoeff[0]*(F[y ][x] + F[y+1][x])
422 + hcoeff[1]*(F[y-1][x] + F[y+2][x])
423 + ...
424h2[y][x] = (H2[y][x] + 32)>>6;
425
426vertical+horizontal halfpel samples are found by
427H3[y][x] = hcoeff[0]*(H2[y][x ] + H2[y][x+1])
428 + hcoeff[1]*(H2[y][x-1] + H2[y][x+2])
429 + ...
430H3[y][x] = hcoeff[0]*(H1[y ][x] + H1[y+1][x])
431 + hcoeff[1]*(H1[y+1][x] + H1[y+2][x])
432 + ...
433h3[y][x] = (H3[y][x] + 2048)>>12;
434
435
436 F H1 F
437 | | |
438 | | |
439 | | |
440 F H1 F
441 | | |
442 | | |
443 | | |
444 F-------F-------F-> H1<-F-------F-------F
445 v v v
446 H2 H3 H2
447 ^ ^ ^
448 F-------F-------F-> H1<-F-------F-------F
449 | | |
450 | | |
451 | | |
452 F H1 F
453 | | |
454 | | |
455 | | |
456 F H1 F
457
458
459unavailable fullpel samples (outside the picture for example) shall be equal
460to the closest available fullpel sample
461
462
463Smaller pel interpolation:
464--------------------------
465if diag_mc is set then points which lie on a line between 2 vertically,
466horiziontally or diagonally adjacent halfpel points shall be interpolated
467linearls with rounding to nearest and halfway values rounded up.
468points which lie on 2 diagonals at the same time should only use the one
469diagonal not containing the fullpel point
470
471
472
473 F-->O---q---O<--h1->O---q---O<--F
474 v \ / v \ / v
475 O O O O O O O
476 | / | \ |
477 q q q q q
478 | / | \ |
479 O O O O O O O
480 ^ / \ ^ / \ ^
481 h2-->O---q---O<--h3->O---q---O<--h2
482 v \ / v \ / v
483 O O O O O O O
484 | \ | / |
485 q q q q q
486 | \ | / |
487 O O O O O O O
488 ^ / \ ^ / \ ^
489 F-->O---q---O<--h1->O---q---O<--F
490
491
492
493the remaining points shall be bilinearly interpolated from the
494up to 4 surrounding halfpel and fullpel points, again rounding should be to
495nearest and halfway values rounded up
496
497compliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chroma
498interpolation at least
499
500
501Overlapped block motion compensation:
502-------------------------------------
503FIXME
504
505LL band prediction:
506===================
507Each sample in the LL0 subband is predicted by the median of the left, top and
508left+top-topleft samples, samples outside the subband shall be considered to
509be 0. To reverse this prediction in the decoder apply the following.
510for(y=0; y<height; y++){
511 for(x=0; x<width; x++){
512 sample[y][x] += median(sample[y-1][x],
513 sample[y][x-1],
514 sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);
515 }
516}
517sample[-1][*]=sample[*][-1]= 0;
518width,height here are the width and height of the LL0 subband not of the final
519video
520
521
522Dequantizaton:
523==============
524FIXME
525
526Wavelet Transform:
527==================
528
529Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integer
530transform and a integer approximation of the symmetric biorthogonal 9/7
531daubechies wavelet.
532
5332D IDWT (inverse discrete wavelet transform)
534--------------------------------------------
535The 2D IDWT applies a 2D filter recursively, each time combining the
5364 lowest frequency subbands into a single subband until only 1 subband
537remains.
538The 2D filter is done by first applying a 1D filter in the vertical direction
539and then applying it in the horizontal one.
540 --------------- --------------- --------------- ---------------
541|LL0|HL0| | | | | | | | | | | |
542|---+---| HL1 | | L0|H0 | HL1 | | LL1 | HL1 | | | |
543|LH0|HH0| | | | | | | | | | | |
544|-------+-------|->|-------+-------|->|-------+-------|->| L1 | H1 |->...
545| | | | | | | | | | | |
546| LH1 | HH1 | | LH1 | HH1 | | LH1 | HH1 | | | |
547| | | | | | | | | | | |
548 --------------- --------------- --------------- ---------------
549
550
5511D Filter:
552----------
5531. interleave the samples of the low and high frequency subbands like
554s={L0, H0, L1, H1, L2, H2, L3, H3, ... }
555note, this can end with a L or a H, the number of elements shall be w
556s[-1] shall be considered equivalent to s[1 ]
557s[w ] shall be considered equivalent to s[w-2]
558
5592. perform the lifting steps in order as described below
560
5615/3 Integer filter:
5621. s[i] -= (s[i-1] + s[i+1] + 2)>>2; for all even i < w
5632. s[i] += (s[i-1] + s[i+1] )>>1; for all odd i < w
564
565\ | /|\ | /|\ | /|\ | /|\
566 \|/ | \|/ | \|/ | \|/ |
567 + | + | + | + | -1/4
568 /|\ | /|\ | /|\ | /|\ |
569/ | \|/ | \|/ | \|/ | \|/
570 | + | + | + | + +1/2
571
572
573Snow's 9/7 Integer filter:
5741. s[i] -= (3*(s[i-1] + s[i+1]) + 4)>>3; for all even i < w
5752. s[i] -= s[i-1] + s[i+1] ; for all odd i < w
5763. s[i] += ( s[i-1] + s[i+1] + 4*s[i] + 8)>>4; for all even i < w
5774. s[i] += (3*(s[i-1] + s[i+1]) )>>1; for all odd i < w
578
579\ | /|\ | /|\ | /|\ | /|\
580 \|/ | \|/ | \|/ | \|/ |
581 + | + | + | + | -3/8
582 /|\ | /|\ | /|\ | /|\ |
583/ | \|/ | \|/ | \|/ | \|/
584 (| + (| + (| + (| + -1
585\ + /|\ + /|\ + /|\ + /|\ +1/4
586 \|/ | \|/ | \|/ | \|/ |
587 + | + | + | + | +1/16
588 /|\ | /|\ | /|\ | /|\ |
589/ | \|/ | \|/ | \|/ | \|/
590 | + | + | + | + +3/2
591
592optimization tips:
593following are exactly identical
594(3a)>>1 == a + (a>>1)
595(a + 4b + 8)>>4 == ((a>>2) + b + 2)>>2
596
59716bit implementation note:
598The IDWT can be implemented with 16bits, but this requires some care to
599prevent overflows, the following list, lists the minimum number of bits needed
600for some terms
6011. lifting step
602A= s[i-1] + s[i+1] 16bit
6033*A + 4 18bit
604A + (A>>1) + 2 17bit
605
6063. lifting step
607s[i-1] + s[i+1] 17bit
608
6094. lifiting step
6103*(s[i-1] + s[i+1]) 17bit
611
612
613TODO:
614=====
615Important:
616finetune initial contexts
617flip wavelet?
618try to use the wavelet transformed predicted image (motion compensated image) as context for coding the residual coefficients
619try the MV length as context for coding the residual coefficients
620use extradata for stuff which is in the keyframes now?
621implement per picture halfpel interpolation
622try different range coder state transition tables for different contexts
623
624Not Important:
625compare the 6 tap and 8 tap hpel filters (psnr/bitrate and subjective quality)
626spatial_scalability b vs u (!= 0 breaks syntax anyway so we can add a u later)
627
628
629Credits:
630========
631Michael Niedermayer
632Loren Merritt
633
634
635Copyright:
636==========
637GPL + GFDL + whatever is needed to make this a RFC