Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / aacpsy.c
CommitLineData
2ba45a60
DM
1/*
2 * AAC encoder psychoacoustic model
3 * Copyright (C) 2008 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * AAC encoder psychoacoustic model
25 */
26
27#include "libavutil/attributes.h"
28#include "libavutil/libm.h"
29
30#include "avcodec.h"
31#include "aactab.h"
32#include "psymodel.h"
33
34/***********************************
35 * TODOs:
36 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
37 * control quality for quality-based output
38 **********************************/
39
40/**
41 * constants for 3GPP AAC psychoacoustic model
42 * @{
43 */
44#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
45#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
46/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
47#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
48/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
49#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
50/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
51#define PSY_3GPP_EN_SPREAD_HI_S 1.5f
52/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
53#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
54/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
55#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
56
57#define PSY_3GPP_RPEMIN 0.01f
58#define PSY_3GPP_RPELEV 2.0f
59
60#define PSY_3GPP_C1 3.0f /* log2(8) */
61#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
62#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
63
64#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
65#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
66
67#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
68#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
69#define PSY_3GPP_SAVE_ADD_L -0.84285712f
70#define PSY_3GPP_SAVE_ADD_S -0.75f
71#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
72#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
73#define PSY_3GPP_SPEND_ADD_L -0.35f
74#define PSY_3GPP_SPEND_ADD_S -0.26111111f
75#define PSY_3GPP_CLIP_LO_L 0.2f
76#define PSY_3GPP_CLIP_LO_S 0.2f
77#define PSY_3GPP_CLIP_HI_L 0.95f
78#define PSY_3GPP_CLIP_HI_S 0.75f
79
80#define PSY_3GPP_AH_THR_LONG 0.5f
81#define PSY_3GPP_AH_THR_SHORT 0.63f
82
83enum {
84 PSY_3GPP_AH_NONE,
85 PSY_3GPP_AH_INACTIVE,
86 PSY_3GPP_AH_ACTIVE
87};
88
89#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
90
91/* LAME psy model constants */
92#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
93#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
94#define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
95#define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
96#define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
97
98/**
99 * @}
100 */
101
102/**
103 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
104 */
105typedef struct AacPsyBand{
106 float energy; ///< band energy
107 float thr; ///< energy threshold
108 float thr_quiet; ///< threshold in quiet
109 float nz_lines; ///< number of non-zero spectral lines
110 float active_lines; ///< number of active spectral lines
111 float pe; ///< perceptual entropy
112 float pe_const; ///< constant part of the PE calculation
113 float norm_fac; ///< normalization factor for linearization
114 int avoid_holes; ///< hole avoidance flag
115}AacPsyBand;
116
117/**
118 * single/pair channel context for psychoacoustic model
119 */
120typedef struct AacPsyChannel{
121 AacPsyBand band[128]; ///< bands information
122 AacPsyBand prev_band[128]; ///< bands information from the previous frame
123
124 float win_energy; ///< sliding average of channel energy
125 float iir_state[2]; ///< hi-pass IIR filter state
126 uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
127 enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
128 /* LAME psy model specific members */
129 float attack_threshold; ///< attack threshold for this channel
130 float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
131 int prev_attack; ///< attack value for the last short block in the previous sequence
132}AacPsyChannel;
133
134/**
135 * psychoacoustic model frame type-dependent coefficients
136 */
137typedef struct AacPsyCoeffs{
138 float ath; ///< absolute threshold of hearing per bands
139 float barks; ///< Bark value for each spectral band in long frame
140 float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
141 float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
142 float min_snr; ///< minimal SNR
143}AacPsyCoeffs;
144
145/**
146 * 3GPP TS26.403-inspired psychoacoustic model specific data
147 */
148typedef struct AacPsyContext{
149 int chan_bitrate; ///< bitrate per channel
150 int frame_bits; ///< average bits per frame
151 int fill_level; ///< bit reservoir fill level
152 struct {
153 float min; ///< minimum allowed PE for bit factor calculation
154 float max; ///< maximum allowed PE for bit factor calculation
155 float previous; ///< allowed PE of the previous frame
156 float correction; ///< PE correction factor
157 } pe;
158 AacPsyCoeffs psy_coef[2][64];
159 AacPsyChannel *ch;
160}AacPsyContext;
161
162/**
163 * LAME psy model preset struct
164 */
165typedef struct {
166 int quality; ///< Quality to map the rest of the vaules to.
167 /* This is overloaded to be both kbps per channel in ABR mode, and
168 * requested quality in constant quality mode.
169 */
170 float st_lrm; ///< short threshold for L, R, and M channels
171} PsyLamePreset;
172
173/**
174 * LAME psy model preset table for ABR
175 */
176static const PsyLamePreset psy_abr_map[] = {
177/* TODO: Tuning. These were taken from LAME. */
178/* kbps/ch st_lrm */
179 { 8, 6.60},
180 { 16, 6.60},
181 { 24, 6.60},
182 { 32, 6.60},
183 { 40, 6.60},
184 { 48, 6.60},
185 { 56, 6.60},
186 { 64, 6.40},
187 { 80, 6.00},
188 { 96, 5.60},
189 {112, 5.20},
190 {128, 5.20},
191 {160, 5.20}
192};
193
194/**
195* LAME psy model preset table for constant quality
196*/
197static const PsyLamePreset psy_vbr_map[] = {
198/* vbr_q st_lrm */
199 { 0, 4.20},
200 { 1, 4.20},
201 { 2, 4.20},
202 { 3, 4.20},
203 { 4, 4.20},
204 { 5, 4.20},
205 { 6, 4.20},
206 { 7, 4.20},
207 { 8, 4.20},
208 { 9, 4.20},
209 {10, 4.20}
210};
211
212/**
213 * LAME psy model FIR coefficient table
214 */
215static const float psy_fir_coeffs[] = {
216 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
217 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
218 -5.52212e-17 * 2, -0.313819 * 2
219};
220
221#if ARCH_MIPS
222# include "mips/aacpsy_mips.h"
223#endif /* ARCH_MIPS */
224
225/**
226 * Calculate the ABR attack threshold from the above LAME psymodel table.
227 */
228static float lame_calc_attack_threshold(int bitrate)
229{
230 /* Assume max bitrate to start with */
231 int lower_range = 12, upper_range = 12;
232 int lower_range_kbps = psy_abr_map[12].quality;
233 int upper_range_kbps = psy_abr_map[12].quality;
234 int i;
235
236 /* Determine which bitrates the value specified falls between.
237 * If the loop ends without breaking our above assumption of 320kbps was correct.
238 */
239 for (i = 1; i < 13; i++) {
240 if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
241 upper_range = i;
242 upper_range_kbps = psy_abr_map[i ].quality;
243 lower_range = i - 1;
244 lower_range_kbps = psy_abr_map[i - 1].quality;
245 break; /* Upper range found */
246 }
247 }
248
249 /* Determine which range the value specified is closer to */
250 if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
251 return psy_abr_map[lower_range].st_lrm;
252 return psy_abr_map[upper_range].st_lrm;
253}
254
255/**
256 * LAME psy model specific initialization
257 */
258static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
259{
260 int i, j;
261
262 for (i = 0; i < avctx->channels; i++) {
263 AacPsyChannel *pch = &ctx->ch[i];
264
265 if (avctx->flags & CODEC_FLAG_QSCALE)
266 pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
267 else
268 pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
269
270 for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
271 pch->prev_energy_subshort[j] = 10.0f;
272 }
273}
274
275/**
276 * Calculate Bark value for given line.
277 */
278static av_cold float calc_bark(float f)
279{
280 return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
281}
282
283#define ATH_ADD 4
284/**
285 * Calculate ATH value for given frequency.
286 * Borrowed from Lame.
287 */
288static av_cold float ath(float f, float add)
289{
290 f /= 1000.0f;
291 return 3.64 * pow(f, -0.8)
292 - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
293 + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
294 + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
295}
296
297static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
298 AacPsyContext *pctx;
299 float bark;
300 int i, j, g, start;
301 float prev, minscale, minath, minsnr, pe_min;
302 const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels;
303 const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx);
304 const float num_bark = calc_bark((float)bandwidth);
305
306 ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
307 pctx = (AacPsyContext*) ctx->model_priv_data;
308
309 pctx->chan_bitrate = chan_bitrate;
310 pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate;
311 pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
312 pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
313 ctx->bitres.size = 6144 - pctx->frame_bits;
314 ctx->bitres.size -= ctx->bitres.size % 8;
315 pctx->fill_level = ctx->bitres.size;
316 minath = ath(3410, ATH_ADD);
317 for (j = 0; j < 2; j++) {
318 AacPsyCoeffs *coeffs = pctx->psy_coef[j];
319 const uint8_t *band_sizes = ctx->bands[j];
320 float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
321 float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
322 /* reference encoder uses 2.4% here instead of 60% like the spec says */
323 float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
324 float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
325 /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
326 float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
327
328 i = 0;
329 prev = 0.0;
330 for (g = 0; g < ctx->num_bands[j]; g++) {
331 i += band_sizes[g];
332 bark = calc_bark((i-1) * line_to_frequency);
333 coeffs[g].barks = (bark + prev) / 2.0;
334 prev = bark;
335 }
336 for (g = 0; g < ctx->num_bands[j] - 1; g++) {
337 AacPsyCoeffs *coeff = &coeffs[g];
338 float bark_width = coeffs[g+1].barks - coeffs->barks;
339 coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
340 coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
341 coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
342 coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
343 pe_min = bark_pe * bark_width;
344 minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
345 coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
346 }
347 start = 0;
348 for (g = 0; g < ctx->num_bands[j]; g++) {
349 minscale = ath(start * line_to_frequency, ATH_ADD);
350 for (i = 1; i < band_sizes[g]; i++)
351 minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
352 coeffs[g].ath = minscale - minath;
353 start += band_sizes[g];
354 }
355 }
356
357 pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel));
358
359 lame_window_init(pctx, ctx->avctx);
360
361 return 0;
362}
363
364/**
365 * IIR filter used in block switching decision
366 */
367static float iir_filter(int in, float state[2])
368{
369 float ret;
370
371 ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
372 state[0] = in;
373 state[1] = ret;
374 return ret;
375}
376
377/**
378 * window grouping information stored as bits (0 - new group, 1 - group continues)
379 */
380static const uint8_t window_grouping[9] = {
381 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
382};
383
384/**
385 * Tell encoder which window types to use.
386 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
387 */
388static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
389 const int16_t *audio,
390 const int16_t *la,
391 int channel, int prev_type)
392{
393 int i, j;
394 int br = ctx->avctx->bit_rate / ctx->avctx->channels;
395 int attack_ratio = br <= 16000 ? 18 : 10;
396 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
397 AacPsyChannel *pch = &pctx->ch[channel];
398 uint8_t grouping = 0;
399 int next_type = pch->next_window_seq;
400 FFPsyWindowInfo wi = { { 0 } };
401
402 if (la) {
403 float s[8], v;
404 int switch_to_eight = 0;
405 float sum = 0.0, sum2 = 0.0;
406 int attack_n = 0;
407 int stay_short = 0;
408 for (i = 0; i < 8; i++) {
409 for (j = 0; j < 128; j++) {
410 v = iir_filter(la[i*128+j], pch->iir_state);
411 sum += v*v;
412 }
413 s[i] = sum;
414 sum2 += sum;
415 }
416 for (i = 0; i < 8; i++) {
417 if (s[i] > pch->win_energy * attack_ratio) {
418 attack_n = i + 1;
419 switch_to_eight = 1;
420 break;
421 }
422 }
423 pch->win_energy = pch->win_energy*7/8 + sum2/64;
424
425 wi.window_type[1] = prev_type;
426 switch (prev_type) {
427 case ONLY_LONG_SEQUENCE:
428 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
429 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
430 break;
431 case LONG_START_SEQUENCE:
432 wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
433 grouping = pch->next_grouping;
434 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
435 break;
436 case LONG_STOP_SEQUENCE:
437 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
438 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
439 break;
440 case EIGHT_SHORT_SEQUENCE:
441 stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
442 wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
443 grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
444 next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
445 break;
446 }
447
448 pch->next_grouping = window_grouping[attack_n];
449 pch->next_window_seq = next_type;
450 } else {
451 for (i = 0; i < 3; i++)
452 wi.window_type[i] = prev_type;
453 grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
454 }
455
456 wi.window_shape = 1;
457 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
458 wi.num_windows = 1;
459 wi.grouping[0] = 1;
460 } else {
461 int lastgrp = 0;
462 wi.num_windows = 8;
463 for (i = 0; i < 8; i++) {
464 if (!((grouping >> i) & 1))
465 lastgrp = i;
466 wi.grouping[lastgrp]++;
467 }
468 }
469
470 return wi;
471}
472
473/* 5.6.1.2 "Calculation of Bit Demand" */
474static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
475 int short_window)
476{
477 const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
478 const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
479 const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
480 const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
481 const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
482 const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
483 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
484
485 ctx->fill_level += ctx->frame_bits - bits;
486 ctx->fill_level = av_clip(ctx->fill_level, 0, size);
487 fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
488 clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
489 bit_save = (fill_level + bitsave_add) * bitsave_slope;
490 assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
491 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
492 assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
493 /* The bit factor graph in the spec is obviously incorrect.
494 * bit_spend + ((bit_spend - bit_spend))...
495 * The reference encoder subtracts everything from 1, but also seems incorrect.
496 * 1 - bit_save + ((bit_spend + bit_save))...
497 * Hopefully below is correct.
498 */
499 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
500 /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */
501 ctx->pe.max = FFMAX(pe, ctx->pe.max);
502 ctx->pe.min = FFMIN(pe, ctx->pe.min);
503
504 return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits);
505}
506
507static float calc_pe_3gpp(AacPsyBand *band)
508{
509 float pe, a;
510
511 band->pe = 0.0f;
512 band->pe_const = 0.0f;
513 band->active_lines = 0.0f;
514 if (band->energy > band->thr) {
515 a = log2f(band->energy);
516 pe = a - log2f(band->thr);
517 band->active_lines = band->nz_lines;
518 if (pe < PSY_3GPP_C1) {
519 pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
520 a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
521 band->active_lines *= PSY_3GPP_C3;
522 }
523 band->pe = pe * band->nz_lines;
524 band->pe_const = a * band->nz_lines;
525 }
526
527 return band->pe;
528}
529
530static float calc_reduction_3gpp(float a, float desired_pe, float pe,
531 float active_lines)
532{
533 float thr_avg, reduction;
534
535 if(active_lines == 0.0)
536 return 0;
537
538 thr_avg = exp2f((a - pe) / (4.0f * active_lines));
539 reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
540
541 return FFMAX(reduction, 0.0f);
542}
543
544static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
545 float reduction)
546{
547 float thr = band->thr;
548
549 if (band->energy > thr) {
550 thr = sqrtf(thr);
551 thr = sqrtf(thr) + reduction;
552 thr *= thr;
553 thr *= thr;
554
555 /* This deviates from the 3GPP spec to match the reference encoder.
556 * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
557 * that have hole avoidance on (active or inactive). It always reduces the
558 * threshold of bands with hole avoidance off.
559 */
560 if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
561 thr = FFMAX(band->thr, band->energy * min_snr);
562 band->avoid_holes = PSY_3GPP_AH_ACTIVE;
563 }
564 }
565
566 return thr;
567}
568
569#ifndef calc_thr_3gpp
570static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
571 const uint8_t *band_sizes, const float *coefs)
572{
573 int i, w, g;
574 int start = 0;
575 for (w = 0; w < wi->num_windows*16; w += 16) {
576 for (g = 0; g < num_bands; g++) {
577 AacPsyBand *band = &pch->band[w+g];
578
579 float form_factor = 0.0f;
580 float Temp;
581 band->energy = 0.0f;
582 for (i = 0; i < band_sizes[g]; i++) {
583 band->energy += coefs[start+i] * coefs[start+i];
584 form_factor += sqrtf(fabs(coefs[start+i]));
585 }
586 Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
587 band->thr = band->energy * 0.001258925f;
588 band->nz_lines = form_factor * sqrtf(Temp);
589
590 start += band_sizes[g];
591 }
592 }
593}
594#endif /* calc_thr_3gpp */
595
596#ifndef psy_hp_filter
597static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
598{
599 int i, j;
600 for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
601 float sum1, sum2;
602 sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
603 sum2 = 0.0;
604 for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
605 sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
606 sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
607 }
608 /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
609 * Tuning this for normalized floats would be difficult. */
610 hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
611 }
612}
613#endif /* psy_hp_filter */
614
615/**
616 * Calculate band thresholds as suggested in 3GPP TS26.403
617 */
618static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
619 const float *coefs, const FFPsyWindowInfo *wi)
620{
621 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
622 AacPsyChannel *pch = &pctx->ch[channel];
623 int i, w, g;
624 float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
625 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
626 float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
627 const int num_bands = ctx->num_bands[wi->num_windows == 8];
628 const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
629 AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
630 const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
631
632 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
633 calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs);
634
635 //modify thresholds and energies - spread, threshold in quiet, pre-echo control
636 for (w = 0; w < wi->num_windows*16; w += 16) {
637 AacPsyBand *bands = &pch->band[w];
638
639 /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
640 spread_en[0] = bands[0].energy;
641 for (g = 1; g < num_bands; g++) {
642 bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
643 spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
644 }
645 for (g = num_bands - 2; g >= 0; g--) {
646 bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
647 spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
648 }
649 //5.4.2.4 "Threshold in quiet"
650 for (g = 0; g < num_bands; g++) {
651 AacPsyBand *band = &bands[g];
652
653 band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
654 //5.4.2.5 "Pre-echo control"
655 if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
656 band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
657 PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
658
659 /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
660 pe += calc_pe_3gpp(band);
661 a += band->pe_const;
662 active_lines += band->active_lines;
663
664 /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
665 if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
666 band->avoid_holes = PSY_3GPP_AH_NONE;
667 else
668 band->avoid_holes = PSY_3GPP_AH_INACTIVE;
669 }
670 }
671
672 /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
673 ctx->ch[channel].entropy = pe;
674 desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
675 desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
676 /* NOTE: PE correction is kept simple. During initial testing it had very
677 * little effect on the final bitrate. Probably a good idea to come
678 * back and do more testing later.
679 */
680 if (ctx->bitres.bits > 0)
681 desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
682 0.85f, 1.15f);
683 pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
684
685 if (desired_pe < pe) {
686 /* 5.6.1.3.4 "First Estimation of the reduction value" */
687 for (w = 0; w < wi->num_windows*16; w += 16) {
688 reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
689 pe = 0.0f;
690 a = 0.0f;
691 active_lines = 0.0f;
692 for (g = 0; g < num_bands; g++) {
693 AacPsyBand *band = &pch->band[w+g];
694
695 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
696 /* recalculate PE */
697 pe += calc_pe_3gpp(band);
698 a += band->pe_const;
699 active_lines += band->active_lines;
700 }
701 }
702
703 /* 5.6.1.3.5 "Second Estimation of the reduction value" */
704 for (i = 0; i < 2; i++) {
705 float pe_no_ah = 0.0f, desired_pe_no_ah;
706 active_lines = a = 0.0f;
707 for (w = 0; w < wi->num_windows*16; w += 16) {
708 for (g = 0; g < num_bands; g++) {
709 AacPsyBand *band = &pch->band[w+g];
710
711 if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
712 pe_no_ah += band->pe;
713 a += band->pe_const;
714 active_lines += band->active_lines;
715 }
716 }
717 }
718 desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
719 if (active_lines > 0.0f)
720 reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
721
722 pe = 0.0f;
723 for (w = 0; w < wi->num_windows*16; w += 16) {
724 for (g = 0; g < num_bands; g++) {
725 AacPsyBand *band = &pch->band[w+g];
726
727 if (active_lines > 0.0f)
728 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
729 pe += calc_pe_3gpp(band);
730 band->norm_fac = band->active_lines / band->thr;
731 norm_fac += band->norm_fac;
732 }
733 }
734 delta_pe = desired_pe - pe;
735 if (fabs(delta_pe) > 0.05f * desired_pe)
736 break;
737 }
738
739 if (pe < 1.15f * desired_pe) {
740 /* 6.6.1.3.6 "Final threshold modification by linearization" */
741 norm_fac = 1.0f / norm_fac;
742 for (w = 0; w < wi->num_windows*16; w += 16) {
743 for (g = 0; g < num_bands; g++) {
744 AacPsyBand *band = &pch->band[w+g];
745
746 if (band->active_lines > 0.5f) {
747 float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
748 float thr = band->thr;
749
750 thr *= exp2f(delta_sfb_pe / band->active_lines);
751 if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
752 thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
753 band->thr = thr;
754 }
755 }
756 }
757 } else {
758 /* 5.6.1.3.7 "Further perceptual entropy reduction" */
759 g = num_bands;
760 while (pe > desired_pe && g--) {
761 for (w = 0; w < wi->num_windows*16; w+= 16) {
762 AacPsyBand *band = &pch->band[w+g];
763 if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
764 coeffs[g].min_snr = PSY_SNR_1DB;
765 band->thr = band->energy * PSY_SNR_1DB;
766 pe += band->active_lines * 1.5f - band->pe;
767 }
768 }
769 }
770 /* TODO: allow more holes (unused without mid/side) */
771 }
772 }
773
774 for (w = 0; w < wi->num_windows*16; w += 16) {
775 for (g = 0; g < num_bands; g++) {
776 AacPsyBand *band = &pch->band[w+g];
777 FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g];
778
779 psy_band->threshold = band->thr;
780 psy_band->energy = band->energy;
781 }
782 }
783
784 memcpy(pch->prev_band, pch->band, sizeof(pch->band));
785}
786
787static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
788 const float **coeffs, const FFPsyWindowInfo *wi)
789{
790 int ch;
791 FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
792
793 for (ch = 0; ch < group->num_ch; ch++)
794 psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
795}
796
797static av_cold void psy_3gpp_end(FFPsyContext *apc)
798{
799 AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
800 av_freep(&pctx->ch);
801 av_freep(&apc->model_priv_data);
802}
803
804static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
805{
806 int blocktype = ONLY_LONG_SEQUENCE;
807 if (uselongblock) {
808 if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
809 blocktype = LONG_STOP_SEQUENCE;
810 } else {
811 blocktype = EIGHT_SHORT_SEQUENCE;
812 if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
813 ctx->next_window_seq = LONG_START_SEQUENCE;
814 if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
815 ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
816 }
817
818 wi->window_type[0] = ctx->next_window_seq;
819 ctx->next_window_seq = blocktype;
820}
821
822static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
823 const float *la, int channel, int prev_type)
824{
825 AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
826 AacPsyChannel *pch = &pctx->ch[channel];
827 int grouping = 0;
828 int uselongblock = 1;
829 int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
830 int i;
831 FFPsyWindowInfo wi = { { 0 } };
832
833 if (la) {
834 float hpfsmpl[AAC_BLOCK_SIZE_LONG];
835 float const *pf = hpfsmpl;
836 float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
837 float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
838 float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
839 const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
840 int att_sum = 0;
841
842 /* LAME comment: apply high pass filter of fs/4 */
843 psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
844
845 /* Calculate the energies of each sub-shortblock */
846 for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
847 energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
848 assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
849 attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
850 energy_short[0] += energy_subshort[i];
851 }
852
853 for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
854 float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
855 float p = 1.0f;
856 for (; pf < pfe; pf++)
857 p = FFMAX(p, fabsf(*pf));
858 pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
859 energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
860 /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
861 * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
862 * (which is what we use here). What the 3 stands for is ambiguous, as it is both
863 * number of short blocks, and the number of sub-short blocks.
864 * It seems that LAME is comparing each sub-block to sub-block + 1 in the
865 * previous block.
866 */
867 if (p > energy_subshort[i + 1])
868 p = p / energy_subshort[i + 1];
869 else if (energy_subshort[i + 1] > p * 10.0f)
870 p = energy_subshort[i + 1] / (p * 10.0f);
871 else
872 p = 0.0;
873 attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
874 }
875
876 /* compare energy between sub-short blocks */
877 for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
878 if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
879 if (attack_intensity[i] > pch->attack_threshold)
880 attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
881
882 /* should have energy change between short blocks, in order to avoid periodic signals */
883 /* Good samples to show the effect are Trumpet test songs */
884 /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
885 /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
886 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
887 float const u = energy_short[i - 1];
888 float const v = energy_short[i];
889 float const m = FFMAX(u, v);
890 if (m < 40000) { /* (2) */
891 if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
892 if (i == 1 && attacks[0] < attacks[i])
893 attacks[0] = 0;
894 attacks[i] = 0;
895 }
896 }
897 att_sum += attacks[i];
898 }
899
900 if (attacks[0] <= pch->prev_attack)
901 attacks[0] = 0;
902
903 att_sum += attacks[0];
904 /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
905 if (pch->prev_attack == 3 || att_sum) {
906 uselongblock = 0;
907
908 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
909 if (attacks[i] && attacks[i-1])
910 attacks[i] = 0;
911 }
912 } else {
913 /* We have no lookahead info, so just use same type as the previous sequence. */
914 uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
915 }
916
917 lame_apply_block_type(pch, &wi, uselongblock);
918
919 wi.window_type[1] = prev_type;
920 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
921 wi.num_windows = 1;
922 wi.grouping[0] = 1;
923 if (wi.window_type[0] == LONG_START_SEQUENCE)
924 wi.window_shape = 0;
925 else
926 wi.window_shape = 1;
927 } else {
928 int lastgrp = 0;
929
930 wi.num_windows = 8;
931 wi.window_shape = 0;
932 for (i = 0; i < 8; i++) {
933 if (!((pch->next_grouping >> i) & 1))
934 lastgrp = i;
935 wi.grouping[lastgrp]++;
936 }
937 }
938
939 /* Determine grouping, based on the location of the first attack, and save for
940 * the next frame.
941 * FIXME: Move this to analysis.
942 * TODO: Tune groupings depending on attack location
943 * TODO: Handle more than one attack in a group
944 */
945 for (i = 0; i < 9; i++) {
946 if (attacks[i]) {
947 grouping = i;
948 break;
949 }
950 }
951 pch->next_grouping = window_grouping[grouping];
952
953 pch->prev_attack = attacks[8];
954
955 return wi;
956}
957
958const FFPsyModel ff_aac_psy_model =
959{
960 .name = "3GPP TS 26.403-inspired model",
961 .init = psy_3gpp_init,
962 .window = psy_lame_window,
963 .analyze = psy_3gpp_analyze,
964 .end = psy_3gpp_end,
965};