Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / alacenc.c
CommitLineData
2ba45a60
DM
1/*
2 * ALAC audio encoder
3 * Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "avcodec.h"
23#include "put_bits.h"
24#include "internal.h"
25#include "lpc.h"
26#include "mathops.h"
27#include "alac_data.h"
28
29#define DEFAULT_FRAME_SIZE 4096
30#define ALAC_EXTRADATA_SIZE 36
31#define ALAC_FRAME_HEADER_SIZE 55
32#define ALAC_FRAME_FOOTER_SIZE 3
33
34#define ALAC_ESCAPE_CODE 0x1FF
35#define ALAC_MAX_LPC_ORDER 30
36#define DEFAULT_MAX_PRED_ORDER 6
37#define DEFAULT_MIN_PRED_ORDER 4
38#define ALAC_MAX_LPC_PRECISION 9
39#define ALAC_MAX_LPC_SHIFT 9
40
41#define ALAC_CHMODE_LEFT_RIGHT 0
42#define ALAC_CHMODE_LEFT_SIDE 1
43#define ALAC_CHMODE_RIGHT_SIDE 2
44#define ALAC_CHMODE_MID_SIDE 3
45
46typedef struct RiceContext {
47 int history_mult;
48 int initial_history;
49 int k_modifier;
50 int rice_modifier;
51} RiceContext;
52
53typedef struct AlacLPCContext {
54 int lpc_order;
55 int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
56 int lpc_quant;
57} AlacLPCContext;
58
59typedef struct AlacEncodeContext {
60 int frame_size; /**< current frame size */
61 int verbatim; /**< current frame verbatim mode flag */
62 int compression_level;
63 int min_prediction_order;
64 int max_prediction_order;
65 int max_coded_frame_size;
66 int write_sample_size;
67 int extra_bits;
68 int32_t sample_buf[2][DEFAULT_FRAME_SIZE];
69 int32_t predictor_buf[2][DEFAULT_FRAME_SIZE];
70 int interlacing_shift;
71 int interlacing_leftweight;
72 PutBitContext pbctx;
73 RiceContext rc;
74 AlacLPCContext lpc[2];
75 LPCContext lpc_ctx;
76 AVCodecContext *avctx;
77} AlacEncodeContext;
78
79
80static void init_sample_buffers(AlacEncodeContext *s, int channels,
81 uint8_t const *samples[2])
82{
83 int ch, i;
84 int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
85 s->avctx->bits_per_raw_sample;
86
87#define COPY_SAMPLES(type) do { \
88 for (ch = 0; ch < channels; ch++) { \
89 int32_t *bptr = s->sample_buf[ch]; \
90 const type *sptr = (const type *)samples[ch]; \
91 for (i = 0; i < s->frame_size; i++) \
92 bptr[i] = sptr[i] >> shift; \
93 } \
94 } while (0)
95
96 if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
97 COPY_SAMPLES(int32_t);
98 else
99 COPY_SAMPLES(int16_t);
100}
101
102static void encode_scalar(AlacEncodeContext *s, int x,
103 int k, int write_sample_size)
104{
105 int divisor, q, r;
106
107 k = FFMIN(k, s->rc.k_modifier);
108 divisor = (1<<k) - 1;
109 q = x / divisor;
110 r = x % divisor;
111
112 if (q > 8) {
113 // write escape code and sample value directly
114 put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
115 put_bits(&s->pbctx, write_sample_size, x);
116 } else {
117 if (q)
118 put_bits(&s->pbctx, q, (1<<q) - 1);
119 put_bits(&s->pbctx, 1, 0);
120
121 if (k != 1) {
122 if (r > 0)
123 put_bits(&s->pbctx, k, r+1);
124 else
125 put_bits(&s->pbctx, k-1, 0);
126 }
127 }
128}
129
130static void write_element_header(AlacEncodeContext *s,
131 enum AlacRawDataBlockType element,
132 int instance)
133{
134 int encode_fs = 0;
135
136 if (s->frame_size < DEFAULT_FRAME_SIZE)
137 encode_fs = 1;
138
139 put_bits(&s->pbctx, 3, element); // element type
140 put_bits(&s->pbctx, 4, instance); // element instance
141 put_bits(&s->pbctx, 12, 0); // unused header bits
142 put_bits(&s->pbctx, 1, encode_fs); // Sample count is in the header
143 put_bits(&s->pbctx, 2, s->extra_bits >> 3); // Extra bytes (for 24-bit)
144 put_bits(&s->pbctx, 1, s->verbatim); // Audio block is verbatim
145 if (encode_fs)
146 put_bits32(&s->pbctx, s->frame_size); // No. of samples in the frame
147}
148
149static void calc_predictor_params(AlacEncodeContext *s, int ch)
150{
151 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
152 int shift[MAX_LPC_ORDER];
153 int opt_order;
154
155 if (s->compression_level == 1) {
156 s->lpc[ch].lpc_order = 6;
157 s->lpc[ch].lpc_quant = 6;
158 s->lpc[ch].lpc_coeff[0] = 160;
159 s->lpc[ch].lpc_coeff[1] = -190;
160 s->lpc[ch].lpc_coeff[2] = 170;
161 s->lpc[ch].lpc_coeff[3] = -130;
162 s->lpc[ch].lpc_coeff[4] = 80;
163 s->lpc[ch].lpc_coeff[5] = -25;
164 } else {
165 opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
166 s->frame_size,
167 s->min_prediction_order,
168 s->max_prediction_order,
169 ALAC_MAX_LPC_PRECISION, coefs, shift,
170 FF_LPC_TYPE_LEVINSON, 0,
171 ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
172
173 s->lpc[ch].lpc_order = opt_order;
174 s->lpc[ch].lpc_quant = shift[opt_order-1];
175 memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
176 }
177}
178
179static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
180{
181 int i, best;
182 int32_t lt, rt;
183 uint64_t sum[4];
184 uint64_t score[4];
185
186 /* calculate sum of 2nd order residual for each channel */
187 sum[0] = sum[1] = sum[2] = sum[3] = 0;
188 for (i = 2; i < n; i++) {
189 lt = left_ch[i] - 2 * left_ch[i - 1] + left_ch[i - 2];
190 rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
191 sum[2] += FFABS((lt + rt) >> 1);
192 sum[3] += FFABS(lt - rt);
193 sum[0] += FFABS(lt);
194 sum[1] += FFABS(rt);
195 }
196
197 /* calculate score for each mode */
198 score[0] = sum[0] + sum[1];
199 score[1] = sum[0] + sum[3];
200 score[2] = sum[1] + sum[3];
201 score[3] = sum[2] + sum[3];
202
203 /* return mode with lowest score */
204 best = 0;
205 for (i = 1; i < 4; i++) {
206 if (score[i] < score[best])
207 best = i;
208 }
209 return best;
210}
211
212static void alac_stereo_decorrelation(AlacEncodeContext *s)
213{
214 int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
215 int i, mode, n = s->frame_size;
216 int32_t tmp;
217
218 mode = estimate_stereo_mode(left, right, n);
219
220 switch (mode) {
221 case ALAC_CHMODE_LEFT_RIGHT:
222 s->interlacing_leftweight = 0;
223 s->interlacing_shift = 0;
224 break;
225 case ALAC_CHMODE_LEFT_SIDE:
226 for (i = 0; i < n; i++)
227 right[i] = left[i] - right[i];
228 s->interlacing_leftweight = 1;
229 s->interlacing_shift = 0;
230 break;
231 case ALAC_CHMODE_RIGHT_SIDE:
232 for (i = 0; i < n; i++) {
233 tmp = right[i];
234 right[i] = left[i] - right[i];
235 left[i] = tmp + (right[i] >> 31);
236 }
237 s->interlacing_leftweight = 1;
238 s->interlacing_shift = 31;
239 break;
240 default:
241 for (i = 0; i < n; i++) {
242 tmp = left[i];
243 left[i] = (tmp + right[i]) >> 1;
244 right[i] = tmp - right[i];
245 }
246 s->interlacing_leftweight = 1;
247 s->interlacing_shift = 1;
248 break;
249 }
250}
251
252static void alac_linear_predictor(AlacEncodeContext *s, int ch)
253{
254 int i;
255 AlacLPCContext lpc = s->lpc[ch];
256 int32_t *residual = s->predictor_buf[ch];
257
258 if (lpc.lpc_order == 31) {
259 residual[0] = s->sample_buf[ch][0];
260
261 for (i = 1; i < s->frame_size; i++) {
262 residual[i] = s->sample_buf[ch][i ] -
263 s->sample_buf[ch][i - 1];
264 }
265
266 return;
267 }
268
269 // generalised linear predictor
270
271 if (lpc.lpc_order > 0) {
272 int32_t *samples = s->sample_buf[ch];
273
274 // generate warm-up samples
275 residual[0] = samples[0];
276 for (i = 1; i <= lpc.lpc_order; i++)
277 residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
278
279 // perform lpc on remaining samples
280 for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
281 int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
282
283 for (j = 0; j < lpc.lpc_order; j++) {
284 sum += (samples[lpc.lpc_order-j] - samples[0]) *
285 lpc.lpc_coeff[j];
286 }
287
288 sum >>= lpc.lpc_quant;
289 sum += samples[0];
290 residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
291 s->write_sample_size);
292 res_val = residual[i];
293
294 if (res_val) {
295 int index = lpc.lpc_order - 1;
296 int neg = (res_val < 0);
297
298 while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
299 int val = samples[0] - samples[lpc.lpc_order - index];
300 int sign = (val ? FFSIGN(val) : 0);
301
302 if (neg)
303 sign *= -1;
304
305 lpc.lpc_coeff[index] -= sign;
306 val *= sign;
307 res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
308 index--;
309 }
310 }
311 samples++;
312 }
313 }
314}
315
316static void alac_entropy_coder(AlacEncodeContext *s, int ch)
317{
318 unsigned int history = s->rc.initial_history;
319 int sign_modifier = 0, i, k;
320 int32_t *samples = s->predictor_buf[ch];
321
322 for (i = 0; i < s->frame_size;) {
323 int x;
324
325 k = av_log2((history >> 9) + 3);
326
327 x = -2 * (*samples) -1;
328 x ^= x >> 31;
329
330 samples++;
331 i++;
332
333 encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
334
335 history += x * s->rc.history_mult -
336 ((history * s->rc.history_mult) >> 9);
337
338 sign_modifier = 0;
339 if (x > 0xFFFF)
340 history = 0xFFFF;
341
342 if (history < 128 && i < s->frame_size) {
343 unsigned int block_size = 0;
344
345 k = 7 - av_log2(history) + ((history + 16) >> 6);
346
347 while (*samples == 0 && i < s->frame_size) {
348 samples++;
349 i++;
350 block_size++;
351 }
352 encode_scalar(s, block_size, k, 16);
353 sign_modifier = (block_size <= 0xFFFF);
354 history = 0;
355 }
356
357 }
358}
359
360static void write_element(AlacEncodeContext *s,
361 enum AlacRawDataBlockType element, int instance,
362 const uint8_t *samples0, const uint8_t *samples1)
363{
364 uint8_t const *samples[2] = { samples0, samples1 };
365 int i, j, channels;
366 int prediction_type = 0;
367 PutBitContext *pb = &s->pbctx;
368
369 channels = element == TYPE_CPE ? 2 : 1;
370
371 if (s->verbatim) {
372 write_element_header(s, element, instance);
373 /* samples are channel-interleaved in verbatim mode */
374 if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
375 int shift = 32 - s->avctx->bits_per_raw_sample;
376 int32_t const *samples_s32[2] = { (const int32_t *)samples0,
377 (const int32_t *)samples1 };
378 for (i = 0; i < s->frame_size; i++)
379 for (j = 0; j < channels; j++)
380 put_sbits(pb, s->avctx->bits_per_raw_sample,
381 samples_s32[j][i] >> shift);
382 } else {
383 int16_t const *samples_s16[2] = { (const int16_t *)samples0,
384 (const int16_t *)samples1 };
385 for (i = 0; i < s->frame_size; i++)
386 for (j = 0; j < channels; j++)
387 put_sbits(pb, s->avctx->bits_per_raw_sample,
388 samples_s16[j][i]);
389 }
390 } else {
391 s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
392 channels - 1;
393
394 init_sample_buffers(s, channels, samples);
395 write_element_header(s, element, instance);
396
397 // extract extra bits if needed
398 if (s->extra_bits) {
399 uint32_t mask = (1 << s->extra_bits) - 1;
400 for (j = 0; j < channels; j++) {
401 int32_t *extra = s->predictor_buf[j];
402 int32_t *smp = s->sample_buf[j];
403 for (i = 0; i < s->frame_size; i++) {
404 extra[i] = smp[i] & mask;
405 smp[i] >>= s->extra_bits;
406 }
407 }
408 }
409
410 if (channels == 2)
411 alac_stereo_decorrelation(s);
412 else
413 s->interlacing_shift = s->interlacing_leftweight = 0;
414 put_bits(pb, 8, s->interlacing_shift);
415 put_bits(pb, 8, s->interlacing_leftweight);
416
417 for (i = 0; i < channels; i++) {
418 calc_predictor_params(s, i);
419
420 put_bits(pb, 4, prediction_type);
421 put_bits(pb, 4, s->lpc[i].lpc_quant);
422
423 put_bits(pb, 3, s->rc.rice_modifier);
424 put_bits(pb, 5, s->lpc[i].lpc_order);
425 // predictor coeff. table
426 for (j = 0; j < s->lpc[i].lpc_order; j++)
427 put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
428 }
429
430 // write extra bits if needed
431 if (s->extra_bits) {
432 uint32_t mask = (1 << s->extra_bits) - 1;
433 for (i = 0; i < s->frame_size; i++) {
434 for (j = 0; j < channels; j++) {
435 put_bits(pb, s->extra_bits, s->predictor_buf[j][i] & mask);
436 }
437 }
438 }
439
440 // apply lpc and entropy coding to audio samples
441 for (i = 0; i < channels; i++) {
442 alac_linear_predictor(s, i);
443
444 // TODO: determine when this will actually help. for now it's not used.
445 if (prediction_type == 15) {
446 // 2nd pass 1st order filter
447 int32_t *residual = s->predictor_buf[channels];
448 for (j = s->frame_size - 1; j > 0; j--)
449 residual[j] -= residual[j - 1];
450 }
451 alac_entropy_coder(s, i);
452 }
453 }
454}
455
456static int write_frame(AlacEncodeContext *s, AVPacket *avpkt,
457 uint8_t * const *samples)
458{
459 PutBitContext *pb = &s->pbctx;
460 const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[s->avctx->channels - 1];
461 const uint8_t *ch_map = ff_alac_channel_layout_offsets[s->avctx->channels - 1];
462 int ch, element, sce, cpe;
463
464 init_put_bits(pb, avpkt->data, avpkt->size);
465
466 ch = element = sce = cpe = 0;
467 while (ch < s->avctx->channels) {
468 if (ch_elements[element] == TYPE_CPE) {
469 write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
470 samples[ch_map[ch + 1]]);
471 cpe++;
472 ch += 2;
473 } else {
474 write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
475 sce++;
476 ch++;
477 }
478 element++;
479 }
480
481 put_bits(pb, 3, TYPE_END);
482 flush_put_bits(pb);
483
484 return put_bits_count(pb) >> 3;
485}
486
487static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
488{
489 int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
490 return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
491}
492
493static av_cold int alac_encode_close(AVCodecContext *avctx)
494{
495 AlacEncodeContext *s = avctx->priv_data;
496 ff_lpc_end(&s->lpc_ctx);
497 av_freep(&avctx->extradata);
498 avctx->extradata_size = 0;
499 return 0;
500}
501
502static av_cold int alac_encode_init(AVCodecContext *avctx)
503{
504 AlacEncodeContext *s = avctx->priv_data;
505 int ret;
506 uint8_t *alac_extradata;
507
508 avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
509
510 if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
511 if (avctx->bits_per_raw_sample != 24)
512 av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
513 avctx->bits_per_raw_sample = 24;
514 } else {
515 avctx->bits_per_raw_sample = 16;
516 s->extra_bits = 0;
517 }
518
519 // Set default compression level
520 if (avctx->compression_level == FF_COMPRESSION_DEFAULT)
521 s->compression_level = 2;
522 else
523 s->compression_level = av_clip(avctx->compression_level, 0, 2);
524
525 // Initialize default Rice parameters
526 s->rc.history_mult = 40;
527 s->rc.initial_history = 10;
528 s->rc.k_modifier = 14;
529 s->rc.rice_modifier = 4;
530
531 s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
532 avctx->channels,
533 avctx->bits_per_raw_sample);
534
535 avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
536 if (!avctx->extradata) {
537 ret = AVERROR(ENOMEM);
538 goto error;
539 }
540 avctx->extradata_size = ALAC_EXTRADATA_SIZE;
541
542 alac_extradata = avctx->extradata;
543 AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
544 AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
545 AV_WB32(alac_extradata+12, avctx->frame_size);
546 AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
547 AV_WB8 (alac_extradata+21, avctx->channels);
548 AV_WB32(alac_extradata+24, s->max_coded_frame_size);
549 AV_WB32(alac_extradata+28,
550 avctx->sample_rate * avctx->channels * avctx->bits_per_raw_sample); // average bitrate
551 AV_WB32(alac_extradata+32, avctx->sample_rate);
552
553 // Set relevant extradata fields
554 if (s->compression_level > 0) {
555 AV_WB8(alac_extradata+18, s->rc.history_mult);
556 AV_WB8(alac_extradata+19, s->rc.initial_history);
557 AV_WB8(alac_extradata+20, s->rc.k_modifier);
558 }
559
560 s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
561 if (avctx->min_prediction_order >= 0) {
562 if (avctx->min_prediction_order < MIN_LPC_ORDER ||
563 avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
564 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
565 avctx->min_prediction_order);
566 ret = AVERROR(EINVAL);
567 goto error;
568 }
569
570 s->min_prediction_order = avctx->min_prediction_order;
571 }
572
573 s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
574 if (avctx->max_prediction_order >= 0) {
575 if (avctx->max_prediction_order < MIN_LPC_ORDER ||
576 avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
577 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
578 avctx->max_prediction_order);
579 ret = AVERROR(EINVAL);
580 goto error;
581 }
582
583 s->max_prediction_order = avctx->max_prediction_order;
584 }
585
586 if (s->max_prediction_order < s->min_prediction_order) {
587 av_log(avctx, AV_LOG_ERROR,
588 "invalid prediction orders: min=%d max=%d\n",
589 s->min_prediction_order, s->max_prediction_order);
590 ret = AVERROR(EINVAL);
591 goto error;
592 }
593
594 s->avctx = avctx;
595
596 if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
597 s->max_prediction_order,
598 FF_LPC_TYPE_LEVINSON)) < 0) {
599 goto error;
600 }
601
602 return 0;
603error:
604 alac_encode_close(avctx);
605 return ret;
606}
607
608static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
609 const AVFrame *frame, int *got_packet_ptr)
610{
611 AlacEncodeContext *s = avctx->priv_data;
612 int out_bytes, max_frame_size, ret;
613
614 s->frame_size = frame->nb_samples;
615
616 if (frame->nb_samples < DEFAULT_FRAME_SIZE)
617 max_frame_size = get_max_frame_size(s->frame_size, avctx->channels,
618 avctx->bits_per_raw_sample);
619 else
620 max_frame_size = s->max_coded_frame_size;
621
622 if ((ret = ff_alloc_packet2(avctx, avpkt, 2 * max_frame_size)) < 0)
623 return ret;
624
625 /* use verbatim mode for compression_level 0 */
626 if (s->compression_level) {
627 s->verbatim = 0;
628 s->extra_bits = avctx->bits_per_raw_sample - 16;
629 } else {
630 s->verbatim = 1;
631 s->extra_bits = 0;
632 }
633
634 out_bytes = write_frame(s, avpkt, frame->extended_data);
635
636 if (out_bytes > max_frame_size) {
637 /* frame too large. use verbatim mode */
638 s->verbatim = 1;
639 s->extra_bits = 0;
640 out_bytes = write_frame(s, avpkt, frame->extended_data);
641 }
642
643 avpkt->size = out_bytes;
644 *got_packet_ptr = 1;
645 return 0;
646}
647
648AVCodec ff_alac_encoder = {
649 .name = "alac",
650 .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
651 .type = AVMEDIA_TYPE_AUDIO,
652 .id = AV_CODEC_ID_ALAC,
653 .priv_data_size = sizeof(AlacEncodeContext),
654 .init = alac_encode_init,
655 .encode2 = alac_encode_frame,
656 .close = alac_encode_close,
657 .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
658 .channel_layouts = ff_alac_channel_layouts,
659 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
660 AV_SAMPLE_FMT_S16P,
661 AV_SAMPLE_FMT_NONE },
662};