Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / bink.c
CommitLineData
2ba45a60
DM
1/*
2 * Bink video decoder
3 * Copyright (c) 2009 Konstantin Shishkov
4 * Copyright (C) 2011 Peter Ross <pross@xvid.org>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include "libavutil/attributes.h"
24#include "libavutil/imgutils.h"
25#include "libavutil/internal.h"
26#include "avcodec.h"
27#include "binkdata.h"
28#include "binkdsp.h"
29#include "blockdsp.h"
30#include "hpeldsp.h"
31#include "internal.h"
32#include "mathops.h"
33
34#define BITSTREAM_READER_LE
35#include "get_bits.h"
36
37#define BINK_FLAG_ALPHA 0x00100000
38#define BINK_FLAG_GRAY 0x00020000
39
40static VLC bink_trees[16];
41
42/**
43 * IDs for different data types used in old version of Bink video codec
44 */
45enum OldSources {
46 BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
47 BINKB_SRC_COLORS, ///< pixel values used for different block types
48 BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
49 BINKB_SRC_X_OFF, ///< X components of motion value
50 BINKB_SRC_Y_OFF, ///< Y components of motion value
51 BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
52 BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
53 BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
54 BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
55 BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
56
57 BINKB_NB_SRC
58};
59
60static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
61 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
62};
63
64static const int binkb_bundle_signed[BINKB_NB_SRC] = {
65 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
66};
67
68static int32_t binkb_intra_quant[16][64];
69static int32_t binkb_inter_quant[16][64];
70
71/**
72 * IDs for different data types used in Bink video codec
73 */
74enum Sources {
75 BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
76 BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
77 BINK_SRC_COLORS, ///< pixel values used for different block types
78 BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
79 BINK_SRC_X_OFF, ///< X components of motion value
80 BINK_SRC_Y_OFF, ///< Y components of motion value
81 BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
82 BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
83 BINK_SRC_RUN, ///< run lengths for special fill block
84
85 BINK_NB_SRC
86};
87
88/**
89 * data needed to decode 4-bit Huffman-coded value
90 */
91typedef struct Tree {
92 int vlc_num; ///< tree number (in bink_trees[])
93 uint8_t syms[16]; ///< leaf value to symbol mapping
94} Tree;
95
96#define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
97 bink_trees[(tree).vlc_num].bits, 1)]
98
99/**
100 * data structure used for decoding single Bink data type
101 */
102typedef struct Bundle {
103 int len; ///< length of number of entries to decode (in bits)
104 Tree tree; ///< Huffman tree-related data
105 uint8_t *data; ///< buffer for decoded symbols
106 uint8_t *data_end; ///< buffer end
107 uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
108 uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
109} Bundle;
110
111/*
112 * Decoder context
113 */
114typedef struct BinkContext {
115 AVCodecContext *avctx;
116 BlockDSPContext bdsp;
117 HpelDSPContext hdsp;
118 BinkDSPContext binkdsp;
119 AVFrame *last;
120 int version; ///< internal Bink file version
121 int has_alpha;
122 int swap_planes;
123 unsigned frame_num;
124
125 Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
126 Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
127 int col_lastval; ///< value of last decoded high nibble in "colours" data type
128} BinkContext;
129
130/**
131 * Bink video block types
132 */
133enum BlockTypes {
134 SKIP_BLOCK = 0, ///< skipped block
135 SCALED_BLOCK, ///< block has size 16x16
136 MOTION_BLOCK, ///< block is copied from previous frame with some offset
137 RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
138 RESIDUE_BLOCK, ///< motion block with some difference added
139 INTRA_BLOCK, ///< intra DCT block
140 FILL_BLOCK, ///< block is filled with single colour
141 INTER_BLOCK, ///< motion block with DCT applied to the difference
142 PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
143 RAW_BLOCK, ///< uncoded 8x8 block
144};
145
146/**
147 * Initialize length in all bundles.
148 *
149 * @param c decoder context
150 * @param width plane width
151 * @param bw plane width in 8x8 blocks
152 */
153static void init_lengths(BinkContext *c, int width, int bw)
154{
155 width = FFALIGN(width, 8);
156
157 c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
158
159 c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
160
161 c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
162
163 c->bundle[BINK_SRC_INTRA_DC].len =
164 c->bundle[BINK_SRC_INTER_DC].len =
165 c->bundle[BINK_SRC_X_OFF].len =
166 c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
167
168 c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
169
170 c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
171}
172
173/**
174 * Allocate memory for bundles.
175 *
176 * @param c decoder context
177 */
178static av_cold int init_bundles(BinkContext *c)
179{
180 int bw, bh, blocks;
181 int i;
182
183 bw = (c->avctx->width + 7) >> 3;
184 bh = (c->avctx->height + 7) >> 3;
185 blocks = bw * bh;
186
187 for (i = 0; i < BINKB_NB_SRC; i++) {
188 c->bundle[i].data = av_mallocz(blocks * 64);
189 if (!c->bundle[i].data)
190 return AVERROR(ENOMEM);
191 c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
192 }
193
194 return 0;
195}
196
197/**
198 * Free memory used by bundles.
199 *
200 * @param c decoder context
201 */
202static av_cold void free_bundles(BinkContext *c)
203{
204 int i;
205 for (i = 0; i < BINKB_NB_SRC; i++)
206 av_freep(&c->bundle[i].data);
207}
208
209/**
210 * Merge two consequent lists of equal size depending on bits read.
211 *
212 * @param gb context for reading bits
213 * @param dst buffer where merged list will be written to
214 * @param src pointer to the head of the first list (the second lists starts at src+size)
215 * @param size input lists size
216 */
217static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
218{
219 uint8_t *src2 = src + size;
220 int size2 = size;
221
222 do {
223 if (!get_bits1(gb)) {
224 *dst++ = *src++;
225 size--;
226 } else {
227 *dst++ = *src2++;
228 size2--;
229 }
230 } while (size && size2);
231
232 while (size--)
233 *dst++ = *src++;
234 while (size2--)
235 *dst++ = *src2++;
236}
237
238/**
239 * Read information about Huffman tree used to decode data.
240 *
241 * @param gb context for reading bits
242 * @param tree pointer for storing tree data
243 */
244static void read_tree(GetBitContext *gb, Tree *tree)
245{
246 uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
247 int i, t, len;
248
249 tree->vlc_num = get_bits(gb, 4);
250 if (!tree->vlc_num) {
251 for (i = 0; i < 16; i++)
252 tree->syms[i] = i;
253 return;
254 }
255 if (get_bits1(gb)) {
256 len = get_bits(gb, 3);
257 for (i = 0; i <= len; i++) {
258 tree->syms[i] = get_bits(gb, 4);
259 tmp1[tree->syms[i]] = 1;
260 }
261 for (i = 0; i < 16 && len < 16 - 1; i++)
262 if (!tmp1[i])
263 tree->syms[++len] = i;
264 } else {
265 len = get_bits(gb, 2);
266 for (i = 0; i < 16; i++)
267 in[i] = i;
268 for (i = 0; i <= len; i++) {
269 int size = 1 << i;
270 for (t = 0; t < 16; t += size << 1)
271 merge(gb, out + t, in + t, size);
272 FFSWAP(uint8_t*, in, out);
273 }
274 memcpy(tree->syms, in, 16);
275 }
276}
277
278/**
279 * Prepare bundle for decoding data.
280 *
281 * @param gb context for reading bits
282 * @param c decoder context
283 * @param bundle_num number of the bundle to initialize
284 */
285static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
286{
287 int i;
288
289 if (bundle_num == BINK_SRC_COLORS) {
290 for (i = 0; i < 16; i++)
291 read_tree(gb, &c->col_high[i]);
292 c->col_lastval = 0;
293 }
294 if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
295 read_tree(gb, &c->bundle[bundle_num].tree);
296 c->bundle[bundle_num].cur_dec =
297 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
298}
299
300/**
301 * common check before starting decoding bundle data
302 *
303 * @param gb context for reading bits
304 * @param b bundle
305 * @param t variable where number of elements to decode will be stored
306 */
307#define CHECK_READ_VAL(gb, b, t) \
308 if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
309 return 0; \
310 t = get_bits(gb, b->len); \
311 if (!t) { \
312 b->cur_dec = NULL; \
313 return 0; \
314 } \
315
316static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
317{
318 int t, v;
319 const uint8_t *dec_end;
320
321 CHECK_READ_VAL(gb, b, t);
322 dec_end = b->cur_dec + t;
323 if (dec_end > b->data_end) {
324 av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
325 return AVERROR_INVALIDDATA;
326 }
327 if (get_bits1(gb)) {
328 v = get_bits(gb, 4);
329 memset(b->cur_dec, v, t);
330 b->cur_dec += t;
331 } else {
332 while (b->cur_dec < dec_end)
333 *b->cur_dec++ = GET_HUFF(gb, b->tree);
334 }
335 return 0;
336}
337
338static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
339{
340 int t, sign, v;
341 const uint8_t *dec_end;
342
343 CHECK_READ_VAL(gb, b, t);
344 dec_end = b->cur_dec + t;
345 if (dec_end > b->data_end) {
346 av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
347 return AVERROR_INVALIDDATA;
348 }
349 if (get_bits1(gb)) {
350 v = get_bits(gb, 4);
351 if (v) {
352 sign = -get_bits1(gb);
353 v = (v ^ sign) - sign;
354 }
355 memset(b->cur_dec, v, t);
356 b->cur_dec += t;
357 } else {
358 while (b->cur_dec < dec_end) {
359 v = GET_HUFF(gb, b->tree);
360 if (v) {
361 sign = -get_bits1(gb);
362 v = (v ^ sign) - sign;
363 }
364 *b->cur_dec++ = v;
365 }
366 }
367 return 0;
368}
369
370static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
371
372static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
373{
374 int t, v;
375 int last = 0;
376 const uint8_t *dec_end;
377
378 CHECK_READ_VAL(gb, b, t);
379 dec_end = b->cur_dec + t;
380 if (dec_end > b->data_end) {
381 av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
382 return AVERROR_INVALIDDATA;
383 }
384 if (get_bits1(gb)) {
385 v = get_bits(gb, 4);
386 memset(b->cur_dec, v, t);
387 b->cur_dec += t;
388 } else {
389 while (b->cur_dec < dec_end) {
390 v = GET_HUFF(gb, b->tree);
391 if (v < 12) {
392 last = v;
393 *b->cur_dec++ = v;
394 } else {
395 int run = bink_rlelens[v - 12];
396
397 if (dec_end - b->cur_dec < run)
398 return AVERROR_INVALIDDATA;
399 memset(b->cur_dec, last, run);
400 b->cur_dec += run;
401 }
402 }
403 }
404 return 0;
405}
406
407static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
408{
409 int t, v;
410 const uint8_t *dec_end;
411
412 CHECK_READ_VAL(gb, b, t);
413 dec_end = b->cur_dec + t;
414 if (dec_end > b->data_end) {
415 av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
416 return AVERROR_INVALIDDATA;
417 }
418 while (b->cur_dec < dec_end) {
419 v = GET_HUFF(gb, b->tree);
420 v |= GET_HUFF(gb, b->tree) << 4;
421 *b->cur_dec++ = v;
422 }
423
424 return 0;
425}
426
427static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
428{
429 int t, sign, v;
430 const uint8_t *dec_end;
431
432 CHECK_READ_VAL(gb, b, t);
433 dec_end = b->cur_dec + t;
434 if (dec_end > b->data_end) {
435 av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
436 return AVERROR_INVALIDDATA;
437 }
438 if (get_bits1(gb)) {
439 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
440 v = GET_HUFF(gb, b->tree);
441 v = (c->col_lastval << 4) | v;
442 if (c->version < 'i') {
443 sign = ((int8_t) v) >> 7;
444 v = ((v & 0x7F) ^ sign) - sign;
445 v += 0x80;
446 }
447 memset(b->cur_dec, v, t);
448 b->cur_dec += t;
449 } else {
450 while (b->cur_dec < dec_end) {
451 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
452 v = GET_HUFF(gb, b->tree);
453 v = (c->col_lastval << 4) | v;
454 if (c->version < 'i') {
455 sign = ((int8_t) v) >> 7;
456 v = ((v & 0x7F) ^ sign) - sign;
457 v += 0x80;
458 }
459 *b->cur_dec++ = v;
460 }
461 }
462 return 0;
463}
464
465/** number of bits used to store first DC value in bundle */
466#define DC_START_BITS 11
467
468static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
469 int start_bits, int has_sign)
470{
471 int i, j, len, len2, bsize, sign, v, v2;
472 int16_t *dst = (int16_t*)b->cur_dec;
473 int16_t *dst_end = (int16_t*)b->data_end;
474
475 CHECK_READ_VAL(gb, b, len);
476 v = get_bits(gb, start_bits - has_sign);
477 if (v && has_sign) {
478 sign = -get_bits1(gb);
479 v = (v ^ sign) - sign;
480 }
481 if (dst_end - dst < 1)
482 return AVERROR_INVALIDDATA;
483 *dst++ = v;
484 len--;
485 for (i = 0; i < len; i += 8) {
486 len2 = FFMIN(len - i, 8);
487 if (dst_end - dst < len2)
488 return AVERROR_INVALIDDATA;
489 bsize = get_bits(gb, 4);
490 if (bsize) {
491 for (j = 0; j < len2; j++) {
492 v2 = get_bits(gb, bsize);
493 if (v2) {
494 sign = -get_bits1(gb);
495 v2 = (v2 ^ sign) - sign;
496 }
497 v += v2;
498 *dst++ = v;
499 if (v < -32768 || v > 32767) {
500 av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
501 return AVERROR_INVALIDDATA;
502 }
503 }
504 } else {
505 for (j = 0; j < len2; j++)
506 *dst++ = v;
507 }
508 }
509
510 b->cur_dec = (uint8_t*)dst;
511 return 0;
512}
513
514/**
515 * Retrieve next value from bundle.
516 *
517 * @param c decoder context
518 * @param bundle bundle number
519 */
520static inline int get_value(BinkContext *c, int bundle)
521{
522 int ret;
523
524 if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
525 return *c->bundle[bundle].cur_ptr++;
526 if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
527 return (int8_t)*c->bundle[bundle].cur_ptr++;
528 ret = *(int16_t*)c->bundle[bundle].cur_ptr;
529 c->bundle[bundle].cur_ptr += 2;
530 return ret;
531}
532
533static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
534{
535 c->bundle[bundle_num].cur_dec =
536 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
537 c->bundle[bundle_num].len = 13;
538}
539
540static av_cold void binkb_init_bundles(BinkContext *c)
541{
542 int i;
543 for (i = 0; i < BINKB_NB_SRC; i++)
544 binkb_init_bundle(c, i);
545}
546
547static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
548{
549 const int bits = binkb_bundle_sizes[bundle_num];
550 const int mask = 1 << (bits - 1);
551 const int issigned = binkb_bundle_signed[bundle_num];
552 Bundle *b = &c->bundle[bundle_num];
553 int i, len;
554
555 CHECK_READ_VAL(gb, b, len);
556 if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
557 return AVERROR_INVALIDDATA;
558 if (bits <= 8) {
559 if (!issigned) {
560 for (i = 0; i < len; i++)
561 *b->cur_dec++ = get_bits(gb, bits);
562 } else {
563 for (i = 0; i < len; i++)
564 *b->cur_dec++ = get_bits(gb, bits) - mask;
565 }
566 } else {
567 int16_t *dst = (int16_t*)b->cur_dec;
568
569 if (!issigned) {
570 for (i = 0; i < len; i++)
571 *dst++ = get_bits(gb, bits);
572 } else {
573 for (i = 0; i < len; i++)
574 *dst++ = get_bits(gb, bits) - mask;
575 }
576 b->cur_dec = (uint8_t*)dst;
577 }
578 return 0;
579}
580
581static inline int binkb_get_value(BinkContext *c, int bundle_num)
582{
583 int16_t ret;
584 const int bits = binkb_bundle_sizes[bundle_num];
585
586 if (bits <= 8) {
587 int val = *c->bundle[bundle_num].cur_ptr++;
588 return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
589 }
590 ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
591 c->bundle[bundle_num].cur_ptr += 2;
592 return ret;
593}
594
595/**
596 * Read 8x8 block of DCT coefficients.
597 *
598 * @param gb context for reading bits
599 * @param block place for storing coefficients
600 * @param scan scan order table
601 * @param quant_matrices quantization matrices
602 * @return 0 for success, negative value in other cases
603 */
604static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan,
605 const int32_t quant_matrices[16][64], int q)
606{
607 int coef_list[128];
608 int mode_list[128];
609 int i, t, bits, ccoef, mode, sign;
610 int list_start = 64, list_end = 64, list_pos;
611 int coef_count = 0;
612 int coef_idx[64];
613 int quant_idx;
614 const int32_t *quant;
615
616 coef_list[list_end] = 4; mode_list[list_end++] = 0;
617 coef_list[list_end] = 24; mode_list[list_end++] = 0;
618 coef_list[list_end] = 44; mode_list[list_end++] = 0;
619 coef_list[list_end] = 1; mode_list[list_end++] = 3;
620 coef_list[list_end] = 2; mode_list[list_end++] = 3;
621 coef_list[list_end] = 3; mode_list[list_end++] = 3;
622
623 for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
624 list_pos = list_start;
625 while (list_pos < list_end) {
626 if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
627 list_pos++;
628 continue;
629 }
630 ccoef = coef_list[list_pos];
631 mode = mode_list[list_pos];
632 switch (mode) {
633 case 0:
634 coef_list[list_pos] = ccoef + 4;
635 mode_list[list_pos] = 1;
636 case 2:
637 if (mode == 2) {
638 coef_list[list_pos] = 0;
639 mode_list[list_pos++] = 0;
640 }
641 for (i = 0; i < 4; i++, ccoef++) {
642 if (get_bits1(gb)) {
643 coef_list[--list_start] = ccoef;
644 mode_list[ list_start] = 3;
645 } else {
646 if (!bits) {
647 t = 1 - (get_bits1(gb) << 1);
648 } else {
649 t = get_bits(gb, bits) | 1 << bits;
650 sign = -get_bits1(gb);
651 t = (t ^ sign) - sign;
652 }
653 block[scan[ccoef]] = t;
654 coef_idx[coef_count++] = ccoef;
655 }
656 }
657 break;
658 case 1:
659 mode_list[list_pos] = 2;
660 for (i = 0; i < 3; i++) {
661 ccoef += 4;
662 coef_list[list_end] = ccoef;
663 mode_list[list_end++] = 2;
664 }
665 break;
666 case 3:
667 if (!bits) {
668 t = 1 - (get_bits1(gb) << 1);
669 } else {
670 t = get_bits(gb, bits) | 1 << bits;
671 sign = -get_bits1(gb);
672 t = (t ^ sign) - sign;
673 }
674 block[scan[ccoef]] = t;
675 coef_idx[coef_count++] = ccoef;
676 coef_list[list_pos] = 0;
677 mode_list[list_pos++] = 0;
678 break;
679 }
680 }
681 }
682
683 if (q == -1) {
684 quant_idx = get_bits(gb, 4);
685 } else {
686 quant_idx = q;
687 if (quant_idx > 15U) {
688 av_log(NULL, AV_LOG_ERROR, "quant_index %d out of range\n", quant_idx);
689 return AVERROR_INVALIDDATA;
690 }
691 }
692
693 quant = quant_matrices[quant_idx];
694
695 block[0] = (block[0] * quant[0]) >> 11;
696 for (i = 0; i < coef_count; i++) {
697 int idx = coef_idx[i];
698 block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
699 }
700
701 return 0;
702}
703
704/**
705 * Read 8x8 block with residue after motion compensation.
706 *
707 * @param gb context for reading bits
708 * @param block place to store read data
709 * @param masks_count number of masks to decode
710 * @return 0 on success, negative value in other cases
711 */
712static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
713{
714 int coef_list[128];
715 int mode_list[128];
716 int i, sign, mask, ccoef, mode;
717 int list_start = 64, list_end = 64, list_pos;
718 int nz_coeff[64];
719 int nz_coeff_count = 0;
720
721 coef_list[list_end] = 4; mode_list[list_end++] = 0;
722 coef_list[list_end] = 24; mode_list[list_end++] = 0;
723 coef_list[list_end] = 44; mode_list[list_end++] = 0;
724 coef_list[list_end] = 0; mode_list[list_end++] = 2;
725
726 for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
727 for (i = 0; i < nz_coeff_count; i++) {
728 if (!get_bits1(gb))
729 continue;
730 if (block[nz_coeff[i]] < 0)
731 block[nz_coeff[i]] -= mask;
732 else
733 block[nz_coeff[i]] += mask;
734 masks_count--;
735 if (masks_count < 0)
736 return 0;
737 }
738 list_pos = list_start;
739 while (list_pos < list_end) {
740 if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
741 list_pos++;
742 continue;
743 }
744 ccoef = coef_list[list_pos];
745 mode = mode_list[list_pos];
746 switch (mode) {
747 case 0:
748 coef_list[list_pos] = ccoef + 4;
749 mode_list[list_pos] = 1;
750 case 2:
751 if (mode == 2) {
752 coef_list[list_pos] = 0;
753 mode_list[list_pos++] = 0;
754 }
755 for (i = 0; i < 4; i++, ccoef++) {
756 if (get_bits1(gb)) {
757 coef_list[--list_start] = ccoef;
758 mode_list[ list_start] = 3;
759 } else {
760 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
761 sign = -get_bits1(gb);
762 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
763 masks_count--;
764 if (masks_count < 0)
765 return 0;
766 }
767 }
768 break;
769 case 1:
770 mode_list[list_pos] = 2;
771 for (i = 0; i < 3; i++) {
772 ccoef += 4;
773 coef_list[list_end] = ccoef;
774 mode_list[list_end++] = 2;
775 }
776 break;
777 case 3:
778 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
779 sign = -get_bits1(gb);
780 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
781 coef_list[list_pos] = 0;
782 mode_list[list_pos++] = 0;
783 masks_count--;
784 if (masks_count < 0)
785 return 0;
786 break;
787 }
788 }
789 }
790
791 return 0;
792}
793
794/**
795 * Copy 8x8 block from source to destination, where src and dst may be overlapped
796 */
797static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
798{
799 uint8_t tmp[64];
800 int i;
801 for (i = 0; i < 8; i++)
802 memcpy(tmp + i*8, src + i*stride, 8);
803 for (i = 0; i < 8; i++)
804 memcpy(dst + i*stride, tmp + i*8, 8);
805}
806
807static int binkb_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
808 int plane_idx, int is_key, int is_chroma)
809{
810 int blk, ret;
811 int i, j, bx, by;
812 uint8_t *dst, *ref, *ref_start, *ref_end;
813 int v, col[2];
814 const uint8_t *scan;
815 int xoff, yoff;
816 LOCAL_ALIGNED_16(int16_t, block, [64]);
817 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
818 int coordmap[64];
819 int ybias = is_key ? -15 : 0;
820 int qp;
821
822 const int stride = frame->linesize[plane_idx];
823 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
824 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
825
826 binkb_init_bundles(c);
827 ref_start = frame->data[plane_idx];
828 ref_end = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
829
830 for (i = 0; i < 64; i++)
831 coordmap[i] = (i & 7) + (i >> 3) * stride;
832
833 for (by = 0; by < bh; by++) {
834 for (i = 0; i < BINKB_NB_SRC; i++) {
835 if ((ret = binkb_read_bundle(c, gb, i)) < 0)
836 return ret;
837 }
838
839 dst = frame->data[plane_idx] + 8*by*stride;
840 for (bx = 0; bx < bw; bx++, dst += 8) {
841 blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
842 switch (blk) {
843 case 0:
844 break;
845 case 1:
846 scan = bink_patterns[get_bits(gb, 4)];
847 i = 0;
848 do {
849 int mode, run;
850
851 mode = get_bits1(gb);
852 run = get_bits(gb, binkb_runbits[i]) + 1;
853
854 i += run;
855 if (i > 64) {
856 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
857 return AVERROR_INVALIDDATA;
858 }
859 if (mode) {
860 v = binkb_get_value(c, BINKB_SRC_COLORS);
861 for (j = 0; j < run; j++)
862 dst[coordmap[*scan++]] = v;
863 } else {
864 for (j = 0; j < run; j++)
865 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
866 }
867 } while (i < 63);
868 if (i == 63)
869 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
870 break;
871 case 2:
872 memset(dctblock, 0, sizeof(*dctblock) * 64);
873 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
874 qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
875 read_dct_coeffs(gb, dctblock, bink_scan, (const int32_t (*)[64])binkb_intra_quant, qp);
876 c->binkdsp.idct_put(dst, stride, dctblock);
877 break;
878 case 3:
879 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
880 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
881 ref = dst + xoff + yoff * stride;
882 if (ref < ref_start || ref + 8*stride > ref_end) {
883 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
884 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
885 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
886 } else {
887 put_pixels8x8_overlapped(dst, ref, stride);
888 }
889 c->bdsp.clear_block(block);
890 v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
891 read_residue(gb, block, v);
892 c->binkdsp.add_pixels8(dst, block, stride);
893 break;
894 case 4:
895 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
896 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
897 ref = dst + xoff + yoff * stride;
898 if (ref < ref_start || ref + 8 * stride > ref_end) {
899 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
900 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
901 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
902 } else {
903 put_pixels8x8_overlapped(dst, ref, stride);
904 }
905 memset(dctblock, 0, sizeof(*dctblock) * 64);
906 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
907 qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
908 read_dct_coeffs(gb, dctblock, bink_scan, (const int32_t (*)[64])binkb_inter_quant, qp);
909 c->binkdsp.idct_add(dst, stride, dctblock);
910 break;
911 case 5:
912 v = binkb_get_value(c, BINKB_SRC_COLORS);
913 c->bdsp.fill_block_tab[1](dst, v, stride, 8);
914 break;
915 case 6:
916 for (i = 0; i < 2; i++)
917 col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
918 for (i = 0; i < 8; i++) {
919 v = binkb_get_value(c, BINKB_SRC_PATTERN);
920 for (j = 0; j < 8; j++, v >>= 1)
921 dst[i*stride + j] = col[v & 1];
922 }
923 break;
924 case 7:
925 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
926 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
927 ref = dst + xoff + yoff * stride;
928 if (ref < ref_start || ref + 8 * stride > ref_end) {
929 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
930 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
931 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
932 } else {
933 put_pixels8x8_overlapped(dst, ref, stride);
934 }
935 break;
936 case 8:
937 for (i = 0; i < 8; i++)
938 memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
939 c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
940 break;
941 default:
942 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
943 return AVERROR_INVALIDDATA;
944 }
945 }
946 }
947 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
948 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
949
950 return 0;
951}
952
953static int bink_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
954 int plane_idx, int is_chroma)
955{
956 int blk, ret;
957 int i, j, bx, by;
958 uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
959 int v, col[2];
960 const uint8_t *scan;
961 int xoff, yoff;
962 LOCAL_ALIGNED_16(int16_t, block, [64]);
963 LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
964 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
965 int coordmap[64];
966
967 const int stride = frame->linesize[plane_idx];
968 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
969 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
970 int width = c->avctx->width >> is_chroma;
971
972 init_lengths(c, FFMAX(width, 8), bw);
973 for (i = 0; i < BINK_NB_SRC; i++)
974 read_bundle(gb, c, i);
975
976 ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
977 : frame->data[plane_idx];
978 ref_end = ref_start
979 + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
980
981 for (i = 0; i < 64; i++)
982 coordmap[i] = (i & 7) + (i >> 3) * stride;
983
984 for (by = 0; by < bh; by++) {
985 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
986 return ret;
987 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
988 return ret;
989 if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
990 return ret;
991 if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
992 return ret;
993 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
994 return ret;
995 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
996 return ret;
997 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
998 return ret;
999 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
1000 return ret;
1001 if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
1002 return ret;
1003
1004 if (by == bh)
1005 break;
1006 dst = frame->data[plane_idx] + 8*by*stride;
1007 prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
1008 : frame->data[plane_idx]) + 8*by*stride;
1009 for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
1010 blk = get_value(c, BINK_SRC_BLOCK_TYPES);
1011 // 16x16 block type on odd line means part of the already decoded block, so skip it
1012 if ((by & 1) && blk == SCALED_BLOCK) {
1013 bx++;
1014 dst += 8;
1015 prev += 8;
1016 continue;
1017 }
1018 switch (blk) {
1019 case SKIP_BLOCK:
1020 c->hdsp.put_pixels_tab[1][0](dst, prev, stride, 8);
1021 break;
1022 case SCALED_BLOCK:
1023 blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
1024 switch (blk) {
1025 case RUN_BLOCK:
1026 scan = bink_patterns[get_bits(gb, 4)];
1027 i = 0;
1028 do {
1029 int run = get_value(c, BINK_SRC_RUN) + 1;
1030
1031 i += run;
1032 if (i > 64) {
1033 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1034 return AVERROR_INVALIDDATA;
1035 }
1036 if (get_bits1(gb)) {
1037 v = get_value(c, BINK_SRC_COLORS);
1038 for (j = 0; j < run; j++)
1039 ublock[*scan++] = v;
1040 } else {
1041 for (j = 0; j < run; j++)
1042 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1043 }
1044 } while (i < 63);
1045 if (i == 63)
1046 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1047 break;
1048 case INTRA_BLOCK:
1049 memset(dctblock, 0, sizeof(*dctblock) * 64);
1050 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1051 read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1052 c->binkdsp.idct_put(ublock, 8, dctblock);
1053 break;
1054 case FILL_BLOCK:
1055 v = get_value(c, BINK_SRC_COLORS);
1056 c->bdsp.fill_block_tab[0](dst, v, stride, 16);
1057 break;
1058 case PATTERN_BLOCK:
1059 for (i = 0; i < 2; i++)
1060 col[i] = get_value(c, BINK_SRC_COLORS);
1061 for (j = 0; j < 8; j++) {
1062 v = get_value(c, BINK_SRC_PATTERN);
1063 for (i = 0; i < 8; i++, v >>= 1)
1064 ublock[i + j*8] = col[v & 1];
1065 }
1066 break;
1067 case RAW_BLOCK:
1068 for (j = 0; j < 8; j++)
1069 for (i = 0; i < 8; i++)
1070 ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
1071 break;
1072 default:
1073 av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
1074 return AVERROR_INVALIDDATA;
1075 }
1076 if (blk != FILL_BLOCK)
1077 c->binkdsp.scale_block(ublock, dst, stride);
1078 bx++;
1079 dst += 8;
1080 prev += 8;
1081 break;
1082 case MOTION_BLOCK:
1083 xoff = get_value(c, BINK_SRC_X_OFF);
1084 yoff = get_value(c, BINK_SRC_Y_OFF);
1085 ref = prev + xoff + yoff * stride;
1086 if (ref < ref_start || ref > ref_end) {
1087 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1088 bx*8 + xoff, by*8 + yoff);
1089 return AVERROR_INVALIDDATA;
1090 }
1091 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1092 break;
1093 case RUN_BLOCK:
1094 scan = bink_patterns[get_bits(gb, 4)];
1095 i = 0;
1096 do {
1097 int run = get_value(c, BINK_SRC_RUN) + 1;
1098
1099 i += run;
1100 if (i > 64) {
1101 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1102 return AVERROR_INVALIDDATA;
1103 }
1104 if (get_bits1(gb)) {
1105 v = get_value(c, BINK_SRC_COLORS);
1106 for (j = 0; j < run; j++)
1107 dst[coordmap[*scan++]] = v;
1108 } else {
1109 for (j = 0; j < run; j++)
1110 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1111 }
1112 } while (i < 63);
1113 if (i == 63)
1114 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1115 break;
1116 case RESIDUE_BLOCK:
1117 xoff = get_value(c, BINK_SRC_X_OFF);
1118 yoff = get_value(c, BINK_SRC_Y_OFF);
1119 ref = prev + xoff + yoff * stride;
1120 if (ref < ref_start || ref > ref_end) {
1121 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1122 bx*8 + xoff, by*8 + yoff);
1123 return AVERROR_INVALIDDATA;
1124 }
1125 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1126 c->bdsp.clear_block(block);
1127 v = get_bits(gb, 7);
1128 read_residue(gb, block, v);
1129 c->binkdsp.add_pixels8(dst, block, stride);
1130 break;
1131 case INTRA_BLOCK:
1132 memset(dctblock, 0, sizeof(*dctblock) * 64);
1133 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1134 read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1135 c->binkdsp.idct_put(dst, stride, dctblock);
1136 break;
1137 case FILL_BLOCK:
1138 v = get_value(c, BINK_SRC_COLORS);
1139 c->bdsp.fill_block_tab[1](dst, v, stride, 8);
1140 break;
1141 case INTER_BLOCK:
1142 xoff = get_value(c, BINK_SRC_X_OFF);
1143 yoff = get_value(c, BINK_SRC_Y_OFF);
1144 ref = prev + xoff + yoff * stride;
1145 if (ref < ref_start || ref > ref_end) {
1146 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1147 bx*8 + xoff, by*8 + yoff);
1148 return -1;
1149 }
1150 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1151 memset(dctblock, 0, sizeof(*dctblock) * 64);
1152 dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
1153 read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1);
1154 c->binkdsp.idct_add(dst, stride, dctblock);
1155 break;
1156 case PATTERN_BLOCK:
1157 for (i = 0; i < 2; i++)
1158 col[i] = get_value(c, BINK_SRC_COLORS);
1159 for (i = 0; i < 8; i++) {
1160 v = get_value(c, BINK_SRC_PATTERN);
1161 for (j = 0; j < 8; j++, v >>= 1)
1162 dst[i*stride + j] = col[v & 1];
1163 }
1164 break;
1165 case RAW_BLOCK:
1166 for (i = 0; i < 8; i++)
1167 memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
1168 c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
1169 break;
1170 default:
1171 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
1172 return AVERROR_INVALIDDATA;
1173 }
1174 }
1175 }
1176 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
1177 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
1178
1179 return 0;
1180}
1181
1182static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
1183{
1184 BinkContext * const c = avctx->priv_data;
1185 AVFrame *frame = data;
1186 GetBitContext gb;
1187 int plane, plane_idx, ret;
1188 int bits_count = pkt->size << 3;
1189
1190 if (c->version > 'b') {
1191 if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
1192 return ret;
1193 } else {
1194 if ((ret = ff_reget_buffer(avctx, c->last)) < 0)
1195 return ret;
1196 if ((ret = av_frame_ref(frame, c->last)) < 0)
1197 return ret;
1198 }
1199
1200 init_get_bits(&gb, pkt->data, bits_count);
1201 if (c->has_alpha) {
1202 if (c->version >= 'i')
1203 skip_bits_long(&gb, 32);
1204 if ((ret = bink_decode_plane(c, frame, &gb, 3, 0)) < 0)
1205 return ret;
1206 }
1207 if (c->version >= 'i')
1208 skip_bits_long(&gb, 32);
1209
1210 c->frame_num++;
1211
1212 for (plane = 0; plane < 3; plane++) {
1213 plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
1214
1215 if (c->version > 'b') {
1216 if ((ret = bink_decode_plane(c, frame, &gb, plane_idx, !!plane)) < 0)
1217 return ret;
1218 } else {
1219 if ((ret = binkb_decode_plane(c, frame, &gb, plane_idx,
1220 c->frame_num == 1, !!plane)) < 0)
1221 return ret;
1222 }
1223 if (get_bits_count(&gb) >= bits_count)
1224 break;
1225 }
1226 emms_c();
1227
1228 if (c->version > 'b') {
1229 av_frame_unref(c->last);
1230 if ((ret = av_frame_ref(c->last, frame)) < 0)
1231 return ret;
1232 }
1233
1234 *got_frame = 1;
1235
1236 /* always report that the buffer was completely consumed */
1237 return pkt->size;
1238}
1239
1240/**
1241 * Caclulate quantization tables for version b
1242 */
1243static av_cold void binkb_calc_quant(void)
1244{
1245 uint8_t inv_bink_scan[64];
1246 static const int s[64]={
1247 1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1248 1489322693,2065749918,1945893874,1751258219,1489322693,1170153332, 806015634, 410903207,
1249 1402911301,1945893874,1832991949,1649649171,1402911301,1102260336, 759250125, 387062357,
1250 1262586814,1751258219,1649649171,1484645031,1262586814, 992008094, 683307060, 348346918,
1251 1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1252 843633538,1170153332,1102260336, 992008094, 843633538, 662838617, 456571181, 232757969,
1253 581104888, 806015634, 759250125, 683307060, 581104888, 456571181, 314491699, 160326478,
1254 296244703, 410903207, 387062357, 348346918, 296244703, 232757969, 160326478, 81733730,
1255 };
1256 int i, j;
1257#define C (1LL<<30)
1258 for (i = 0; i < 64; i++)
1259 inv_bink_scan[bink_scan[i]] = i;
1260
1261 for (j = 0; j < 16; j++) {
1262 for (i = 0; i < 64; i++) {
1263 int k = inv_bink_scan[i];
1264 binkb_intra_quant[j][k] = binkb_intra_seed[i] * (int64_t)s[i] *
1265 binkb_num[j]/(binkb_den[j] * (C>>12));
1266 binkb_inter_quant[j][k] = binkb_inter_seed[i] * (int64_t)s[i] *
1267 binkb_num[j]/(binkb_den[j] * (C>>12));
1268 }
1269 }
1270}
1271
1272static av_cold int decode_init(AVCodecContext *avctx)
1273{
1274 BinkContext * const c = avctx->priv_data;
1275 static VLC_TYPE table[16 * 128][2];
1276 static int binkb_initialised = 0;
1277 int i, ret;
1278 int flags;
1279
1280 c->version = avctx->codec_tag >> 24;
1281 if (avctx->extradata_size < 4) {
1282 av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
1283 return AVERROR_INVALIDDATA;
1284 }
1285 flags = AV_RL32(avctx->extradata);
1286 c->has_alpha = flags & BINK_FLAG_ALPHA;
1287 c->swap_planes = c->version >= 'h';
1288 if (!bink_trees[15].table) {
1289 for (i = 0; i < 16; i++) {
1290 const int maxbits = bink_tree_lens[i][15];
1291 bink_trees[i].table = table + i*128;
1292 bink_trees[i].table_allocated = 1 << maxbits;
1293 init_vlc(&bink_trees[i], maxbits, 16,
1294 bink_tree_lens[i], 1, 1,
1295 bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
1296 }
1297 }
1298 c->avctx = avctx;
1299
1300 c->last = av_frame_alloc();
1301 if (!c->last)
1302 return AVERROR(ENOMEM);
1303
1304 if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
1305 return ret;
1306
1307 avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
1308
1309 ff_blockdsp_init(&c->bdsp, avctx);
1310 ff_hpeldsp_init(&c->hdsp, avctx->flags);
1311 ff_binkdsp_init(&c->binkdsp);
1312
1313 if ((ret = init_bundles(c)) < 0) {
1314 free_bundles(c);
1315 return ret;
1316 }
1317
1318 if (c->version == 'b') {
1319 if (!binkb_initialised) {
1320 binkb_calc_quant();
1321 binkb_initialised = 1;
1322 }
1323 }
1324
1325 return 0;
1326}
1327
1328static av_cold int decode_end(AVCodecContext *avctx)
1329{
1330 BinkContext * const c = avctx->priv_data;
1331
1332 av_frame_free(&c->last);
1333
1334 free_bundles(c);
1335 return 0;
1336}
1337
1338static void flush(AVCodecContext *avctx)
1339{
1340 BinkContext * const c = avctx->priv_data;
1341
1342 c->frame_num = 0;
1343}
1344
1345AVCodec ff_bink_decoder = {
1346 .name = "binkvideo",
1347 .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
1348 .type = AVMEDIA_TYPE_VIDEO,
1349 .id = AV_CODEC_ID_BINKVIDEO,
1350 .priv_data_size = sizeof(BinkContext),
1351 .init = decode_init,
1352 .close = decode_end,
1353 .decode = decode_frame,
1354 .flush = flush,
1355 .capabilities = CODEC_CAP_DR1,
1356};