Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / dnxhdenc.c
CommitLineData
2ba45a60
DM
1/*
2 * VC3/DNxHD encoder
3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 * Copyright (c) 2011 MirriAd Ltd
5 *
6 * VC-3 encoder funded by the British Broadcasting Corporation
7 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26#include "libavutil/attributes.h"
27#include "libavutil/internal.h"
28#include "libavutil/opt.h"
29#include "libavutil/timer.h"
30
31#include "avcodec.h"
32#include "blockdsp.h"
33#include "fdctdsp.h"
34#include "internal.h"
35#include "mpegvideo.h"
36#include "pixblockdsp.h"
37#include "dnxhdenc.h"
38
39
40// The largest value that will not lead to overflow for 10bit samples.
41#define DNX10BIT_QMAT_SHIFT 18
42#define RC_VARIANCE 1 // use variance or ssd for fast rc
43#define LAMBDA_FRAC_BITS 10
44
45#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
46static const AVOption options[] = {
47 { "nitris_compat", "encode with Avid Nitris compatibility",
48 offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
49 { NULL }
50};
51
52static const AVClass dnxhd_class = {
53 .class_name = "dnxhd",
54 .item_name = av_default_item_name,
55 .option = options,
56 .version = LIBAVUTIL_VERSION_INT,
57};
58
59static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
60 const uint8_t *pixels,
61 ptrdiff_t line_size)
62{
63 int i;
64 for (i = 0; i < 4; i++) {
65 block[0] = pixels[0];
66 block[1] = pixels[1];
67 block[2] = pixels[2];
68 block[3] = pixels[3];
69 block[4] = pixels[4];
70 block[5] = pixels[5];
71 block[6] = pixels[6];
72 block[7] = pixels[7];
73 pixels += line_size;
74 block += 8;
75 }
76 memcpy(block, block - 8, sizeof(*block) * 8);
77 memcpy(block + 8, block - 16, sizeof(*block) * 8);
78 memcpy(block + 16, block - 24, sizeof(*block) * 8);
79 memcpy(block + 24, block - 32, sizeof(*block) * 8);
80}
81
82static av_always_inline
83void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
84 const uint8_t *pixels,
85 ptrdiff_t line_size)
86{
87 int i;
88 const uint16_t* pixels16 = (const uint16_t*)pixels;
89 line_size >>= 1;
90
91 for (i = 0; i < 4; i++) {
92 block[0] = pixels16[0]; block[1] = pixels16[1];
93 block[2] = pixels16[2]; block[3] = pixels16[3];
94 block[4] = pixels16[4]; block[5] = pixels16[5];
95 block[6] = pixels16[6]; block[7] = pixels16[7];
96 pixels16 += line_size;
97 block += 8;
98 }
99 memcpy(block, block - 8, sizeof(*block) * 8);
100 memcpy(block + 8, block - 16, sizeof(*block) * 8);
101 memcpy(block + 16, block - 24, sizeof(*block) * 8);
102 memcpy(block + 24, block - 32, sizeof(*block) * 8);
103}
104
105static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
106 int n, int qscale, int *overflow)
107{
108 const uint8_t *scantable= ctx->intra_scantable.scantable;
109 const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
110 int last_non_zero = 0;
111 int i;
112
113 ctx->fdsp.fdct(block);
114
115 // Divide by 4 with rounding, to compensate scaling of DCT coefficients
116 block[0] = (block[0] + 2) >> 2;
117
118 for (i = 1; i < 64; ++i) {
119 int j = scantable[i];
120 int sign = block[j] >> 31;
121 int level = (block[j] ^ sign) - sign;
122 level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
123 block[j] = (level ^ sign) - sign;
124 if (level)
125 last_non_zero = i;
126 }
127
128 return last_non_zero;
129}
130
131static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
132{
133 int i, j, level, run;
134 int max_level = 1 << (ctx->cid_table->bit_depth + 2);
135
136 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
137 max_level, 4 * sizeof(*ctx->vlc_codes), fail);
138 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
139 max_level, 4 * sizeof(*ctx->vlc_bits), fail);
140 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
141 63 * 2, fail);
142 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
143 63, fail);
144
145 ctx->vlc_codes += max_level * 2;
146 ctx->vlc_bits += max_level * 2;
147 for (level = -max_level; level < max_level; level++) {
148 for (run = 0; run < 2; run++) {
149 int index = (level << 1) | run;
150 int sign, offset = 0, alevel = level;
151
152 MASK_ABS(sign, alevel);
153 if (alevel > 64) {
154 offset = (alevel - 1) >> 6;
155 alevel -= offset << 6;
156 }
157 for (j = 0; j < 257; j++) {
158 if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
159 (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
160 (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
161 av_assert1(!ctx->vlc_codes[index]);
162 if (alevel) {
163 ctx->vlc_codes[index] =
164 (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
165 ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
166 } else {
167 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
168 ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
169 }
170 break;
171 }
172 }
173 av_assert0(!alevel || j < 257);
174 if (offset) {
175 ctx->vlc_codes[index] =
176 (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
177 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
178 }
179 }
180 }
181 for (i = 0; i < 62; i++) {
182 int run = ctx->cid_table->run[i];
183 av_assert0(run < 63);
184 ctx->run_codes[run] = ctx->cid_table->run_codes[i];
185 ctx->run_bits[run] = ctx->cid_table->run_bits[i];
186 }
187 return 0;
188fail:
189 return AVERROR(ENOMEM);
190}
191
192static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
193{
194 // init first elem to 1 to avoid div by 0 in convert_matrix
195 uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
196 int qscale, i;
197 const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
198 const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
199
200 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
201 (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
202 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
203 (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
204 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
205 (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
206 fail);
207 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
208 (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
209 fail);
210
211 if (ctx->cid_table->bit_depth == 8) {
212 for (i = 1; i < 64; i++) {
213 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
214 weight_matrix[j] = ctx->cid_table->luma_weight[i];
215 }
216 ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
217 weight_matrix, ctx->m.intra_quant_bias, 1,
218 ctx->m.avctx->qmax, 1);
219 for (i = 1; i < 64; i++) {
220 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
221 weight_matrix[j] = ctx->cid_table->chroma_weight[i];
222 }
223 ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
224 weight_matrix, ctx->m.intra_quant_bias, 1,
225 ctx->m.avctx->qmax, 1);
226
227 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
228 for (i = 0; i < 64; i++) {
229 ctx->qmatrix_l[qscale][i] <<= 2;
230 ctx->qmatrix_c[qscale][i] <<= 2;
231 ctx->qmatrix_l16[qscale][0][i] <<= 2;
232 ctx->qmatrix_l16[qscale][1][i] <<= 2;
233 ctx->qmatrix_c16[qscale][0][i] <<= 2;
234 ctx->qmatrix_c16[qscale][1][i] <<= 2;
235 }
236 }
237 } else {
238 // 10-bit
239 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
240 for (i = 1; i < 64; i++) {
241 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
242
243 /* The quantization formula from the VC-3 standard is:
244 * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
245 * (qscale * weight_table[i]))
246 * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
247 * The s factor compensates scaling of DCT coefficients done by
248 * the DCT routines, and therefore is not present in standard.
249 * It's 8 for 8-bit samples and 4 for 10-bit ones.
250 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
251 * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
252 * (qscale * weight_table[i])
253 * For 10-bit samples, p / s == 2 */
254 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
255 (qscale * luma_weight_table[i]);
256 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
257 (qscale * chroma_weight_table[i]);
258 }
259 }
260 }
261
262 ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
263 ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
264 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
265 ctx->m.q_intra_matrix = ctx->qmatrix_l;
266
267 return 0;
268fail:
269 return AVERROR(ENOMEM);
270}
271
272static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
273{
274 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1), 8160 * sizeof(RCEntry), fail);
275 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
276 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
277 ctx->m.mb_num, sizeof(RCCMPEntry), fail);
278
279 ctx->frame_bits = (ctx->cid_table->coding_unit_size -
280 640 - 4 - ctx->min_padding) * 8;
281 ctx->qscale = 1;
282 ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
283 return 0;
284fail:
285 return AVERROR(ENOMEM);
286}
287
288static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
289{
290 DNXHDEncContext *ctx = avctx->priv_data;
291 int i, index, bit_depth, ret;
292
293 switch (avctx->pix_fmt) {
294 case AV_PIX_FMT_YUV422P:
295 bit_depth = 8;
296 break;
297 case AV_PIX_FMT_YUV422P10:
298 bit_depth = 10;
299 break;
300 default:
301 av_log(avctx, AV_LOG_ERROR,
302 "pixel format is incompatible with DNxHD\n");
303 return AVERROR(EINVAL);
304 }
305
306 ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
307 if (!ctx->cid) {
308 av_log(avctx, AV_LOG_ERROR,
309 "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
310 ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
311 return AVERROR(EINVAL);
312 }
313 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
314
315 index = ff_dnxhd_get_cid_table(ctx->cid);
316 av_assert0(index >= 0);
317 ctx->cid_table = &ff_dnxhd_cid_table[index];
318
319 ctx->m.avctx = avctx;
320 ctx->m.mb_intra = 1;
321 ctx->m.h263_aic = 1;
322
323 avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
324
325 ff_blockdsp_init(&ctx->bdsp, avctx);
326 ff_fdctdsp_init(&ctx->m.fdsp, avctx);
327 ff_mpv_idct_init(&ctx->m);
328 ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
329 ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
330 ff_dct_encode_init(&ctx->m);
331
332 if (!ctx->m.dct_quantize)
333 ctx->m.dct_quantize = ff_dct_quantize_c;
334
335 if (ctx->cid_table->bit_depth == 10) {
336 ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
337 ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
338 ctx->block_width_l2 = 4;
339 } else {
340 ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
341 ctx->block_width_l2 = 3;
342 }
343
344 if (ARCH_X86)
345 ff_dnxhdenc_init_x86(ctx);
346
347 ctx->m.mb_height = (avctx->height + 15) / 16;
348 ctx->m.mb_width = (avctx->width + 15) / 16;
349
350 if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
351 ctx->interlaced = 1;
352 ctx->m.mb_height /= 2;
353 }
354
355 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
356
357 if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
358 ctx->m.intra_quant_bias = avctx->intra_quant_bias;
359 // XXX tune lbias/cbias
360 if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
361 return ret;
362
363 /* Avid Nitris hardware decoder requires a minimum amount of padding
364 * in the coding unit payload */
365 if (ctx->nitris_compat)
366 ctx->min_padding = 1600;
367
368 if ((ret = dnxhd_init_vlc(ctx)) < 0)
369 return ret;
370 if ((ret = dnxhd_init_rc(ctx)) < 0)
371 return ret;
372
373 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
374 ctx->m.mb_height * sizeof(uint32_t), fail);
375 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
376 ctx->m.mb_height * sizeof(uint32_t), fail);
377 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
378 ctx->m.mb_num * sizeof(uint16_t), fail);
379 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
380 ctx->m.mb_num * sizeof(uint8_t), fail);
381
382 avctx->coded_frame = av_frame_alloc();
383 if (!avctx->coded_frame)
384 return AVERROR(ENOMEM);
385
386 avctx->coded_frame->key_frame = 1;
387 avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
388
389 if (avctx->thread_count > MAX_THREADS) {
390 av_log(avctx, AV_LOG_ERROR, "too many threads\n");
391 return AVERROR(EINVAL);
392 }
393
394 if (avctx->qmax <= 1) {
395 av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
396 return AVERROR(EINVAL);
397 }
398
399 ctx->thread[0] = ctx;
400 for (i = 1; i < avctx->thread_count; i++) {
401 ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
402 memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
403 }
404
405 return 0;
406fail: // for FF_ALLOCZ_OR_GOTO
407 return AVERROR(ENOMEM);
408}
409
410static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
411{
412 DNXHDEncContext *ctx = avctx->priv_data;
413 static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
414
415 memset(buf, 0, 640);
416
417 memcpy(buf, header_prefix, 5);
418 buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
419 buf[6] = 0x80; // crc flag off
420 buf[7] = 0xa0; // reserved
421 AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
422 AV_WB16(buf + 0x1a, avctx->width); // SPL
423 AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
424
425 buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
426 buf[0x22] = 0x88 + (ctx->interlaced << 2);
427 AV_WB32(buf + 0x28, ctx->cid); // CID
428 buf[0x2c] = ctx->interlaced ? 0 : 0x80;
429
430 buf[0x5f] = 0x01; // UDL
431
432 buf[0x167] = 0x02; // reserved
433 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
434 buf[0x16d] = ctx->m.mb_height; // Ns
435 buf[0x16f] = 0x10; // reserved
436
437 ctx->msip = buf + 0x170;
438 return 0;
439}
440
441static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
442{
443 int nbits;
444 if (diff < 0) {
445 nbits = av_log2_16bit(-2 * diff);
446 diff--;
447 } else {
448 nbits = av_log2_16bit(2 * diff);
449 }
450 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
451 (ctx->cid_table->dc_codes[nbits] << nbits) +
452 (diff & ((1 << nbits) - 1)));
453}
454
455static av_always_inline
456void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
457 int last_index, int n)
458{
459 int last_non_zero = 0;
460 int slevel, i, j;
461
462 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
463 ctx->m.last_dc[n] = block[0];
464
465 for (i = 1; i <= last_index; i++) {
466 j = ctx->m.intra_scantable.permutated[i];
467 slevel = block[j];
468 if (slevel) {
469 int run_level = i - last_non_zero - 1;
470 int rlevel = (slevel << 1) | !!run_level;
471 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
472 if (run_level)
473 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
474 ctx->run_codes[run_level]);
475 last_non_zero = i;
476 }
477 }
478 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
479}
480
481static av_always_inline
482void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
483 int qscale, int last_index)
484{
485 const uint8_t *weight_matrix;
486 int level;
487 int i;
488
489 weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
490 : ctx->cid_table->luma_weight;
491
492 for (i = 1; i <= last_index; i++) {
493 int j = ctx->m.intra_scantable.permutated[i];
494 level = block[j];
495 if (level) {
496 if (level < 0) {
497 level = (1 - 2 * level) * qscale * weight_matrix[i];
498 if (ctx->cid_table->bit_depth == 10) {
499 if (weight_matrix[i] != 8)
500 level += 8;
501 level >>= 4;
502 } else {
503 if (weight_matrix[i] != 32)
504 level += 32;
505 level >>= 6;
506 }
507 level = -level;
508 } else {
509 level = (2 * level + 1) * qscale * weight_matrix[i];
510 if (ctx->cid_table->bit_depth == 10) {
511 if (weight_matrix[i] != 8)
512 level += 8;
513 level >>= 4;
514 } else {
515 if (weight_matrix[i] != 32)
516 level += 32;
517 level >>= 6;
518 }
519 }
520 block[j] = level;
521 }
522 }
523}
524
525static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
526{
527 int score = 0;
528 int i;
529 for (i = 0; i < 64; i++)
530 score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
531 return score;
532}
533
534static av_always_inline
535int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
536{
537 int last_non_zero = 0;
538 int bits = 0;
539 int i, j, level;
540 for (i = 1; i <= last_index; i++) {
541 j = ctx->m.intra_scantable.permutated[i];
542 level = block[j];
543 if (level) {
544 int run_level = i - last_non_zero - 1;
545 bits += ctx->vlc_bits[(level << 1) |
546 !!run_level] + ctx->run_bits[run_level];
547 last_non_zero = i;
548 }
549 }
550 return bits;
551}
552
553static av_always_inline
554void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
555{
556 const int bs = ctx->block_width_l2;
557 const int bw = 1 << bs;
558 const uint8_t *ptr_y = ctx->thread[0]->src[0] +
559 ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
560 const uint8_t *ptr_u = ctx->thread[0]->src[1] +
561 ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
562 const uint8_t *ptr_v = ctx->thread[0]->src[2] +
563 ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
564 PixblockDSPContext *pdsp = &ctx->m.pdsp;
565
566 pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
567 pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
568 pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
569 pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
570
571 if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
572 if (ctx->interlaced) {
573 ctx->get_pixels_8x4_sym(ctx->blocks[4],
574 ptr_y + ctx->dct_y_offset,
575 ctx->m.linesize);
576 ctx->get_pixels_8x4_sym(ctx->blocks[5],
577 ptr_y + ctx->dct_y_offset + bw,
578 ctx->m.linesize);
579 ctx->get_pixels_8x4_sym(ctx->blocks[6],
580 ptr_u + ctx->dct_uv_offset,
581 ctx->m.uvlinesize);
582 ctx->get_pixels_8x4_sym(ctx->blocks[7],
583 ptr_v + ctx->dct_uv_offset,
584 ctx->m.uvlinesize);
585 } else {
586 ctx->bdsp.clear_block(ctx->blocks[4]);
587 ctx->bdsp.clear_block(ctx->blocks[5]);
588 ctx->bdsp.clear_block(ctx->blocks[6]);
589 ctx->bdsp.clear_block(ctx->blocks[7]);
590 }
591 } else {
592 pdsp->get_pixels(ctx->blocks[4],
593 ptr_y + ctx->dct_y_offset, ctx->m.linesize);
594 pdsp->get_pixels(ctx->blocks[5],
595 ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
596 pdsp->get_pixels(ctx->blocks[6],
597 ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
598 pdsp->get_pixels(ctx->blocks[7],
599 ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
600 }
601}
602
603static av_always_inline
604int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
605{
606 const static uint8_t component[8]={0,0,1,2,0,0,1,2};
607 return component[i];
608}
609
610static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
611 int jobnr, int threadnr)
612{
613 DNXHDEncContext *ctx = avctx->priv_data;
614 int mb_y = jobnr, mb_x;
615 int qscale = ctx->qscale;
616 LOCAL_ALIGNED_16(int16_t, block, [64]);
617 ctx = ctx->thread[threadnr];
618
619 ctx->m.last_dc[0] =
620 ctx->m.last_dc[1] =
621 ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
622
623 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
624 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
625 int ssd = 0;
626 int ac_bits = 0;
627 int dc_bits = 0;
628 int i;
629
630 dnxhd_get_blocks(ctx, mb_x, mb_y);
631
632 for (i = 0; i < 8; i++) {
633 int16_t *src_block = ctx->blocks[i];
634 int overflow, nbits, diff, last_index;
635 int n = dnxhd_switch_matrix(ctx, i);
636
637 memcpy(block, src_block, 64 * sizeof(*block));
638 last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
639 qscale, &overflow);
640 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
641
642 diff = block[0] - ctx->m.last_dc[n];
643 if (diff < 0)
644 nbits = av_log2_16bit(-2 * diff);
645 else
646 nbits = av_log2_16bit(2 * diff);
647
648 av_assert1(nbits < ctx->cid_table->bit_depth + 4);
649 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
650
651 ctx->m.last_dc[n] = block[0];
652
653 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
654 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
655 ctx->m.idsp.idct(block);
656 ssd += dnxhd_ssd_block(block, src_block);
657 }
658 }
659 ctx->mb_rc[qscale][mb].ssd = ssd;
660 ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
661 8 * ctx->vlc_bits[0];
662 }
663 return 0;
664}
665
666static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
667 int jobnr, int threadnr)
668{
669 DNXHDEncContext *ctx = avctx->priv_data;
670 int mb_y = jobnr, mb_x;
671 ctx = ctx->thread[threadnr];
672 init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
673 ctx->slice_size[jobnr]);
674
675 ctx->m.last_dc[0] =
676 ctx->m.last_dc[1] =
677 ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
678 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
679 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
680 int qscale = ctx->mb_qscale[mb];
681 int i;
682
683 put_bits(&ctx->m.pb, 12, qscale << 1);
684
685 dnxhd_get_blocks(ctx, mb_x, mb_y);
686
687 for (i = 0; i < 8; i++) {
688 int16_t *block = ctx->blocks[i];
689 int overflow, n = dnxhd_switch_matrix(ctx, i);
690 int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
691 qscale, &overflow);
692 // START_TIMER;
693 dnxhd_encode_block(ctx, block, last_index, n);
694 // STOP_TIMER("encode_block");
695 }
696 }
697 if (put_bits_count(&ctx->m.pb) & 31)
698 put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
699 flush_put_bits(&ctx->m.pb);
700 return 0;
701}
702
703static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
704{
705 int mb_y, mb_x;
706 int offset = 0;
707 for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
708 int thread_size;
709 ctx->slice_offs[mb_y] = offset;
710 ctx->slice_size[mb_y] = 0;
711 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
712 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
713 ctx->slice_size[mb_y] += ctx->mb_bits[mb];
714 }
715 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
716 ctx->slice_size[mb_y] >>= 3;
717 thread_size = ctx->slice_size[mb_y];
718 offset += thread_size;
719 }
720}
721
722static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
723 int jobnr, int threadnr)
724{
725 DNXHDEncContext *ctx = avctx->priv_data;
726 int mb_y = jobnr, mb_x, x, y;
727 int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
728 ((avctx->height >> ctx->interlaced) & 0xF);
729
730 ctx = ctx->thread[threadnr];
731 if (ctx->cid_table->bit_depth == 8) {
732 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
733 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
734 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
735 int sum;
736 int varc;
737
738 if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
739 sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
740 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
741 } else {
742 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
743 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
744 sum = varc = 0;
745 for (y = 0; y < bh; y++) {
746 for (x = 0; x < bw; x++) {
747 uint8_t val = pix[x + y * ctx->m.linesize];
748 sum += val;
749 varc += val * val;
750 }
751 }
752 }
753 varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
754
755 ctx->mb_cmp[mb].value = varc;
756 ctx->mb_cmp[mb].mb = mb;
757 }
758 } else { // 10-bit
759 int const linesize = ctx->m.linesize >> 1;
760 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
761 uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
762 ((mb_y << 4) * linesize) + (mb_x << 4);
763 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
764 int sum = 0;
765 int sqsum = 0;
766 int mean, sqmean;
767 int i, j;
768 // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
769 for (i = 0; i < 16; ++i) {
770 for (j = 0; j < 16; ++j) {
771 // Turn 16-bit pixels into 10-bit ones.
772 int const sample = (unsigned) pix[j] >> 6;
773 sum += sample;
774 sqsum += sample * sample;
775 // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
776 }
777 pix += linesize;
778 }
779 mean = sum >> 8; // 16*16 == 2^8
780 sqmean = sqsum >> 8;
781 ctx->mb_cmp[mb].value = sqmean - mean * mean;
782 ctx->mb_cmp[mb].mb = mb;
783 }
784 }
785 return 0;
786}
787
788static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
789{
790 int lambda, up_step, down_step;
791 int last_lower = INT_MAX, last_higher = 0;
792 int x, y, q;
793
794 for (q = 1; q < avctx->qmax; q++) {
795 ctx->qscale = q;
796 avctx->execute2(avctx, dnxhd_calc_bits_thread,
797 NULL, NULL, ctx->m.mb_height);
798 }
799 up_step = down_step = 2 << LAMBDA_FRAC_BITS;
800 lambda = ctx->lambda;
801
802 for (;;) {
803 int bits = 0;
804 int end = 0;
805 if (lambda == last_higher) {
806 lambda++;
807 end = 1; // need to set final qscales/bits
808 }
809 for (y = 0; y < ctx->m.mb_height; y++) {
810 for (x = 0; x < ctx->m.mb_width; x++) {
811 unsigned min = UINT_MAX;
812 int qscale = 1;
813 int mb = y * ctx->m.mb_width + x;
814 for (q = 1; q < avctx->qmax; q++) {
815 unsigned score = ctx->mb_rc[q][mb].bits * lambda +
816 ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
817 if (score < min) {
818 min = score;
819 qscale = q;
820 }
821 }
822 bits += ctx->mb_rc[qscale][mb].bits;
823 ctx->mb_qscale[mb] = qscale;
824 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
825 }
826 bits = (bits + 31) & ~31; // padding
827 if (bits > ctx->frame_bits)
828 break;
829 }
830 // av_dlog(ctx->m.avctx,
831 // "lambda %d, up %u, down %u, bits %d, frame %d\n",
832 // lambda, last_higher, last_lower, bits, ctx->frame_bits);
833 if (end) {
834 if (bits > ctx->frame_bits)
835 return AVERROR(EINVAL);
836 break;
837 }
838 if (bits < ctx->frame_bits) {
839 last_lower = FFMIN(lambda, last_lower);
840 if (last_higher != 0)
841 lambda = (lambda+last_higher)>>1;
842 else
843 lambda -= down_step;
844 down_step = FFMIN((int64_t)down_step*5, INT_MAX);
845 up_step = 1<<LAMBDA_FRAC_BITS;
846 lambda = FFMAX(1, lambda);
847 if (lambda == last_lower)
848 break;
849 } else {
850 last_higher = FFMAX(lambda, last_higher);
851 if (last_lower != INT_MAX)
852 lambda = (lambda+last_lower)>>1;
853 else if ((int64_t)lambda + up_step > INT_MAX)
854 return AVERROR(EINVAL);
855 else
856 lambda += up_step;
857 up_step = FFMIN((int64_t)up_step*5, INT_MAX);
858 down_step = 1<<LAMBDA_FRAC_BITS;
859 }
860 }
861 //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
862 ctx->lambda = lambda;
863 return 0;
864}
865
866static int dnxhd_find_qscale(DNXHDEncContext *ctx)
867{
868 int bits = 0;
869 int up_step = 1;
870 int down_step = 1;
871 int last_higher = 0;
872 int last_lower = INT_MAX;
873 int qscale;
874 int x, y;
875
876 qscale = ctx->qscale;
877 for (;;) {
878 bits = 0;
879 ctx->qscale = qscale;
880 // XXX avoid recalculating bits
881 ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
882 NULL, NULL, ctx->m.mb_height);
883 for (y = 0; y < ctx->m.mb_height; y++) {
884 for (x = 0; x < ctx->m.mb_width; x++)
885 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
886 bits = (bits+31)&~31; // padding
887 if (bits > ctx->frame_bits)
888 break;
889 }
890 // av_dlog(ctx->m.avctx,
891 // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
892 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
893 // last_higher, last_lower);
894 if (bits < ctx->frame_bits) {
895 if (qscale == 1)
896 return 1;
897 if (last_higher == qscale - 1) {
898 qscale = last_higher;
899 break;
900 }
901 last_lower = FFMIN(qscale, last_lower);
902 if (last_higher != 0)
903 qscale = (qscale + last_higher) >> 1;
904 else
905 qscale -= down_step++;
906 if (qscale < 1)
907 qscale = 1;
908 up_step = 1;
909 } else {
910 if (last_lower == qscale + 1)
911 break;
912 last_higher = FFMAX(qscale, last_higher);
913 if (last_lower != INT_MAX)
914 qscale = (qscale + last_lower) >> 1;
915 else
916 qscale += up_step++;
917 down_step = 1;
918 if (qscale >= ctx->m.avctx->qmax)
919 return AVERROR(EINVAL);
920 }
921 }
922 //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
923 ctx->qscale = qscale;
924 return 0;
925}
926
927#define BUCKET_BITS 8
928#define RADIX_PASSES 4
929#define NBUCKETS (1 << BUCKET_BITS)
930
931static inline int get_bucket(int value, int shift)
932{
933 value >>= shift;
934 value &= NBUCKETS - 1;
935 return NBUCKETS - 1 - value;
936}
937
938static void radix_count(const RCCMPEntry *data, int size,
939 int buckets[RADIX_PASSES][NBUCKETS])
940{
941 int i, j;
942 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
943 for (i = 0; i < size; i++) {
944 int v = data[i].value;
945 for (j = 0; j < RADIX_PASSES; j++) {
946 buckets[j][get_bucket(v, 0)]++;
947 v >>= BUCKET_BITS;
948 }
949 av_assert1(!v);
950 }
951 for (j = 0; j < RADIX_PASSES; j++) {
952 int offset = size;
953 for (i = NBUCKETS - 1; i >= 0; i--)
954 buckets[j][i] = offset -= buckets[j][i];
955 av_assert1(!buckets[j][0]);
956 }
957}
958
959static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
960 int size, int buckets[NBUCKETS], int pass)
961{
962 int shift = pass * BUCKET_BITS;
963 int i;
964 for (i = 0; i < size; i++) {
965 int v = get_bucket(data[i].value, shift);
966 int pos = buckets[v]++;
967 dst[pos] = data[i];
968 }
969}
970
971static void radix_sort(RCCMPEntry *data, int size)
972{
973 int buckets[RADIX_PASSES][NBUCKETS];
974 RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp));
975 radix_count(data, size, buckets);
976 radix_sort_pass(tmp, data, size, buckets[0], 0);
977 radix_sort_pass(data, tmp, size, buckets[1], 1);
978 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
979 radix_sort_pass(tmp, data, size, buckets[2], 2);
980 radix_sort_pass(data, tmp, size, buckets[3], 3);
981 }
982 av_free(tmp);
983}
984
985static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
986{
987 int max_bits = 0;
988 int ret, x, y;
989 if ((ret = dnxhd_find_qscale(ctx)) < 0)
990 return ret;
991 for (y = 0; y < ctx->m.mb_height; y++) {
992 for (x = 0; x < ctx->m.mb_width; x++) {
993 int mb = y * ctx->m.mb_width + x;
994 int delta_bits;
995 ctx->mb_qscale[mb] = ctx->qscale;
996 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
997 max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
998 if (!RC_VARIANCE) {
999 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
1000 ctx->mb_rc[ctx->qscale + 1][mb].bits;
1001 ctx->mb_cmp[mb].mb = mb;
1002 ctx->mb_cmp[mb].value =
1003 delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
1004 ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
1005 delta_bits
1006 : INT_MIN; // avoid increasing qscale
1007 }
1008 }
1009 max_bits += 31; // worst padding
1010 }
1011 if (!ret) {
1012 if (RC_VARIANCE)
1013 avctx->execute2(avctx, dnxhd_mb_var_thread,
1014 NULL, NULL, ctx->m.mb_height);
1015 radix_sort(ctx->mb_cmp, ctx->m.mb_num);
1016 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1017 int mb = ctx->mb_cmp[x].mb;
1018 max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
1019 ctx->mb_rc[ctx->qscale + 1][mb].bits;
1020 ctx->mb_qscale[mb] = ctx->qscale + 1;
1021 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
1022 }
1023 }
1024 return 0;
1025}
1026
1027static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1028{
1029 int i;
1030
1031 for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1032 ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
1033 ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
1034 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
1035 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1036 }
1037
1038 ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
1039 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1040}
1041
1042static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1043 const AVFrame *frame, int *got_packet)
1044{
1045 DNXHDEncContext *ctx = avctx->priv_data;
1046 int first_field = 1;
1047 int offset, i, ret;
1048 uint8_t *buf;
1049
1050 if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
1051 return ret;
1052 buf = pkt->data;
1053
1054 dnxhd_load_picture(ctx, frame);
1055
1056encode_coding_unit:
1057 for (i = 0; i < 3; i++) {
1058 ctx->src[i] = frame->data[i];
1059 if (ctx->interlaced && ctx->cur_field)
1060 ctx->src[i] += frame->linesize[i];
1061 }
1062
1063 dnxhd_write_header(avctx, buf);
1064
1065 if (avctx->mb_decision == FF_MB_DECISION_RD)
1066 ret = dnxhd_encode_rdo(avctx, ctx);
1067 else
1068 ret = dnxhd_encode_fast(avctx, ctx);
1069 if (ret < 0) {
1070 av_log(avctx, AV_LOG_ERROR,
1071 "picture could not fit ratecontrol constraints, increase qmax\n");
1072 return ret;
1073 }
1074
1075 dnxhd_setup_threads_slices(ctx);
1076
1077 offset = 0;
1078 for (i = 0; i < ctx->m.mb_height; i++) {
1079 AV_WB32(ctx->msip + i * 4, offset);
1080 offset += ctx->slice_size[i];
1081 av_assert1(!(ctx->slice_size[i] & 3));
1082 }
1083
1084 avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1085
1086 av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
1087 memset(buf + 640 + offset, 0,
1088 ctx->cid_table->coding_unit_size - 4 - offset - 640);
1089
1090 AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
1091
1092 if (ctx->interlaced && first_field) {
1093 first_field = 0;
1094 ctx->cur_field ^= 1;
1095 buf += ctx->cid_table->coding_unit_size;
1096 goto encode_coding_unit;
1097 }
1098
1099 avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1100
1101 pkt->flags |= AV_PKT_FLAG_KEY;
1102 *got_packet = 1;
1103 return 0;
1104}
1105
1106static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1107{
1108 DNXHDEncContext *ctx = avctx->priv_data;
1109 int max_level = 1 << (ctx->cid_table->bit_depth + 2);
1110 int i;
1111
1112 av_free(ctx->vlc_codes - max_level * 2);
1113 av_free(ctx->vlc_bits - max_level * 2);
1114 av_freep(&ctx->run_codes);
1115 av_freep(&ctx->run_bits);
1116
1117 av_freep(&ctx->mb_bits);
1118 av_freep(&ctx->mb_qscale);
1119 av_freep(&ctx->mb_rc);
1120 av_freep(&ctx->mb_cmp);
1121 av_freep(&ctx->slice_size);
1122 av_freep(&ctx->slice_offs);
1123
1124 av_freep(&ctx->qmatrix_c);
1125 av_freep(&ctx->qmatrix_l);
1126 av_freep(&ctx->qmatrix_c16);
1127 av_freep(&ctx->qmatrix_l16);
1128
1129 for (i = 1; i < avctx->thread_count; i++)
1130 av_freep(&ctx->thread[i]);
1131
1132 av_frame_free(&avctx->coded_frame);
1133
1134 return 0;
1135}
1136
1137static const AVCodecDefault dnxhd_defaults[] = {
1138 { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1139 { NULL },
1140};
1141
1142AVCodec ff_dnxhd_encoder = {
1143 .name = "dnxhd",
1144 .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1145 .type = AVMEDIA_TYPE_VIDEO,
1146 .id = AV_CODEC_ID_DNXHD,
1147 .priv_data_size = sizeof(DNXHDEncContext),
1148 .init = dnxhd_encode_init,
1149 .encode2 = dnxhd_encode_picture,
1150 .close = dnxhd_encode_end,
1151 .capabilities = CODEC_CAP_SLICE_THREADS,
1152 .pix_fmts = (const enum AVPixelFormat[]) {
1153 AV_PIX_FMT_YUV422P,
1154 AV_PIX_FMT_YUV422P10,
1155 AV_PIX_FMT_NONE
1156 },
1157 .priv_class = &dnxhd_class,
1158 .defaults = dnxhd_defaults,
1159};