Imported Debian version 2.5.0~trusty1.1
[deb_ffmpeg.git] / ffmpeg / libavcodec / dnxhdenc.c
CommitLineData
2ba45a60
DM
1/*
2 * VC3/DNxHD encoder
3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 * Copyright (c) 2011 MirriAd Ltd
5 *
6 * VC-3 encoder funded by the British Broadcasting Corporation
7 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26#include "libavutil/attributes.h"
27#include "libavutil/internal.h"
28#include "libavutil/opt.h"
29#include "libavutil/timer.h"
30
31#include "avcodec.h"
32#include "blockdsp.h"
33#include "fdctdsp.h"
34#include "internal.h"
35#include "mpegvideo.h"
36#include "pixblockdsp.h"
37#include "dnxhdenc.h"
38
39
40// The largest value that will not lead to overflow for 10bit samples.
41#define DNX10BIT_QMAT_SHIFT 18
42#define RC_VARIANCE 1 // use variance or ssd for fast rc
43#define LAMBDA_FRAC_BITS 10
44
45#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
46static const AVOption options[] = {
47 { "nitris_compat", "encode with Avid Nitris compatibility",
48 offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
49 { NULL }
50};
51
52static const AVClass dnxhd_class = {
53 .class_name = "dnxhd",
54 .item_name = av_default_item_name,
55 .option = options,
56 .version = LIBAVUTIL_VERSION_INT,
57};
58
59static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
60 const uint8_t *pixels,
61 ptrdiff_t line_size)
62{
63 int i;
64 for (i = 0; i < 4; i++) {
65 block[0] = pixels[0];
66 block[1] = pixels[1];
67 block[2] = pixels[2];
68 block[3] = pixels[3];
69 block[4] = pixels[4];
70 block[5] = pixels[5];
71 block[6] = pixels[6];
72 block[7] = pixels[7];
73 pixels += line_size;
74 block += 8;
75 }
76 memcpy(block, block - 8, sizeof(*block) * 8);
77 memcpy(block + 8, block - 16, sizeof(*block) * 8);
78 memcpy(block + 16, block - 24, sizeof(*block) * 8);
79 memcpy(block + 24, block - 32, sizeof(*block) * 8);
80}
81
82static av_always_inline
83void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
84 const uint8_t *pixels,
85 ptrdiff_t line_size)
86{
87 int i;
88 const uint16_t* pixels16 = (const uint16_t*)pixels;
89 line_size >>= 1;
90
91 for (i = 0; i < 4; i++) {
92 block[0] = pixels16[0]; block[1] = pixels16[1];
93 block[2] = pixels16[2]; block[3] = pixels16[3];
94 block[4] = pixels16[4]; block[5] = pixels16[5];
95 block[6] = pixels16[6]; block[7] = pixels16[7];
96 pixels16 += line_size;
97 block += 8;
98 }
99 memcpy(block, block - 8, sizeof(*block) * 8);
100 memcpy(block + 8, block - 16, sizeof(*block) * 8);
101 memcpy(block + 16, block - 24, sizeof(*block) * 8);
102 memcpy(block + 24, block - 32, sizeof(*block) * 8);
103}
104
105static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
106 int n, int qscale, int *overflow)
107{
108 const uint8_t *scantable= ctx->intra_scantable.scantable;
109 const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
110 int last_non_zero = 0;
111 int i;
112
113 ctx->fdsp.fdct(block);
114
115 // Divide by 4 with rounding, to compensate scaling of DCT coefficients
116 block[0] = (block[0] + 2) >> 2;
117
118 for (i = 1; i < 64; ++i) {
119 int j = scantable[i];
f6fa7814 120 int sign = FF_SIGNBIT(block[j]);
2ba45a60
DM
121 int level = (block[j] ^ sign) - sign;
122 level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
123 block[j] = (level ^ sign) - sign;
124 if (level)
125 last_non_zero = i;
126 }
127
128 return last_non_zero;
129}
130
131static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
132{
133 int i, j, level, run;
134 int max_level = 1 << (ctx->cid_table->bit_depth + 2);
135
136 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
137 max_level, 4 * sizeof(*ctx->vlc_codes), fail);
138 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
139 max_level, 4 * sizeof(*ctx->vlc_bits), fail);
140 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
141 63 * 2, fail);
142 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
143 63, fail);
144
145 ctx->vlc_codes += max_level * 2;
146 ctx->vlc_bits += max_level * 2;
147 for (level = -max_level; level < max_level; level++) {
148 for (run = 0; run < 2; run++) {
149 int index = (level << 1) | run;
150 int sign, offset = 0, alevel = level;
151
152 MASK_ABS(sign, alevel);
153 if (alevel > 64) {
154 offset = (alevel - 1) >> 6;
155 alevel -= offset << 6;
156 }
157 for (j = 0; j < 257; j++) {
158 if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
159 (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
160 (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
161 av_assert1(!ctx->vlc_codes[index]);
162 if (alevel) {
163 ctx->vlc_codes[index] =
164 (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
165 ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
166 } else {
167 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
168 ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
169 }
170 break;
171 }
172 }
173 av_assert0(!alevel || j < 257);
174 if (offset) {
175 ctx->vlc_codes[index] =
176 (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
177 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
178 }
179 }
180 }
181 for (i = 0; i < 62; i++) {
182 int run = ctx->cid_table->run[i];
183 av_assert0(run < 63);
184 ctx->run_codes[run] = ctx->cid_table->run_codes[i];
185 ctx->run_bits[run] = ctx->cid_table->run_bits[i];
186 }
187 return 0;
188fail:
189 return AVERROR(ENOMEM);
190}
191
192static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
193{
194 // init first elem to 1 to avoid div by 0 in convert_matrix
195 uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
196 int qscale, i;
197 const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
198 const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
199
200 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
201 (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
202 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
203 (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
204 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
205 (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
206 fail);
207 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
208 (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
209 fail);
210
211 if (ctx->cid_table->bit_depth == 8) {
212 for (i = 1; i < 64; i++) {
213 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
214 weight_matrix[j] = ctx->cid_table->luma_weight[i];
215 }
216 ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
217 weight_matrix, ctx->m.intra_quant_bias, 1,
218 ctx->m.avctx->qmax, 1);
219 for (i = 1; i < 64; i++) {
220 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
221 weight_matrix[j] = ctx->cid_table->chroma_weight[i];
222 }
223 ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
224 weight_matrix, ctx->m.intra_quant_bias, 1,
225 ctx->m.avctx->qmax, 1);
226
227 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
228 for (i = 0; i < 64; i++) {
229 ctx->qmatrix_l[qscale][i] <<= 2;
230 ctx->qmatrix_c[qscale][i] <<= 2;
231 ctx->qmatrix_l16[qscale][0][i] <<= 2;
232 ctx->qmatrix_l16[qscale][1][i] <<= 2;
233 ctx->qmatrix_c16[qscale][0][i] <<= 2;
234 ctx->qmatrix_c16[qscale][1][i] <<= 2;
235 }
236 }
237 } else {
238 // 10-bit
239 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
240 for (i = 1; i < 64; i++) {
241 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
242
243 /* The quantization formula from the VC-3 standard is:
244 * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
245 * (qscale * weight_table[i]))
246 * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
247 * The s factor compensates scaling of DCT coefficients done by
248 * the DCT routines, and therefore is not present in standard.
249 * It's 8 for 8-bit samples and 4 for 10-bit ones.
250 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
251 * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
252 * (qscale * weight_table[i])
253 * For 10-bit samples, p / s == 2 */
254 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
255 (qscale * luma_weight_table[i]);
256 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
257 (qscale * chroma_weight_table[i]);
258 }
259 }
260 }
261
262 ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
263 ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
264 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
265 ctx->m.q_intra_matrix = ctx->qmatrix_l;
266
267 return 0;
268fail:
269 return AVERROR(ENOMEM);
270}
271
272static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
273{
274 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1), 8160 * sizeof(RCEntry), fail);
275 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
276 FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
277 ctx->m.mb_num, sizeof(RCCMPEntry), fail);
278
279 ctx->frame_bits = (ctx->cid_table->coding_unit_size -
280 640 - 4 - ctx->min_padding) * 8;
281 ctx->qscale = 1;
282 ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
283 return 0;
284fail:
285 return AVERROR(ENOMEM);
286}
287
288static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
289{
290 DNXHDEncContext *ctx = avctx->priv_data;
291 int i, index, bit_depth, ret;
292
293 switch (avctx->pix_fmt) {
294 case AV_PIX_FMT_YUV422P:
295 bit_depth = 8;
296 break;
297 case AV_PIX_FMT_YUV422P10:
298 bit_depth = 10;
299 break;
300 default:
301 av_log(avctx, AV_LOG_ERROR,
302 "pixel format is incompatible with DNxHD\n");
303 return AVERROR(EINVAL);
304 }
305
306 ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
307 if (!ctx->cid) {
308 av_log(avctx, AV_LOG_ERROR,
309 "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
310 ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
311 return AVERROR(EINVAL);
312 }
313 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
314
315 index = ff_dnxhd_get_cid_table(ctx->cid);
316 av_assert0(index >= 0);
f6fa7814 317
2ba45a60
DM
318 ctx->cid_table = &ff_dnxhd_cid_table[index];
319
320 ctx->m.avctx = avctx;
321 ctx->m.mb_intra = 1;
322 ctx->m.h263_aic = 1;
323
324 avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
325
326 ff_blockdsp_init(&ctx->bdsp, avctx);
327 ff_fdctdsp_init(&ctx->m.fdsp, avctx);
328 ff_mpv_idct_init(&ctx->m);
329 ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
330 ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
331 ff_dct_encode_init(&ctx->m);
332
333 if (!ctx->m.dct_quantize)
334 ctx->m.dct_quantize = ff_dct_quantize_c;
335
336 if (ctx->cid_table->bit_depth == 10) {
337 ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
338 ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
339 ctx->block_width_l2 = 4;
340 } else {
341 ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
342 ctx->block_width_l2 = 3;
343 }
344
345 if (ARCH_X86)
346 ff_dnxhdenc_init_x86(ctx);
347
348 ctx->m.mb_height = (avctx->height + 15) / 16;
349 ctx->m.mb_width = (avctx->width + 15) / 16;
350
351 if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
352 ctx->interlaced = 1;
353 ctx->m.mb_height /= 2;
354 }
355
356 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
357
358 if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
359 ctx->m.intra_quant_bias = avctx->intra_quant_bias;
360 // XXX tune lbias/cbias
361 if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
362 return ret;
363
364 /* Avid Nitris hardware decoder requires a minimum amount of padding
365 * in the coding unit payload */
366 if (ctx->nitris_compat)
367 ctx->min_padding = 1600;
368
369 if ((ret = dnxhd_init_vlc(ctx)) < 0)
370 return ret;
371 if ((ret = dnxhd_init_rc(ctx)) < 0)
372 return ret;
373
374 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
375 ctx->m.mb_height * sizeof(uint32_t), fail);
376 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
377 ctx->m.mb_height * sizeof(uint32_t), fail);
378 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
379 ctx->m.mb_num * sizeof(uint16_t), fail);
380 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
381 ctx->m.mb_num * sizeof(uint8_t), fail);
382
383 avctx->coded_frame = av_frame_alloc();
384 if (!avctx->coded_frame)
385 return AVERROR(ENOMEM);
386
387 avctx->coded_frame->key_frame = 1;
388 avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
389
390 if (avctx->thread_count > MAX_THREADS) {
391 av_log(avctx, AV_LOG_ERROR, "too many threads\n");
392 return AVERROR(EINVAL);
393 }
394
395 if (avctx->qmax <= 1) {
396 av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
397 return AVERROR(EINVAL);
398 }
399
400 ctx->thread[0] = ctx;
401 for (i = 1; i < avctx->thread_count; i++) {
402 ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
403 memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
404 }
405
406 return 0;
407fail: // for FF_ALLOCZ_OR_GOTO
408 return AVERROR(ENOMEM);
409}
410
411static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
412{
413 DNXHDEncContext *ctx = avctx->priv_data;
414 static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
415
416 memset(buf, 0, 640);
417
418 memcpy(buf, header_prefix, 5);
419 buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
420 buf[6] = 0x80; // crc flag off
421 buf[7] = 0xa0; // reserved
422 AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
423 AV_WB16(buf + 0x1a, avctx->width); // SPL
424 AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
425
426 buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
427 buf[0x22] = 0x88 + (ctx->interlaced << 2);
428 AV_WB32(buf + 0x28, ctx->cid); // CID
429 buf[0x2c] = ctx->interlaced ? 0 : 0x80;
430
431 buf[0x5f] = 0x01; // UDL
432
433 buf[0x167] = 0x02; // reserved
434 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
435 buf[0x16d] = ctx->m.mb_height; // Ns
436 buf[0x16f] = 0x10; // reserved
437
438 ctx->msip = buf + 0x170;
439 return 0;
440}
441
442static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
443{
444 int nbits;
445 if (diff < 0) {
446 nbits = av_log2_16bit(-2 * diff);
447 diff--;
448 } else {
449 nbits = av_log2_16bit(2 * diff);
450 }
451 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
452 (ctx->cid_table->dc_codes[nbits] << nbits) +
453 (diff & ((1 << nbits) - 1)));
454}
455
456static av_always_inline
457void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
458 int last_index, int n)
459{
460 int last_non_zero = 0;
461 int slevel, i, j;
462
463 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
464 ctx->m.last_dc[n] = block[0];
465
466 for (i = 1; i <= last_index; i++) {
467 j = ctx->m.intra_scantable.permutated[i];
468 slevel = block[j];
469 if (slevel) {
470 int run_level = i - last_non_zero - 1;
471 int rlevel = (slevel << 1) | !!run_level;
472 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
473 if (run_level)
474 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
475 ctx->run_codes[run_level]);
476 last_non_zero = i;
477 }
478 }
479 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
480}
481
482static av_always_inline
483void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
484 int qscale, int last_index)
485{
486 const uint8_t *weight_matrix;
487 int level;
488 int i;
489
490 weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
491 : ctx->cid_table->luma_weight;
492
493 for (i = 1; i <= last_index; i++) {
494 int j = ctx->m.intra_scantable.permutated[i];
495 level = block[j];
496 if (level) {
497 if (level < 0) {
498 level = (1 - 2 * level) * qscale * weight_matrix[i];
499 if (ctx->cid_table->bit_depth == 10) {
500 if (weight_matrix[i] != 8)
501 level += 8;
502 level >>= 4;
503 } else {
504 if (weight_matrix[i] != 32)
505 level += 32;
506 level >>= 6;
507 }
508 level = -level;
509 } else {
510 level = (2 * level + 1) * qscale * weight_matrix[i];
511 if (ctx->cid_table->bit_depth == 10) {
512 if (weight_matrix[i] != 8)
513 level += 8;
514 level >>= 4;
515 } else {
516 if (weight_matrix[i] != 32)
517 level += 32;
518 level >>= 6;
519 }
520 }
521 block[j] = level;
522 }
523 }
524}
525
526static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
527{
528 int score = 0;
529 int i;
530 for (i = 0; i < 64; i++)
531 score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
532 return score;
533}
534
535static av_always_inline
536int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
537{
538 int last_non_zero = 0;
539 int bits = 0;
540 int i, j, level;
541 for (i = 1; i <= last_index; i++) {
542 j = ctx->m.intra_scantable.permutated[i];
543 level = block[j];
544 if (level) {
545 int run_level = i - last_non_zero - 1;
546 bits += ctx->vlc_bits[(level << 1) |
547 !!run_level] + ctx->run_bits[run_level];
548 last_non_zero = i;
549 }
550 }
551 return bits;
552}
553
554static av_always_inline
555void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
556{
557 const int bs = ctx->block_width_l2;
558 const int bw = 1 << bs;
559 const uint8_t *ptr_y = ctx->thread[0]->src[0] +
560 ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
561 const uint8_t *ptr_u = ctx->thread[0]->src[1] +
562 ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
563 const uint8_t *ptr_v = ctx->thread[0]->src[2] +
564 ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
565 PixblockDSPContext *pdsp = &ctx->m.pdsp;
566
567 pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
568 pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
569 pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
570 pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
571
572 if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
573 if (ctx->interlaced) {
574 ctx->get_pixels_8x4_sym(ctx->blocks[4],
575 ptr_y + ctx->dct_y_offset,
576 ctx->m.linesize);
577 ctx->get_pixels_8x4_sym(ctx->blocks[5],
578 ptr_y + ctx->dct_y_offset + bw,
579 ctx->m.linesize);
580 ctx->get_pixels_8x4_sym(ctx->blocks[6],
581 ptr_u + ctx->dct_uv_offset,
582 ctx->m.uvlinesize);
583 ctx->get_pixels_8x4_sym(ctx->blocks[7],
584 ptr_v + ctx->dct_uv_offset,
585 ctx->m.uvlinesize);
586 } else {
587 ctx->bdsp.clear_block(ctx->blocks[4]);
588 ctx->bdsp.clear_block(ctx->blocks[5]);
589 ctx->bdsp.clear_block(ctx->blocks[6]);
590 ctx->bdsp.clear_block(ctx->blocks[7]);
591 }
592 } else {
593 pdsp->get_pixels(ctx->blocks[4],
594 ptr_y + ctx->dct_y_offset, ctx->m.linesize);
595 pdsp->get_pixels(ctx->blocks[5],
596 ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
597 pdsp->get_pixels(ctx->blocks[6],
598 ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
599 pdsp->get_pixels(ctx->blocks[7],
600 ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
601 }
602}
603
604static av_always_inline
605int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
606{
607 const static uint8_t component[8]={0,0,1,2,0,0,1,2};
608 return component[i];
609}
610
611static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
612 int jobnr, int threadnr)
613{
614 DNXHDEncContext *ctx = avctx->priv_data;
615 int mb_y = jobnr, mb_x;
616 int qscale = ctx->qscale;
617 LOCAL_ALIGNED_16(int16_t, block, [64]);
618 ctx = ctx->thread[threadnr];
619
620 ctx->m.last_dc[0] =
621 ctx->m.last_dc[1] =
622 ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
623
624 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
625 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
626 int ssd = 0;
627 int ac_bits = 0;
628 int dc_bits = 0;
629 int i;
630
631 dnxhd_get_blocks(ctx, mb_x, mb_y);
632
633 for (i = 0; i < 8; i++) {
634 int16_t *src_block = ctx->blocks[i];
635 int overflow, nbits, diff, last_index;
636 int n = dnxhd_switch_matrix(ctx, i);
637
638 memcpy(block, src_block, 64 * sizeof(*block));
639 last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
640 qscale, &overflow);
641 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
642
643 diff = block[0] - ctx->m.last_dc[n];
644 if (diff < 0)
645 nbits = av_log2_16bit(-2 * diff);
646 else
647 nbits = av_log2_16bit(2 * diff);
648
649 av_assert1(nbits < ctx->cid_table->bit_depth + 4);
650 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
651
652 ctx->m.last_dc[n] = block[0];
653
654 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
655 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
656 ctx->m.idsp.idct(block);
657 ssd += dnxhd_ssd_block(block, src_block);
658 }
659 }
660 ctx->mb_rc[qscale][mb].ssd = ssd;
661 ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
662 8 * ctx->vlc_bits[0];
663 }
664 return 0;
665}
666
667static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
668 int jobnr, int threadnr)
669{
670 DNXHDEncContext *ctx = avctx->priv_data;
671 int mb_y = jobnr, mb_x;
672 ctx = ctx->thread[threadnr];
673 init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
674 ctx->slice_size[jobnr]);
675
676 ctx->m.last_dc[0] =
677 ctx->m.last_dc[1] =
678 ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
679 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
680 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
681 int qscale = ctx->mb_qscale[mb];
682 int i;
683
684 put_bits(&ctx->m.pb, 12, qscale << 1);
685
686 dnxhd_get_blocks(ctx, mb_x, mb_y);
687
688 for (i = 0; i < 8; i++) {
689 int16_t *block = ctx->blocks[i];
690 int overflow, n = dnxhd_switch_matrix(ctx, i);
691 int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
692 qscale, &overflow);
693 // START_TIMER;
694 dnxhd_encode_block(ctx, block, last_index, n);
695 // STOP_TIMER("encode_block");
696 }
697 }
698 if (put_bits_count(&ctx->m.pb) & 31)
699 put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
700 flush_put_bits(&ctx->m.pb);
701 return 0;
702}
703
704static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
705{
706 int mb_y, mb_x;
707 int offset = 0;
708 for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
709 int thread_size;
710 ctx->slice_offs[mb_y] = offset;
711 ctx->slice_size[mb_y] = 0;
712 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
713 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
714 ctx->slice_size[mb_y] += ctx->mb_bits[mb];
715 }
716 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
717 ctx->slice_size[mb_y] >>= 3;
718 thread_size = ctx->slice_size[mb_y];
719 offset += thread_size;
720 }
721}
722
723static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
724 int jobnr, int threadnr)
725{
726 DNXHDEncContext *ctx = avctx->priv_data;
727 int mb_y = jobnr, mb_x, x, y;
728 int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
729 ((avctx->height >> ctx->interlaced) & 0xF);
730
731 ctx = ctx->thread[threadnr];
732 if (ctx->cid_table->bit_depth == 8) {
733 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
734 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
735 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
736 int sum;
737 int varc;
738
739 if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
740 sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
741 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
742 } else {
743 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
744 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
745 sum = varc = 0;
746 for (y = 0; y < bh; y++) {
747 for (x = 0; x < bw; x++) {
748 uint8_t val = pix[x + y * ctx->m.linesize];
749 sum += val;
750 varc += val * val;
751 }
752 }
753 }
754 varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
755
756 ctx->mb_cmp[mb].value = varc;
757 ctx->mb_cmp[mb].mb = mb;
758 }
759 } else { // 10-bit
760 int const linesize = ctx->m.linesize >> 1;
761 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
762 uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
763 ((mb_y << 4) * linesize) + (mb_x << 4);
764 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
765 int sum = 0;
766 int sqsum = 0;
767 int mean, sqmean;
768 int i, j;
769 // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
770 for (i = 0; i < 16; ++i) {
771 for (j = 0; j < 16; ++j) {
772 // Turn 16-bit pixels into 10-bit ones.
773 int const sample = (unsigned) pix[j] >> 6;
774 sum += sample;
775 sqsum += sample * sample;
776 // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
777 }
778 pix += linesize;
779 }
780 mean = sum >> 8; // 16*16 == 2^8
781 sqmean = sqsum >> 8;
782 ctx->mb_cmp[mb].value = sqmean - mean * mean;
783 ctx->mb_cmp[mb].mb = mb;
784 }
785 }
786 return 0;
787}
788
789static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
790{
791 int lambda, up_step, down_step;
792 int last_lower = INT_MAX, last_higher = 0;
793 int x, y, q;
794
795 for (q = 1; q < avctx->qmax; q++) {
796 ctx->qscale = q;
797 avctx->execute2(avctx, dnxhd_calc_bits_thread,
798 NULL, NULL, ctx->m.mb_height);
799 }
800 up_step = down_step = 2 << LAMBDA_FRAC_BITS;
801 lambda = ctx->lambda;
802
803 for (;;) {
804 int bits = 0;
805 int end = 0;
806 if (lambda == last_higher) {
807 lambda++;
808 end = 1; // need to set final qscales/bits
809 }
810 for (y = 0; y < ctx->m.mb_height; y++) {
811 for (x = 0; x < ctx->m.mb_width; x++) {
812 unsigned min = UINT_MAX;
813 int qscale = 1;
814 int mb = y * ctx->m.mb_width + x;
815 for (q = 1; q < avctx->qmax; q++) {
816 unsigned score = ctx->mb_rc[q][mb].bits * lambda +
817 ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
818 if (score < min) {
819 min = score;
820 qscale = q;
821 }
822 }
823 bits += ctx->mb_rc[qscale][mb].bits;
824 ctx->mb_qscale[mb] = qscale;
825 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
826 }
827 bits = (bits + 31) & ~31; // padding
828 if (bits > ctx->frame_bits)
829 break;
830 }
831 // av_dlog(ctx->m.avctx,
832 // "lambda %d, up %u, down %u, bits %d, frame %d\n",
833 // lambda, last_higher, last_lower, bits, ctx->frame_bits);
834 if (end) {
835 if (bits > ctx->frame_bits)
836 return AVERROR(EINVAL);
837 break;
838 }
839 if (bits < ctx->frame_bits) {
840 last_lower = FFMIN(lambda, last_lower);
841 if (last_higher != 0)
842 lambda = (lambda+last_higher)>>1;
843 else
844 lambda -= down_step;
845 down_step = FFMIN((int64_t)down_step*5, INT_MAX);
846 up_step = 1<<LAMBDA_FRAC_BITS;
847 lambda = FFMAX(1, lambda);
848 if (lambda == last_lower)
849 break;
850 } else {
851 last_higher = FFMAX(lambda, last_higher);
852 if (last_lower != INT_MAX)
853 lambda = (lambda+last_lower)>>1;
854 else if ((int64_t)lambda + up_step > INT_MAX)
855 return AVERROR(EINVAL);
856 else
857 lambda += up_step;
858 up_step = FFMIN((int64_t)up_step*5, INT_MAX);
859 down_step = 1<<LAMBDA_FRAC_BITS;
860 }
861 }
862 //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
863 ctx->lambda = lambda;
864 return 0;
865}
866
867static int dnxhd_find_qscale(DNXHDEncContext *ctx)
868{
869 int bits = 0;
870 int up_step = 1;
871 int down_step = 1;
872 int last_higher = 0;
873 int last_lower = INT_MAX;
874 int qscale;
875 int x, y;
876
877 qscale = ctx->qscale;
878 for (;;) {
879 bits = 0;
880 ctx->qscale = qscale;
881 // XXX avoid recalculating bits
882 ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
883 NULL, NULL, ctx->m.mb_height);
884 for (y = 0; y < ctx->m.mb_height; y++) {
885 for (x = 0; x < ctx->m.mb_width; x++)
886 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
887 bits = (bits+31)&~31; // padding
888 if (bits > ctx->frame_bits)
889 break;
890 }
891 // av_dlog(ctx->m.avctx,
892 // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
893 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
894 // last_higher, last_lower);
895 if (bits < ctx->frame_bits) {
896 if (qscale == 1)
897 return 1;
898 if (last_higher == qscale - 1) {
899 qscale = last_higher;
900 break;
901 }
902 last_lower = FFMIN(qscale, last_lower);
903 if (last_higher != 0)
904 qscale = (qscale + last_higher) >> 1;
905 else
906 qscale -= down_step++;
907 if (qscale < 1)
908 qscale = 1;
909 up_step = 1;
910 } else {
911 if (last_lower == qscale + 1)
912 break;
913 last_higher = FFMAX(qscale, last_higher);
914 if (last_lower != INT_MAX)
915 qscale = (qscale + last_lower) >> 1;
916 else
917 qscale += up_step++;
918 down_step = 1;
919 if (qscale >= ctx->m.avctx->qmax)
920 return AVERROR(EINVAL);
921 }
922 }
923 //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
924 ctx->qscale = qscale;
925 return 0;
926}
927
928#define BUCKET_BITS 8
929#define RADIX_PASSES 4
930#define NBUCKETS (1 << BUCKET_BITS)
931
932static inline int get_bucket(int value, int shift)
933{
934 value >>= shift;
935 value &= NBUCKETS - 1;
936 return NBUCKETS - 1 - value;
937}
938
939static void radix_count(const RCCMPEntry *data, int size,
940 int buckets[RADIX_PASSES][NBUCKETS])
941{
942 int i, j;
943 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
944 for (i = 0; i < size; i++) {
945 int v = data[i].value;
946 for (j = 0; j < RADIX_PASSES; j++) {
947 buckets[j][get_bucket(v, 0)]++;
948 v >>= BUCKET_BITS;
949 }
950 av_assert1(!v);
951 }
952 for (j = 0; j < RADIX_PASSES; j++) {
953 int offset = size;
954 for (i = NBUCKETS - 1; i >= 0; i--)
955 buckets[j][i] = offset -= buckets[j][i];
956 av_assert1(!buckets[j][0]);
957 }
958}
959
960static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
961 int size, int buckets[NBUCKETS], int pass)
962{
963 int shift = pass * BUCKET_BITS;
964 int i;
965 for (i = 0; i < size; i++) {
966 int v = get_bucket(data[i].value, shift);
967 int pos = buckets[v]++;
968 dst[pos] = data[i];
969 }
970}
971
972static void radix_sort(RCCMPEntry *data, int size)
973{
974 int buckets[RADIX_PASSES][NBUCKETS];
975 RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp));
976 radix_count(data, size, buckets);
977 radix_sort_pass(tmp, data, size, buckets[0], 0);
978 radix_sort_pass(data, tmp, size, buckets[1], 1);
979 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
980 radix_sort_pass(tmp, data, size, buckets[2], 2);
981 radix_sort_pass(data, tmp, size, buckets[3], 3);
982 }
983 av_free(tmp);
984}
985
986static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
987{
988 int max_bits = 0;
989 int ret, x, y;
990 if ((ret = dnxhd_find_qscale(ctx)) < 0)
991 return ret;
992 for (y = 0; y < ctx->m.mb_height; y++) {
993 for (x = 0; x < ctx->m.mb_width; x++) {
994 int mb = y * ctx->m.mb_width + x;
995 int delta_bits;
996 ctx->mb_qscale[mb] = ctx->qscale;
997 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
998 max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
999 if (!RC_VARIANCE) {
1000 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
1001 ctx->mb_rc[ctx->qscale + 1][mb].bits;
1002 ctx->mb_cmp[mb].mb = mb;
1003 ctx->mb_cmp[mb].value =
1004 delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
1005 ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
1006 delta_bits
1007 : INT_MIN; // avoid increasing qscale
1008 }
1009 }
1010 max_bits += 31; // worst padding
1011 }
1012 if (!ret) {
1013 if (RC_VARIANCE)
1014 avctx->execute2(avctx, dnxhd_mb_var_thread,
1015 NULL, NULL, ctx->m.mb_height);
1016 radix_sort(ctx->mb_cmp, ctx->m.mb_num);
1017 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1018 int mb = ctx->mb_cmp[x].mb;
1019 max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
1020 ctx->mb_rc[ctx->qscale + 1][mb].bits;
1021 ctx->mb_qscale[mb] = ctx->qscale + 1;
1022 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
1023 }
1024 }
1025 return 0;
1026}
1027
1028static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1029{
1030 int i;
1031
1032 for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1033 ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
1034 ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
1035 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
1036 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1037 }
1038
1039 ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
1040 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1041}
1042
1043static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1044 const AVFrame *frame, int *got_packet)
1045{
1046 DNXHDEncContext *ctx = avctx->priv_data;
1047 int first_field = 1;
1048 int offset, i, ret;
1049 uint8_t *buf;
1050
1051 if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
1052 return ret;
1053 buf = pkt->data;
1054
1055 dnxhd_load_picture(ctx, frame);
1056
1057encode_coding_unit:
1058 for (i = 0; i < 3; i++) {
1059 ctx->src[i] = frame->data[i];
1060 if (ctx->interlaced && ctx->cur_field)
1061 ctx->src[i] += frame->linesize[i];
1062 }
1063
1064 dnxhd_write_header(avctx, buf);
1065
1066 if (avctx->mb_decision == FF_MB_DECISION_RD)
1067 ret = dnxhd_encode_rdo(avctx, ctx);
1068 else
1069 ret = dnxhd_encode_fast(avctx, ctx);
1070 if (ret < 0) {
1071 av_log(avctx, AV_LOG_ERROR,
1072 "picture could not fit ratecontrol constraints, increase qmax\n");
1073 return ret;
1074 }
1075
1076 dnxhd_setup_threads_slices(ctx);
1077
1078 offset = 0;
1079 for (i = 0; i < ctx->m.mb_height; i++) {
1080 AV_WB32(ctx->msip + i * 4, offset);
1081 offset += ctx->slice_size[i];
1082 av_assert1(!(ctx->slice_size[i] & 3));
1083 }
1084
1085 avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1086
1087 av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
1088 memset(buf + 640 + offset, 0,
1089 ctx->cid_table->coding_unit_size - 4 - offset - 640);
1090
1091 AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
1092
1093 if (ctx->interlaced && first_field) {
1094 first_field = 0;
1095 ctx->cur_field ^= 1;
1096 buf += ctx->cid_table->coding_unit_size;
1097 goto encode_coding_unit;
1098 }
1099
1100 avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1101
1102 pkt->flags |= AV_PKT_FLAG_KEY;
1103 *got_packet = 1;
1104 return 0;
1105}
1106
1107static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1108{
1109 DNXHDEncContext *ctx = avctx->priv_data;
1110 int max_level = 1 << (ctx->cid_table->bit_depth + 2);
1111 int i;
1112
1113 av_free(ctx->vlc_codes - max_level * 2);
1114 av_free(ctx->vlc_bits - max_level * 2);
1115 av_freep(&ctx->run_codes);
1116 av_freep(&ctx->run_bits);
1117
1118 av_freep(&ctx->mb_bits);
1119 av_freep(&ctx->mb_qscale);
1120 av_freep(&ctx->mb_rc);
1121 av_freep(&ctx->mb_cmp);
1122 av_freep(&ctx->slice_size);
1123 av_freep(&ctx->slice_offs);
1124
1125 av_freep(&ctx->qmatrix_c);
1126 av_freep(&ctx->qmatrix_l);
1127 av_freep(&ctx->qmatrix_c16);
1128 av_freep(&ctx->qmatrix_l16);
1129
1130 for (i = 1; i < avctx->thread_count; i++)
1131 av_freep(&ctx->thread[i]);
1132
1133 av_frame_free(&avctx->coded_frame);
1134
1135 return 0;
1136}
1137
1138static const AVCodecDefault dnxhd_defaults[] = {
1139 { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1140 { NULL },
1141};
1142
1143AVCodec ff_dnxhd_encoder = {
1144 .name = "dnxhd",
1145 .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1146 .type = AVMEDIA_TYPE_VIDEO,
1147 .id = AV_CODEC_ID_DNXHD,
1148 .priv_data_size = sizeof(DNXHDEncContext),
1149 .init = dnxhd_encode_init,
1150 .encode2 = dnxhd_encode_picture,
1151 .close = dnxhd_encode_end,
1152 .capabilities = CODEC_CAP_SLICE_THREADS,
1153 .pix_fmts = (const enum AVPixelFormat[]) {
1154 AV_PIX_FMT_YUV422P,
1155 AV_PIX_FMT_YUV422P10,
1156 AV_PIX_FMT_NONE
1157 },
1158 .priv_class = &dnxhd_class,
1159 .defaults = dnxhd_defaults,
1160};