Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / fft_template.c
CommitLineData
2ba45a60
DM
1/*
2 * FFT/IFFT transforms
3 * Copyright (c) 2008 Loren Merritt
4 * Copyright (c) 2002 Fabrice Bellard
5 * Partly based on libdjbfft by D. J. Bernstein
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 * @file
26 * FFT/IFFT transforms.
27 */
28
29#include <stdlib.h>
30#include <string.h>
31#include "libavutil/mathematics.h"
32#include "fft.h"
33#include "fft-internal.h"
34
35#if FFT_FIXED_32
36#include "fft_table.h"
37#else /* FFT_FIXED_32 */
38
39/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
40#if !CONFIG_HARDCODED_TABLES
41COSTABLE(16);
42COSTABLE(32);
43COSTABLE(64);
44COSTABLE(128);
45COSTABLE(256);
46COSTABLE(512);
47COSTABLE(1024);
48COSTABLE(2048);
49COSTABLE(4096);
50COSTABLE(8192);
51COSTABLE(16384);
52COSTABLE(32768);
53COSTABLE(65536);
54#endif
55COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
56 NULL, NULL, NULL, NULL,
57 FFT_NAME(ff_cos_16),
58 FFT_NAME(ff_cos_32),
59 FFT_NAME(ff_cos_64),
60 FFT_NAME(ff_cos_128),
61 FFT_NAME(ff_cos_256),
62 FFT_NAME(ff_cos_512),
63 FFT_NAME(ff_cos_1024),
64 FFT_NAME(ff_cos_2048),
65 FFT_NAME(ff_cos_4096),
66 FFT_NAME(ff_cos_8192),
67 FFT_NAME(ff_cos_16384),
68 FFT_NAME(ff_cos_32768),
69 FFT_NAME(ff_cos_65536),
70};
71
72#endif /* FFT_FIXED_32 */
73
74static void fft_permute_c(FFTContext *s, FFTComplex *z);
75static void fft_calc_c(FFTContext *s, FFTComplex *z);
76
77static int split_radix_permutation(int i, int n, int inverse)
78{
79 int m;
80 if(n <= 2) return i&1;
81 m = n >> 1;
82 if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
83 m >>= 1;
84 if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
85 else return split_radix_permutation(i, m, inverse)*4 - 1;
86}
87
88av_cold void ff_init_ff_cos_tabs(int index)
89{
90#if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
91 int i;
92 int m = 1<<index;
93 double freq = 2*M_PI/m;
94 FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
95 for(i=0; i<=m/4; i++)
96 tab[i] = FIX15(cos(i*freq));
97 for(i=1; i<m/4; i++)
98 tab[m/2-i] = tab[i];
99#endif
100}
101
102static const int avx_tab[] = {
103 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
104};
105
106static int is_second_half_of_fft32(int i, int n)
107{
108 if (n <= 32)
109 return i >= 16;
110 else if (i < n/2)
111 return is_second_half_of_fft32(i, n/2);
112 else if (i < 3*n/4)
113 return is_second_half_of_fft32(i - n/2, n/4);
114 else
115 return is_second_half_of_fft32(i - 3*n/4, n/4);
116}
117
118static av_cold void fft_perm_avx(FFTContext *s)
119{
120 int i;
121 int n = 1 << s->nbits;
122
123 for (i = 0; i < n; i += 16) {
124 int k;
125 if (is_second_half_of_fft32(i, n)) {
126 for (k = 0; k < 16; k++)
127 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
128 i + avx_tab[k];
129
130 } else {
131 for (k = 0; k < 16; k++) {
132 int j = i + k;
133 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
134 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
135 }
136 }
137 }
138}
139
140av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
141{
142 int i, j, n;
143
144 if (nbits < 2 || nbits > 16)
145 goto fail;
146 s->nbits = nbits;
147 n = 1 << nbits;
148
149 s->revtab = av_malloc(n * sizeof(uint16_t));
150 if (!s->revtab)
151 goto fail;
152 s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
153 if (!s->tmp_buf)
154 goto fail;
155 s->inverse = inverse;
156 s->fft_permutation = FF_FFT_PERM_DEFAULT;
157
158 s->fft_permute = fft_permute_c;
159 s->fft_calc = fft_calc_c;
160#if CONFIG_MDCT
161 s->imdct_calc = ff_imdct_calc_c;
162 s->imdct_half = ff_imdct_half_c;
163 s->mdct_calc = ff_mdct_calc_c;
164#endif
165
166#if FFT_FIXED_32
167 {
168 int n=0;
169 ff_fft_lut_init(ff_fft_offsets_lut, 0, 1 << 16, &n);
170 }
171#else /* FFT_FIXED_32 */
172#if FFT_FLOAT
173 if (ARCH_AARCH64) ff_fft_init_aarch64(s);
174 if (ARCH_ARM) ff_fft_init_arm(s);
175 if (ARCH_PPC) ff_fft_init_ppc(s);
176 if (ARCH_X86) ff_fft_init_x86(s);
177 if (CONFIG_MDCT) s->mdct_calcw = s->mdct_calc;
178 if (HAVE_MIPSFPU) ff_fft_init_mips(s);
179#else
180 if (CONFIG_MDCT) s->mdct_calcw = ff_mdct_calcw_c;
181 if (ARCH_ARM) ff_fft_fixed_init_arm(s);
182#endif
183 for(j=4; j<=nbits; j++) {
184 ff_init_ff_cos_tabs(j);
185 }
186#endif /* FFT_FIXED_32 */
187
188
189 if (s->fft_permutation == FF_FFT_PERM_AVX) {
190 fft_perm_avx(s);
191 } else {
192 for(i=0; i<n; i++) {
193 j = i;
194 if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
195 j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
196 s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
197 }
198 }
199
200 return 0;
201 fail:
202 av_freep(&s->revtab);
203 av_freep(&s->tmp_buf);
204 return -1;
205}
206
207static void fft_permute_c(FFTContext *s, FFTComplex *z)
208{
209 int j, np;
210 const uint16_t *revtab = s->revtab;
211 np = 1 << s->nbits;
212 /* TODO: handle split-radix permute in a more optimal way, probably in-place */
213 for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
214 memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
215}
216
217av_cold void ff_fft_end(FFTContext *s)
218{
219 av_freep(&s->revtab);
220 av_freep(&s->tmp_buf);
221}
222
223#if FFT_FIXED_32
224
225static void fft_calc_c(FFTContext *s, FFTComplex *z) {
226
227 int nbits, i, n, num_transforms, offset, step;
228 int n4, n2, n34;
229 FFTSample tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
230 FFTComplex *tmpz;
231 const int fft_size = (1 << s->nbits);
232 int64_t accu;
233
234 num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
235
236 for (n=0; n<num_transforms; n++){
237 offset = ff_fft_offsets_lut[n] << 2;
238 tmpz = z + offset;
239
240 tmp1 = tmpz[0].re + tmpz[1].re;
241 tmp5 = tmpz[2].re + tmpz[3].re;
242 tmp2 = tmpz[0].im + tmpz[1].im;
243 tmp6 = tmpz[2].im + tmpz[3].im;
244 tmp3 = tmpz[0].re - tmpz[1].re;
245 tmp8 = tmpz[2].im - tmpz[3].im;
246 tmp4 = tmpz[0].im - tmpz[1].im;
247 tmp7 = tmpz[2].re - tmpz[3].re;
248
249 tmpz[0].re = tmp1 + tmp5;
250 tmpz[2].re = tmp1 - tmp5;
251 tmpz[0].im = tmp2 + tmp6;
252 tmpz[2].im = tmp2 - tmp6;
253 tmpz[1].re = tmp3 + tmp8;
254 tmpz[3].re = tmp3 - tmp8;
255 tmpz[1].im = tmp4 - tmp7;
256 tmpz[3].im = tmp4 + tmp7;
257 }
258
259 if (fft_size < 8)
260 return;
261
262 num_transforms = (num_transforms >> 1) | 1;
263
264 for (n=0; n<num_transforms; n++){
265 offset = ff_fft_offsets_lut[n] << 3;
266 tmpz = z + offset;
267
268 tmp1 = tmpz[4].re + tmpz[5].re;
269 tmp3 = tmpz[6].re + tmpz[7].re;
270 tmp2 = tmpz[4].im + tmpz[5].im;
271 tmp4 = tmpz[6].im + tmpz[7].im;
272 tmp5 = tmp1 + tmp3;
273 tmp7 = tmp1 - tmp3;
274 tmp6 = tmp2 + tmp4;
275 tmp8 = tmp2 - tmp4;
276
277 tmp1 = tmpz[4].re - tmpz[5].re;
278 tmp2 = tmpz[4].im - tmpz[5].im;
279 tmp3 = tmpz[6].re - tmpz[7].re;
280 tmp4 = tmpz[6].im - tmpz[7].im;
281
282 tmpz[4].re = tmpz[0].re - tmp5;
283 tmpz[0].re = tmpz[0].re + tmp5;
284 tmpz[4].im = tmpz[0].im - tmp6;
285 tmpz[0].im = tmpz[0].im + tmp6;
286 tmpz[6].re = tmpz[2].re - tmp8;
287 tmpz[2].re = tmpz[2].re + tmp8;
288 tmpz[6].im = tmpz[2].im + tmp7;
289 tmpz[2].im = tmpz[2].im - tmp7;
290
291 accu = (int64_t)Q31(M_SQRT1_2)*(tmp1 + tmp2);
292 tmp5 = (int32_t)((accu + 0x40000000) >> 31);
293 accu = (int64_t)Q31(M_SQRT1_2)*(tmp3 - tmp4);
294 tmp7 = (int32_t)((accu + 0x40000000) >> 31);
295 accu = (int64_t)Q31(M_SQRT1_2)*(tmp2 - tmp1);
296 tmp6 = (int32_t)((accu + 0x40000000) >> 31);
297 accu = (int64_t)Q31(M_SQRT1_2)*(tmp3 + tmp4);
298 tmp8 = (int32_t)((accu + 0x40000000) >> 31);
299 tmp1 = tmp5 + tmp7;
300 tmp3 = tmp5 - tmp7;
301 tmp2 = tmp6 + tmp8;
302 tmp4 = tmp6 - tmp8;
303
304 tmpz[5].re = tmpz[1].re - tmp1;
305 tmpz[1].re = tmpz[1].re + tmp1;
306 tmpz[5].im = tmpz[1].im - tmp2;
307 tmpz[1].im = tmpz[1].im + tmp2;
308 tmpz[7].re = tmpz[3].re - tmp4;
309 tmpz[3].re = tmpz[3].re + tmp4;
310 tmpz[7].im = tmpz[3].im + tmp3;
311 tmpz[3].im = tmpz[3].im - tmp3;
312 }
313
314 step = 1 << ((MAX_LOG2_NFFT-4) - 4);
315 n4 = 4;
316
317 for (nbits=4; nbits<=s->nbits; nbits++){
318 n2 = 2*n4;
319 n34 = 3*n4;
320 num_transforms = (num_transforms >> 1) | 1;
321
322 for (n=0; n<num_transforms; n++){
323 const FFTSample *w_re_ptr = ff_w_tab_sr + step;
324 const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
325 offset = ff_fft_offsets_lut[n] << nbits;
326 tmpz = z + offset;
327
328 tmp5 = tmpz[ n2].re + tmpz[n34].re;
329 tmp1 = tmpz[ n2].re - tmpz[n34].re;
330 tmp6 = tmpz[ n2].im + tmpz[n34].im;
331 tmp2 = tmpz[ n2].im - tmpz[n34].im;
332
333 tmpz[ n2].re = tmpz[ 0].re - tmp5;
334 tmpz[ 0].re = tmpz[ 0].re + tmp5;
335 tmpz[ n2].im = tmpz[ 0].im - tmp6;
336 tmpz[ 0].im = tmpz[ 0].im + tmp6;
337 tmpz[n34].re = tmpz[n4].re - tmp2;
338 tmpz[ n4].re = tmpz[n4].re + tmp2;
339 tmpz[n34].im = tmpz[n4].im + tmp1;
340 tmpz[ n4].im = tmpz[n4].im - tmp1;
341
342 for (i=1; i<n4; i++){
343 FFTSample w_re = w_re_ptr[0];
344 FFTSample w_im = w_im_ptr[0];
345 accu = (int64_t)w_re*tmpz[ n2+i].re;
346 accu += (int64_t)w_im*tmpz[ n2+i].im;
347 tmp1 = (int32_t)((accu + 0x40000000) >> 31);
348 accu = (int64_t)w_re*tmpz[ n2+i].im;
349 accu -= (int64_t)w_im*tmpz[ n2+i].re;
350 tmp2 = (int32_t)((accu + 0x40000000) >> 31);
351 accu = (int64_t)w_re*tmpz[n34+i].re;
352 accu -= (int64_t)w_im*tmpz[n34+i].im;
353 tmp3 = (int32_t)((accu + 0x40000000) >> 31);
354 accu = (int64_t)w_re*tmpz[n34+i].im;
355 accu += (int64_t)w_im*tmpz[n34+i].re;
356 tmp4 = (int32_t)((accu + 0x40000000) >> 31);
357
358 tmp5 = tmp1 + tmp3;
359 tmp1 = tmp1 - tmp3;
360 tmp6 = tmp2 + tmp4;
361 tmp2 = tmp2 - tmp4;
362
363 tmpz[ n2+i].re = tmpz[ i].re - tmp5;
364 tmpz[ i].re = tmpz[ i].re + tmp5;
365 tmpz[ n2+i].im = tmpz[ i].im - tmp6;
366 tmpz[ i].im = tmpz[ i].im + tmp6;
367 tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
368 tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
369 tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
370 tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
371
372 w_re_ptr += step;
373 w_im_ptr -= step;
374 }
375 }
376 step >>= 1;
377 n4 <<= 1;
378 }
379}
380
381#else /* FFT_FIXED_32 */
382
383#define BUTTERFLIES(a0,a1,a2,a3) {\
384 BF(t3, t5, t5, t1);\
385 BF(a2.re, a0.re, a0.re, t5);\
386 BF(a3.im, a1.im, a1.im, t3);\
387 BF(t4, t6, t2, t6);\
388 BF(a3.re, a1.re, a1.re, t4);\
389 BF(a2.im, a0.im, a0.im, t6);\
390}
391
392// force loading all the inputs before storing any.
393// this is slightly slower for small data, but avoids store->load aliasing
394// for addresses separated by large powers of 2.
395#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
396 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
397 BF(t3, t5, t5, t1);\
398 BF(a2.re, a0.re, r0, t5);\
399 BF(a3.im, a1.im, i1, t3);\
400 BF(t4, t6, t2, t6);\
401 BF(a3.re, a1.re, r1, t4);\
402 BF(a2.im, a0.im, i0, t6);\
403}
404
405#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
406 CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
407 CMUL(t5, t6, a3.re, a3.im, wre, wim);\
408 BUTTERFLIES(a0,a1,a2,a3)\
409}
410
411#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
412 t1 = a2.re;\
413 t2 = a2.im;\
414 t5 = a3.re;\
415 t6 = a3.im;\
416 BUTTERFLIES(a0,a1,a2,a3)\
417}
418
419/* z[0...8n-1], w[1...2n-1] */
420#define PASS(name)\
421static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
422{\
423 FFTDouble t1, t2, t3, t4, t5, t6;\
424 int o1 = 2*n;\
425 int o2 = 4*n;\
426 int o3 = 6*n;\
427 const FFTSample *wim = wre+o1;\
428 n--;\
429\
430 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
431 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
432 do {\
433 z += 2;\
434 wre += 2;\
435 wim -= 2;\
436 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
437 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
438 } while(--n);\
439}
440
441PASS(pass)
442#undef BUTTERFLIES
443#define BUTTERFLIES BUTTERFLIES_BIG
444PASS(pass_big)
445
446#define DECL_FFT(n,n2,n4)\
447static void fft##n(FFTComplex *z)\
448{\
449 fft##n2(z);\
450 fft##n4(z+n4*2);\
451 fft##n4(z+n4*3);\
452 pass(z,FFT_NAME(ff_cos_##n),n4/2);\
453}
454
455static void fft4(FFTComplex *z)
456{
457 FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
458
459 BF(t3, t1, z[0].re, z[1].re);
460 BF(t8, t6, z[3].re, z[2].re);
461 BF(z[2].re, z[0].re, t1, t6);
462 BF(t4, t2, z[0].im, z[1].im);
463 BF(t7, t5, z[2].im, z[3].im);
464 BF(z[3].im, z[1].im, t4, t8);
465 BF(z[3].re, z[1].re, t3, t7);
466 BF(z[2].im, z[0].im, t2, t5);
467}
468
469static void fft8(FFTComplex *z)
470{
471 FFTDouble t1, t2, t3, t4, t5, t6;
472
473 fft4(z);
474
475 BF(t1, z[5].re, z[4].re, -z[5].re);
476 BF(t2, z[5].im, z[4].im, -z[5].im);
477 BF(t5, z[7].re, z[6].re, -z[7].re);
478 BF(t6, z[7].im, z[6].im, -z[7].im);
479
480 BUTTERFLIES(z[0],z[2],z[4],z[6]);
481 TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
482}
483
484#if !CONFIG_SMALL
485static void fft16(FFTComplex *z)
486{
487 FFTDouble t1, t2, t3, t4, t5, t6;
488 FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
489 FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
490
491 fft8(z);
492 fft4(z+8);
493 fft4(z+12);
494
495 TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
496 TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
497 TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
498 TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
499}
500#else
501DECL_FFT(16,8,4)
502#endif
503DECL_FFT(32,16,8)
504DECL_FFT(64,32,16)
505DECL_FFT(128,64,32)
506DECL_FFT(256,128,64)
507DECL_FFT(512,256,128)
508#if !CONFIG_SMALL
509#define pass pass_big
510#endif
511DECL_FFT(1024,512,256)
512DECL_FFT(2048,1024,512)
513DECL_FFT(4096,2048,1024)
514DECL_FFT(8192,4096,2048)
515DECL_FFT(16384,8192,4096)
516DECL_FFT(32768,16384,8192)
517DECL_FFT(65536,32768,16384)
518
519static void (* const fft_dispatch[])(FFTComplex*) = {
520 fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
521 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
522};
523
524static void fft_calc_c(FFTContext *s, FFTComplex *z)
525{
526 fft_dispatch[s->nbits-2](z);
527}
528#endif /* FFT_FIXED_32 */