Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / h264_mvpred.h
CommitLineData
2ba45a60
DM
1/*
2 * H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * H.264 / AVC / MPEG4 part10 motion vector predicion.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28#ifndef AVCODEC_H264_MVPRED_H
29#define AVCODEC_H264_MVPRED_H
30
31#include "internal.h"
32#include "avcodec.h"
33#include "h264.h"
34#include "mpegutils.h"
35#include "libavutil/avassert.h"
36
37
38static av_always_inline int fetch_diagonal_mv(H264Context *h, const int16_t **C,
39 int i, int list, int part_width)
40{
41 const int topright_ref = h->ref_cache[list][i - 8 + part_width];
42
43 /* there is no consistent mapping of mvs to neighboring locations that will
44 * make mbaff happy, so we can't move all this logic to fill_caches */
45 if (FRAME_MBAFF(h)) {
46#define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4) \
47 const int xy = XY, y4 = Y4; \
48 const int mb_type = mb_types[xy + (y4 >> 2) * h->mb_stride]; \
49 if (!USES_LIST(mb_type, list)) \
50 return LIST_NOT_USED; \
51 mv = h->cur_pic_ptr->motion_val[list][h->mb2b_xy[xy] + 3 + y4 * h->b_stride]; \
52 h->mv_cache[list][scan8[0] - 2][0] = mv[0]; \
53 h->mv_cache[list][scan8[0] - 2][1] = mv[1] MV_OP; \
54 return h->cur_pic_ptr->ref_index[list][4 * xy + 1 + (y4 & ~1)] REF_OP;
55
56 if (topright_ref == PART_NOT_AVAILABLE
57 && i >= scan8[0] + 8 && (i & 7) == 4
58 && h->ref_cache[list][scan8[0] - 1] != PART_NOT_AVAILABLE) {
59 const uint32_t *mb_types = h->cur_pic_ptr->mb_type;
60 const int16_t *mv;
61 AV_ZERO32(h->mv_cache[list][scan8[0] - 2]);
62 *C = h->mv_cache[list][scan8[0] - 2];
63
64 if (!MB_FIELD(h) && IS_INTERLACED(h->left_type[0])) {
65 SET_DIAG_MV(* 2, >> 1, h->left_mb_xy[0] + h->mb_stride,
66 (h->mb_y & 1) * 2 + (i >> 5));
67 }
68 if (MB_FIELD(h) && !IS_INTERLACED(h->left_type[0])) {
69 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
70 SET_DIAG_MV(/ 2, << 1, h->left_mb_xy[i >= 36], ((i >> 2)) & 3);
71 }
72 }
73#undef SET_DIAG_MV
74 }
75
76 if (topright_ref != PART_NOT_AVAILABLE) {
77 *C = h->mv_cache[list][i - 8 + part_width];
78 return topright_ref;
79 } else {
80 tprintf(h->avctx, "topright MV not available\n");
81
82 *C = h->mv_cache[list][i - 8 - 1];
83 return h->ref_cache[list][i - 8 - 1];
84 }
85}
86
87/**
88 * Get the predicted MV.
89 * @param n the block index
90 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
91 * @param mx the x component of the predicted motion vector
92 * @param my the y component of the predicted motion vector
93 */
94static av_always_inline void pred_motion(H264Context *const h, int n,
95 int part_width, int list, int ref,
96 int *const mx, int *const my)
97{
98 const int index8 = scan8[n];
99 const int top_ref = h->ref_cache[list][index8 - 8];
100 const int left_ref = h->ref_cache[list][index8 - 1];
101 const int16_t *const A = h->mv_cache[list][index8 - 1];
102 const int16_t *const B = h->mv_cache[list][index8 - 8];
103 const int16_t *C;
104 int diagonal_ref, match_count;
105
106 av_assert2(part_width == 1 || part_width == 2 || part_width == 4);
107
108/* mv_cache
109 * B . . A T T T T
110 * U . . L . . , .
111 * U . . L . . . .
112 * U . . L . . , .
113 * . . . L . . . .
114 */
115
116 diagonal_ref = fetch_diagonal_mv(h, &C, index8, list, part_width);
117 match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
118 tprintf(h->avctx, "pred_motion match_count=%d\n", match_count);
119 if (match_count > 1) { //most common
120 *mx = mid_pred(A[0], B[0], C[0]);
121 *my = mid_pred(A[1], B[1], C[1]);
122 } else if (match_count == 1) {
123 if (left_ref == ref) {
124 *mx = A[0];
125 *my = A[1];
126 } else if (top_ref == ref) {
127 *mx = B[0];
128 *my = B[1];
129 } else {
130 *mx = C[0];
131 *my = C[1];
132 }
133 } else {
134 if (top_ref == PART_NOT_AVAILABLE &&
135 diagonal_ref == PART_NOT_AVAILABLE &&
136 left_ref != PART_NOT_AVAILABLE) {
137 *mx = A[0];
138 *my = A[1];
139 } else {
140 *mx = mid_pred(A[0], B[0], C[0]);
141 *my = mid_pred(A[1], B[1], C[1]);
142 }
143 }
144
145 tprintf(h->avctx,
146 "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n",
147 top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref,
148 A[0], A[1], ref, *mx, *my, h->mb_x, h->mb_y, n, list);
149}
150
151/**
152 * Get the directionally predicted 16x8 MV.
153 * @param n the block index
154 * @param mx the x component of the predicted motion vector
155 * @param my the y component of the predicted motion vector
156 */
157static av_always_inline void pred_16x8_motion(H264Context *const h,
158 int n, int list, int ref,
159 int *const mx, int *const my)
160{
161 if (n == 0) {
162 const int top_ref = h->ref_cache[list][scan8[0] - 8];
163 const int16_t *const B = h->mv_cache[list][scan8[0] - 8];
164
165 tprintf(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
166 top_ref, B[0], B[1], h->mb_x, h->mb_y, n, list);
167
168 if (top_ref == ref) {
169 *mx = B[0];
170 *my = B[1];
171 return;
172 }
173 } else {
174 const int left_ref = h->ref_cache[list][scan8[8] - 1];
175 const int16_t *const A = h->mv_cache[list][scan8[8] - 1];
176
177 tprintf(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
178 left_ref, A[0], A[1], h->mb_x, h->mb_y, n, list);
179
180 if (left_ref == ref) {
181 *mx = A[0];
182 *my = A[1];
183 return;
184 }
185 }
186
187 //RARE
188 pred_motion(h, n, 4, list, ref, mx, my);
189}
190
191/**
192 * Get the directionally predicted 8x16 MV.
193 * @param n the block index
194 * @param mx the x component of the predicted motion vector
195 * @param my the y component of the predicted motion vector
196 */
197static av_always_inline void pred_8x16_motion(H264Context *const h,
198 int n, int list, int ref,
199 int *const mx, int *const my)
200{
201 if (n == 0) {
202 const int left_ref = h->ref_cache[list][scan8[0] - 1];
203 const int16_t *const A = h->mv_cache[list][scan8[0] - 1];
204
205 tprintf(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
206 left_ref, A[0], A[1], h->mb_x, h->mb_y, n, list);
207
208 if (left_ref == ref) {
209 *mx = A[0];
210 *my = A[1];
211 return;
212 }
213 } else {
214 const int16_t *C;
215 int diagonal_ref;
216
217 diagonal_ref = fetch_diagonal_mv(h, &C, scan8[4], list, 2);
218
219 tprintf(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
220 diagonal_ref, C[0], C[1], h->mb_x, h->mb_y, n, list);
221
222 if (diagonal_ref == ref) {
223 *mx = C[0];
224 *my = C[1];
225 return;
226 }
227 }
228
229 //RARE
230 pred_motion(h, n, 2, list, ref, mx, my);
231}
232
233#define FIX_MV_MBAFF(type, refn, mvn, idx) \
234 if (FRAME_MBAFF(h)) { \
235 if (MB_FIELD(h)) { \
236 if (!IS_INTERLACED(type)) { \
237 refn <<= 1; \
238 AV_COPY32(mvbuf[idx], mvn); \
239 mvbuf[idx][1] /= 2; \
240 mvn = mvbuf[idx]; \
241 } \
242 } else { \
243 if (IS_INTERLACED(type)) { \
244 refn >>= 1; \
245 AV_COPY32(mvbuf[idx], mvn); \
246 mvbuf[idx][1] <<= 1; \
247 mvn = mvbuf[idx]; \
248 } \
249 } \
250 }
251
252static av_always_inline void pred_pskip_motion(H264Context *const h)
253{
254 DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = { 0 };
255 DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2];
256 int8_t *ref = h->cur_pic.ref_index[0];
257 int16_t(*mv)[2] = h->cur_pic.motion_val[0];
258 int top_ref, left_ref, diagonal_ref, match_count, mx, my;
259 const int16_t *A, *B, *C;
260 int b_stride = h->b_stride;
261
262 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
263
264 /* To avoid doing an entire fill_decode_caches, we inline the relevant
265 * parts here.
266 * FIXME: this is a partial duplicate of the logic in fill_decode_caches,
267 * but it's faster this way. Is there a way to avoid this duplication?
268 */
269 if (USES_LIST(h->left_type[LTOP], 0)) {
270 left_ref = ref[4 * h->left_mb_xy[LTOP] + 1 + (h->left_block[0] & ~1)];
271 A = mv[h->mb2b_xy[h->left_mb_xy[LTOP]] + 3 + b_stride * h->left_block[0]];
272 FIX_MV_MBAFF(h->left_type[LTOP], left_ref, A, 0);
273 if (!(left_ref | AV_RN32A(A)))
274 goto zeromv;
275 } else if (h->left_type[LTOP]) {
276 left_ref = LIST_NOT_USED;
277 A = zeromv;
278 } else {
279 goto zeromv;
280 }
281
282 if (USES_LIST(h->top_type, 0)) {
283 top_ref = ref[4 * h->top_mb_xy + 2];
284 B = mv[h->mb2b_xy[h->top_mb_xy] + 3 * b_stride];
285 FIX_MV_MBAFF(h->top_type, top_ref, B, 1);
286 if (!(top_ref | AV_RN32A(B)))
287 goto zeromv;
288 } else if (h->top_type) {
289 top_ref = LIST_NOT_USED;
290 B = zeromv;
291 } else {
292 goto zeromv;
293 }
294
295 tprintf(h->avctx, "pred_pskip: (%d) (%d) at %2d %2d\n",
296 top_ref, left_ref, h->mb_x, h->mb_y);
297
298 if (USES_LIST(h->topright_type, 0)) {
299 diagonal_ref = ref[4 * h->topright_mb_xy + 2];
300 C = mv[h->mb2b_xy[h->topright_mb_xy] + 3 * b_stride];
301 FIX_MV_MBAFF(h->topright_type, diagonal_ref, C, 2);
302 } else if (h->topright_type) {
303 diagonal_ref = LIST_NOT_USED;
304 C = zeromv;
305 } else {
306 if (USES_LIST(h->topleft_type, 0)) {
307 diagonal_ref = ref[4 * h->topleft_mb_xy + 1 +
308 (h->topleft_partition & 2)];
309 C = mv[h->mb2b_xy[h->topleft_mb_xy] + 3 + b_stride +
310 (h->topleft_partition & 2 * b_stride)];
311 FIX_MV_MBAFF(h->topleft_type, diagonal_ref, C, 2);
312 } else if (h->topleft_type) {
313 diagonal_ref = LIST_NOT_USED;
314 C = zeromv;
315 } else {
316 diagonal_ref = PART_NOT_AVAILABLE;
317 C = zeromv;
318 }
319 }
320
321 match_count = !diagonal_ref + !top_ref + !left_ref;
322 tprintf(h->avctx, "pred_pskip_motion match_count=%d\n", match_count);
323 if (match_count > 1) {
324 mx = mid_pred(A[0], B[0], C[0]);
325 my = mid_pred(A[1], B[1], C[1]);
326 } else if (match_count == 1) {
327 if (!left_ref) {
328 mx = A[0];
329 my = A[1];
330 } else if (!top_ref) {
331 mx = B[0];
332 my = B[1];
333 } else {
334 mx = C[0];
335 my = C[1];
336 }
337 } else {
338 mx = mid_pred(A[0], B[0], C[0]);
339 my = mid_pred(A[1], B[1], C[1]);
340 }
341
342 fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx, my), 4);
343 return;
344
345zeromv:
346 fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
347 return;
348}
349
350static void fill_decode_neighbors(H264Context *h, int mb_type)
351{
352 const int mb_xy = h->mb_xy;
353 int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
354 static const uint8_t left_block_options[4][32] = {
355 { 0, 1, 2, 3, 7, 10, 8, 11, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 5 * 4, 1 + 9 * 4 },
356 { 2, 2, 3, 3, 8, 11, 8, 11, 3 + 2 * 4, 3 + 2 * 4, 3 + 3 * 4, 3 + 3 * 4, 1 + 5 * 4, 1 + 9 * 4, 1 + 5 * 4, 1 + 9 * 4 },
357 { 0, 0, 1, 1, 7, 10, 7, 10, 3 + 0 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 1 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 },
358 { 0, 2, 0, 2, 7, 10, 7, 10, 3 + 0 * 4, 3 + 2 * 4, 3 + 0 * 4, 3 + 2 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 }
359 };
360
361 h->topleft_partition = -1;
362
363 top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
364
365 /* Wow, what a mess, why didn't they simplify the interlacing & intra
366 * stuff, I can't imagine that these complex rules are worth it. */
367
368 topleft_xy = top_xy - 1;
369 topright_xy = top_xy + 1;
370 left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
371 h->left_block = left_block_options[0];
372 if (FRAME_MBAFF(h)) {
373 const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
374 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
375 if (h->mb_y & 1) {
376 if (left_mb_field_flag != curr_mb_field_flag) {
377 left_xy[LBOT] = left_xy[LTOP] = mb_xy - h->mb_stride - 1;
378 if (curr_mb_field_flag) {
379 left_xy[LBOT] += h->mb_stride;
380 h->left_block = left_block_options[3];
381 } else {
382 topleft_xy += h->mb_stride;
383 /* take top left mv from the middle of the mb, as opposed
384 * to all other modes which use the bottom right partition */
385 h->topleft_partition = 0;
386 h->left_block = left_block_options[1];
387 }
388 }
389 } else {
390 if (curr_mb_field_flag) {
391 topleft_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy - 1] >> 7) & 1) - 1);
392 topright_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy + 1] >> 7) & 1) - 1);
393 top_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
394 }
395 if (left_mb_field_flag != curr_mb_field_flag) {
396 if (curr_mb_field_flag) {
397 left_xy[LBOT] += h->mb_stride;
398 h->left_block = left_block_options[3];
399 } else {
400 h->left_block = left_block_options[2];
401 }
402 }
403 }
404 }
405
406 h->topleft_mb_xy = topleft_xy;
407 h->top_mb_xy = top_xy;
408 h->topright_mb_xy = topright_xy;
409 h->left_mb_xy[LTOP] = left_xy[LTOP];
410 h->left_mb_xy[LBOT] = left_xy[LBOT];
411 //FIXME do we need all in the context?
412
413 h->topleft_type = h->cur_pic.mb_type[topleft_xy];
414 h->top_type = h->cur_pic.mb_type[top_xy];
415 h->topright_type = h->cur_pic.mb_type[topright_xy];
416 h->left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
417 h->left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
418
419 if (FMO) {
420 if (h->slice_table[topleft_xy] != h->slice_num)
421 h->topleft_type = 0;
422 if (h->slice_table[top_xy] != h->slice_num)
423 h->top_type = 0;
424 if (h->slice_table[left_xy[LTOP]] != h->slice_num)
425 h->left_type[LTOP] = h->left_type[LBOT] = 0;
426 } else {
427 if (h->slice_table[topleft_xy] != h->slice_num) {
428 h->topleft_type = 0;
429 if (h->slice_table[top_xy] != h->slice_num)
430 h->top_type = 0;
431 if (h->slice_table[left_xy[LTOP]] != h->slice_num)
432 h->left_type[LTOP] = h->left_type[LBOT] = 0;
433 }
434 }
435 if (h->slice_table[topright_xy] != h->slice_num)
436 h->topright_type = 0;
437}
438
439static void fill_decode_caches(H264Context *h, int mb_type)
440{
441 int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
442 int topleft_type, top_type, topright_type, left_type[LEFT_MBS];
443 const uint8_t *left_block = h->left_block;
444 int i;
445 uint8_t *nnz;
446 uint8_t *nnz_cache;
447
448 topleft_xy = h->topleft_mb_xy;
449 top_xy = h->top_mb_xy;
450 topright_xy = h->topright_mb_xy;
451 left_xy[LTOP] = h->left_mb_xy[LTOP];
452 left_xy[LBOT] = h->left_mb_xy[LBOT];
453 topleft_type = h->topleft_type;
454 top_type = h->top_type;
455 topright_type = h->topright_type;
456 left_type[LTOP] = h->left_type[LTOP];
457 left_type[LBOT] = h->left_type[LBOT];
458
459 if (!IS_SKIP(mb_type)) {
460 if (IS_INTRA(mb_type)) {
461 int type_mask = h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
462 h->topleft_samples_available =
463 h->top_samples_available =
464 h->left_samples_available = 0xFFFF;
465 h->topright_samples_available = 0xEEEA;
466
467 if (!(top_type & type_mask)) {
468 h->topleft_samples_available = 0xB3FF;
469 h->top_samples_available = 0x33FF;
470 h->topright_samples_available = 0x26EA;
471 }
472 if (IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])) {
473 if (IS_INTERLACED(mb_type)) {
474 if (!(left_type[LTOP] & type_mask)) {
475 h->topleft_samples_available &= 0xDFFF;
476 h->left_samples_available &= 0x5FFF;
477 }
478 if (!(left_type[LBOT] & type_mask)) {
479 h->topleft_samples_available &= 0xFF5F;
480 h->left_samples_available &= 0xFF5F;
481 }
482 } else {
483 int left_typei = h->cur_pic.mb_type[left_xy[LTOP] + h->mb_stride];
484
485 av_assert2(left_xy[LTOP] == left_xy[LBOT]);
486 if (!((left_typei & type_mask) && (left_type[LTOP] & type_mask))) {
487 h->topleft_samples_available &= 0xDF5F;
488 h->left_samples_available &= 0x5F5F;
489 }
490 }
491 } else {
492 if (!(left_type[LTOP] & type_mask)) {
493 h->topleft_samples_available &= 0xDF5F;
494 h->left_samples_available &= 0x5F5F;
495 }
496 }
497
498 if (!(topleft_type & type_mask))
499 h->topleft_samples_available &= 0x7FFF;
500
501 if (!(topright_type & type_mask))
502 h->topright_samples_available &= 0xFBFF;
503
504 if (IS_INTRA4x4(mb_type)) {
505 if (IS_INTRA4x4(top_type)) {
506 AV_COPY32(h->intra4x4_pred_mode_cache + 4 + 8 * 0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
507 } else {
508 h->intra4x4_pred_mode_cache[4 + 8 * 0] =
509 h->intra4x4_pred_mode_cache[5 + 8 * 0] =
510 h->intra4x4_pred_mode_cache[6 + 8 * 0] =
511 h->intra4x4_pred_mode_cache[7 + 8 * 0] = 2 - 3 * !(top_type & type_mask);
512 }
513 for (i = 0; i < 2; i++) {
514 if (IS_INTRA4x4(left_type[LEFT(i)])) {
515 int8_t *mode = h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]];
516 h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = mode[6 - left_block[0 + 2 * i]];
517 h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = mode[6 - left_block[1 + 2 * i]];
518 } else {
519 h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] =
520 h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = 2 - 3 * !(left_type[LEFT(i)] & type_mask);
521 }
522 }
523 }
524 }
525
526 /*
527 * 0 . T T. T T T T
528 * 1 L . .L . . . .
529 * 2 L . .L . . . .
530 * 3 . T TL . . . .
531 * 4 L . .L . . . .
532 * 5 L . .. . . . .
533 */
534 /* FIXME: constraint_intra_pred & partitioning & nnz
535 * (let us hope this is just a typo in the spec) */
536 nnz_cache = h->non_zero_count_cache;
537 if (top_type) {
538 nnz = h->non_zero_count[top_xy];
539 AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[4 * 3]);
540 if (!h->chroma_y_shift) {
541 AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 7]);
542 AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 11]);
543 } else {
544 AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 5]);
545 AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 9]);
546 }
547 } else {
548 uint32_t top_empty = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 0x40404040;
549 AV_WN32A(&nnz_cache[4 + 8 * 0], top_empty);
550 AV_WN32A(&nnz_cache[4 + 8 * 5], top_empty);
551 AV_WN32A(&nnz_cache[4 + 8 * 10], top_empty);
552 }
553
554 for (i = 0; i < 2; i++) {
555 if (left_type[LEFT(i)]) {
556 nnz = h->non_zero_count[left_xy[LEFT(i)]];
557 nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i]];
558 nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i]];
559 if (CHROMA444(h)) {
560 nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 4 * 4];
561 nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 4 * 4];
562 nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 8 * 4];
563 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 8 * 4];
564 } else if (CHROMA422(h)) {
565 nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 4 * 4];
566 nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 4 * 4];
567 nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 8 * 4];
568 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 8 * 4];
569 } else {
570 nnz_cache[3 + 8 * 6 + 8 * i] = nnz[left_block[8 + 4 + 2 * i]];
571 nnz_cache[3 + 8 * 11 + 8 * i] = nnz[left_block[8 + 5 + 2 * i]];
572 }
573 } else {
574 nnz_cache[3 + 8 * 1 + 2 * 8 * i] =
575 nnz_cache[3 + 8 * 2 + 2 * 8 * i] =
576 nnz_cache[3 + 8 * 6 + 2 * 8 * i] =
577 nnz_cache[3 + 8 * 7 + 2 * 8 * i] =
578 nnz_cache[3 + 8 * 11 + 2 * 8 * i] =
579 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 64;
580 }
581 }
582
583 if (CABAC(h)) {
584 // top_cbp
585 if (top_type)
586 h->top_cbp = h->cbp_table[top_xy];
587 else
588 h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
589 // left_cbp
590 if (left_type[LTOP]) {
591 h->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) |
592 ((h->cbp_table[left_xy[LTOP]] >> (left_block[0] & (~1))) & 2) |
593 (((h->cbp_table[left_xy[LBOT]] >> (left_block[2] & (~1))) & 2) << 2);
594 } else {
595 h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
596 }
597 }
598 }
599
600 if (IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)) {
601 int list;
602 int b_stride = h->b_stride;
603 for (list = 0; list < h->list_count; list++) {
604 int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
605 int8_t *ref = h->cur_pic.ref_index[list];
606 int16_t(*mv_cache)[2] = &h->mv_cache[list][scan8[0]];
607 int16_t(*mv)[2] = h->cur_pic.motion_val[list];
608 if (!USES_LIST(mb_type, list))
609 continue;
610 av_assert2(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
611
612 if (USES_LIST(top_type, list)) {
613 const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
614 AV_COPY128(mv_cache[0 - 1 * 8], mv[b_xy + 0]);
615 ref_cache[0 - 1 * 8] =
616 ref_cache[1 - 1 * 8] = ref[4 * top_xy + 2];
617 ref_cache[2 - 1 * 8] =
618 ref_cache[3 - 1 * 8] = ref[4 * top_xy + 3];
619 } else {
620 AV_ZERO128(mv_cache[0 - 1 * 8]);
621 AV_WN32A(&ref_cache[0 - 1 * 8],
622 ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE) & 0xFF) * 0x01010101u);
623 }
624
625 if (mb_type & (MB_TYPE_16x8 | MB_TYPE_8x8)) {
626 for (i = 0; i < 2; i++) {
627 int cache_idx = -1 + i * 2 * 8;
628 if (USES_LIST(left_type[LEFT(i)], list)) {
629 const int b_xy = h->mb2b_xy[left_xy[LEFT(i)]] + 3;
630 const int b8_xy = 4 * left_xy[LEFT(i)] + 1;
631 AV_COPY32(mv_cache[cache_idx],
632 mv[b_xy + b_stride * left_block[0 + i * 2]]);
633 AV_COPY32(mv_cache[cache_idx + 8],
634 mv[b_xy + b_stride * left_block[1 + i * 2]]);
635 ref_cache[cache_idx] = ref[b8_xy + (left_block[0 + i * 2] & ~1)];
636 ref_cache[cache_idx + 8] = ref[b8_xy + (left_block[1 + i * 2] & ~1)];
637 } else {
638 AV_ZERO32(mv_cache[cache_idx]);
639 AV_ZERO32(mv_cache[cache_idx + 8]);
640 ref_cache[cache_idx] =
641 ref_cache[cache_idx + 8] = (left_type[LEFT(i)]) ? LIST_NOT_USED
642 : PART_NOT_AVAILABLE;
643 }
644 }
645 } else {
646 if (USES_LIST(left_type[LTOP], list)) {
647 const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
648 const int b8_xy = 4 * left_xy[LTOP] + 1;
649 AV_COPY32(mv_cache[-1], mv[b_xy + b_stride * left_block[0]]);
650 ref_cache[-1] = ref[b8_xy + (left_block[0] & ~1)];
651 } else {
652 AV_ZERO32(mv_cache[-1]);
653 ref_cache[-1] = left_type[LTOP] ? LIST_NOT_USED
654 : PART_NOT_AVAILABLE;
655 }
656 }
657
658 if (USES_LIST(topright_type, list)) {
659 const int b_xy = h->mb2b_xy[topright_xy] + 3 * b_stride;
660 AV_COPY32(mv_cache[4 - 1 * 8], mv[b_xy]);
661 ref_cache[4 - 1 * 8] = ref[4 * topright_xy + 2];
662 } else {
663 AV_ZERO32(mv_cache[4 - 1 * 8]);
664 ref_cache[4 - 1 * 8] = topright_type ? LIST_NOT_USED
665 : PART_NOT_AVAILABLE;
666 }
667 if(ref_cache[2 - 1*8] < 0 || ref_cache[4 - 1 * 8] < 0) {
668 if (USES_LIST(topleft_type, list)) {
669 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride +
670 (h->topleft_partition & 2 * b_stride);
671 const int b8_xy = 4 * topleft_xy + 1 + (h->topleft_partition & 2);
672 AV_COPY32(mv_cache[-1 - 1 * 8], mv[b_xy]);
673 ref_cache[-1 - 1 * 8] = ref[b8_xy];
674 } else {
675 AV_ZERO32(mv_cache[-1 - 1 * 8]);
676 ref_cache[-1 - 1 * 8] = topleft_type ? LIST_NOT_USED
677 : PART_NOT_AVAILABLE;
678 }
679 }
680
681 if ((mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2)) && !FRAME_MBAFF(h))
682 continue;
683
684 if (!(mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2))) {
685 uint8_t(*mvd_cache)[2] = &h->mvd_cache[list][scan8[0]];
686 uint8_t(*mvd)[2] = h->mvd_table[list];
687 ref_cache[2 + 8 * 0] =
688 ref_cache[2 + 8 * 2] = PART_NOT_AVAILABLE;
689 AV_ZERO32(mv_cache[2 + 8 * 0]);
690 AV_ZERO32(mv_cache[2 + 8 * 2]);
691
692 if (CABAC(h)) {
693 if (USES_LIST(top_type, list)) {
694 const int b_xy = h->mb2br_xy[top_xy];
695 AV_COPY64(mvd_cache[0 - 1 * 8], mvd[b_xy + 0]);
696 } else {
697 AV_ZERO64(mvd_cache[0 - 1 * 8]);
698 }
699 if (USES_LIST(left_type[LTOP], list)) {
700 const int b_xy = h->mb2br_xy[left_xy[LTOP]] + 6;
701 AV_COPY16(mvd_cache[-1 + 0 * 8], mvd[b_xy - left_block[0]]);
702 AV_COPY16(mvd_cache[-1 + 1 * 8], mvd[b_xy - left_block[1]]);
703 } else {
704 AV_ZERO16(mvd_cache[-1 + 0 * 8]);
705 AV_ZERO16(mvd_cache[-1 + 1 * 8]);
706 }
707 if (USES_LIST(left_type[LBOT], list)) {
708 const int b_xy = h->mb2br_xy[left_xy[LBOT]] + 6;
709 AV_COPY16(mvd_cache[-1 + 2 * 8], mvd[b_xy - left_block[2]]);
710 AV_COPY16(mvd_cache[-1 + 3 * 8], mvd[b_xy - left_block[3]]);
711 } else {
712 AV_ZERO16(mvd_cache[-1 + 2 * 8]);
713 AV_ZERO16(mvd_cache[-1 + 3 * 8]);
714 }
715 AV_ZERO16(mvd_cache[2 + 8 * 0]);
716 AV_ZERO16(mvd_cache[2 + 8 * 2]);
717 if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
718 uint8_t *direct_cache = &h->direct_cache[scan8[0]];
719 uint8_t *direct_table = h->direct_table;
720 fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16 >> 1, 1);
721
722 if (IS_DIRECT(top_type)) {
723 AV_WN32A(&direct_cache[-1 * 8],
724 0x01010101u * (MB_TYPE_DIRECT2 >> 1));
725 } else if (IS_8X8(top_type)) {
726 int b8_xy = 4 * top_xy;
727 direct_cache[0 - 1 * 8] = direct_table[b8_xy + 2];
728 direct_cache[2 - 1 * 8] = direct_table[b8_xy + 3];
729 } else {
730 AV_WN32A(&direct_cache[-1 * 8],
731 0x01010101 * (MB_TYPE_16x16 >> 1));
732 }
733
734 if (IS_DIRECT(left_type[LTOP]))
735 direct_cache[-1 + 0 * 8] = MB_TYPE_DIRECT2 >> 1;
736 else if (IS_8X8(left_type[LTOP]))
737 direct_cache[-1 + 0 * 8] = direct_table[4 * left_xy[LTOP] + 1 + (left_block[0] & ~1)];
738 else
739 direct_cache[-1 + 0 * 8] = MB_TYPE_16x16 >> 1;
740
741 if (IS_DIRECT(left_type[LBOT]))
742 direct_cache[-1 + 2 * 8] = MB_TYPE_DIRECT2 >> 1;
743 else if (IS_8X8(left_type[LBOT]))
744 direct_cache[-1 + 2 * 8] = direct_table[4 * left_xy[LBOT] + 1 + (left_block[2] & ~1)];
745 else
746 direct_cache[-1 + 2 * 8] = MB_TYPE_16x16 >> 1;
747 }
748 }
749 }
750
751#define MAP_MVS \
752 MAP_F2F(scan8[0] - 1 - 1 * 8, topleft_type) \
753 MAP_F2F(scan8[0] + 0 - 1 * 8, top_type) \
754 MAP_F2F(scan8[0] + 1 - 1 * 8, top_type) \
755 MAP_F2F(scan8[0] + 2 - 1 * 8, top_type) \
756 MAP_F2F(scan8[0] + 3 - 1 * 8, top_type) \
757 MAP_F2F(scan8[0] + 4 - 1 * 8, topright_type) \
758 MAP_F2F(scan8[0] - 1 + 0 * 8, left_type[LTOP]) \
759 MAP_F2F(scan8[0] - 1 + 1 * 8, left_type[LTOP]) \
760 MAP_F2F(scan8[0] - 1 + 2 * 8, left_type[LBOT]) \
761 MAP_F2F(scan8[0] - 1 + 3 * 8, left_type[LBOT])
762
763 if (FRAME_MBAFF(h)) {
764 if (MB_FIELD(h)) {
765
766#define MAP_F2F(idx, mb_type) \
767 if (!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) { \
768 h->ref_cache[list][idx] <<= 1; \
769 h->mv_cache[list][idx][1] /= 2; \
770 h->mvd_cache[list][idx][1] >>= 1; \
771 }
772
773 MAP_MVS
774 } else {
775
776#undef MAP_F2F
777#define MAP_F2F(idx, mb_type) \
778 if (IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) { \
779 h->ref_cache[list][idx] >>= 1; \
780 h->mv_cache[list][idx][1] <<= 1; \
781 h->mvd_cache[list][idx][1] <<= 1; \
782 }
783
784 MAP_MVS
785#undef MAP_F2F
786 }
787 }
788 }
789 }
790
791 h->neighbor_transform_size = !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]);
792}
793
794/**
795 * decodes a P_SKIP or B_SKIP macroblock
796 */
797static void av_unused decode_mb_skip(H264Context *h)
798{
799 const int mb_xy = h->mb_xy;
800 int mb_type = 0;
801
802 memset(h->non_zero_count[mb_xy], 0, 48);
803
804 if (MB_FIELD(h))
805 mb_type |= MB_TYPE_INTERLACED;
806
807 if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
808 // just for fill_caches. pred_direct_motion will set the real mb_type
809 mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | MB_TYPE_SKIP;
810 if (h->direct_spatial_mv_pred) {
811 fill_decode_neighbors(h, mb_type);
812 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
813 }
814 ff_h264_pred_direct_motion(h, &mb_type);
815 mb_type |= MB_TYPE_SKIP;
816 } else {
817 mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P1L0 | MB_TYPE_SKIP;
818
819 fill_decode_neighbors(h, mb_type);
820 pred_pskip_motion(h);
821 }
822
823 write_back_motion(h, mb_type);
824 h->cur_pic.mb_type[mb_xy] = mb_type;
825 h->cur_pic.qscale_table[mb_xy] = h->qscale;
826 h->slice_table[mb_xy] = h->slice_num;
827 h->prev_mb_skipped = 1;
828}
829
830#endif /* AVCODEC_H264_MVPRED_H */