Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / lpc.c
CommitLineData
2ba45a60
DM
1/*
2 * LPC utility code
3 * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "libavutil/common.h"
23#include "libavutil/lls.h"
24
25#define LPC_USE_DOUBLE
26#include "lpc.h"
27#include "libavutil/avassert.h"
28
29
30/**
31 * Apply Welch window function to audio block
32 */
33static void lpc_apply_welch_window_c(const int32_t *data, int len,
34 double *w_data)
35{
36 int i, n2;
37 double w;
38 double c;
39
40 /* The optimization in commit fa4ed8c does not support odd len.
41 * If someone wants odd len extend that change. */
42 av_assert2(!(len & 1));
43
44 n2 = (len >> 1);
45 c = 2.0 / (len - 1.0);
46
47 w_data+=n2;
48 data+=n2;
49 for(i=0; i<n2; i++) {
50 w = c - n2 + i;
51 w = 1.0 - (w * w);
52 w_data[-i-1] = data[-i-1] * w;
53 w_data[+i ] = data[+i ] * w;
54 }
55}
56
57/**
58 * Calculate autocorrelation data from audio samples
59 * A Welch window function is applied before calculation.
60 */
61static void lpc_compute_autocorr_c(const double *data, int len, int lag,
62 double *autoc)
63{
64 int i, j;
65
66 for(j=0; j<lag; j+=2){
67 double sum0 = 1.0, sum1 = 1.0;
68 for(i=j; i<len; i++){
69 sum0 += data[i] * data[i-j];
70 sum1 += data[i] * data[i-j-1];
71 }
72 autoc[j ] = sum0;
73 autoc[j+1] = sum1;
74 }
75
76 if(j==lag){
77 double sum = 1.0;
78 for(i=j-1; i<len; i+=2){
79 sum += data[i ] * data[i-j ]
80 + data[i+1] * data[i-j+1];
81 }
82 autoc[j] = sum;
83 }
84}
85
86/**
87 * Quantize LPC coefficients
88 */
89static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
90 int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
91{
92 int i;
93 double cmax, error;
94 int32_t qmax;
95 int sh;
96
97 /* define maximum levels */
98 qmax = (1 << (precision - 1)) - 1;
99
100 /* find maximum coefficient value */
101 cmax = 0.0;
102 for(i=0; i<order; i++) {
103 cmax= FFMAX(cmax, fabs(lpc_in[i]));
104 }
105
106 /* if maximum value quantizes to zero, return all zeros */
107 if(cmax * (1 << max_shift) < 1.0) {
108 *shift = zero_shift;
109 memset(lpc_out, 0, sizeof(int32_t) * order);
110 return;
111 }
112
113 /* calculate level shift which scales max coeff to available bits */
114 sh = max_shift;
115 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
116 sh--;
117 }
118
119 /* since negative shift values are unsupported in decoder, scale down
120 coefficients instead */
121 if(sh == 0 && cmax > qmax) {
122 double scale = ((double)qmax) / cmax;
123 for(i=0; i<order; i++) {
124 lpc_in[i] *= scale;
125 }
126 }
127
128 /* output quantized coefficients and level shift */
129 error=0;
130 for(i=0; i<order; i++) {
131 error -= lpc_in[i] * (1 << sh);
132 lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
133 error -= lpc_out[i];
134 }
135 *shift = sh;
136}
137
138static int estimate_best_order(double *ref, int min_order, int max_order)
139{
140 int i, est;
141
142 est = min_order;
143 for(i=max_order-1; i>=min_order-1; i--) {
144 if(ref[i] > 0.10) {
145 est = i+1;
146 break;
147 }
148 }
149 return est;
150}
151
152int ff_lpc_calc_ref_coefs(LPCContext *s,
153 const int32_t *samples, int order, double *ref)
154{
155 double autoc[MAX_LPC_ORDER + 1];
156
157 s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
158 s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
159 compute_ref_coefs(autoc, order, ref, NULL);
160
161 return order;
162}
163
164/**
165 * Calculate LPC coefficients for multiple orders
166 *
167 * @param lpc_type LPC method for determining coefficients,
168 * see #FFLPCType for details
169 */
170int ff_lpc_calc_coefs(LPCContext *s,
171 const int32_t *samples, int blocksize, int min_order,
172 int max_order, int precision,
173 int32_t coefs[][MAX_LPC_ORDER], int *shift,
174 enum FFLPCType lpc_type, int lpc_passes,
175 int omethod, int max_shift, int zero_shift)
176{
177 double autoc[MAX_LPC_ORDER+1];
178 double ref[MAX_LPC_ORDER];
179 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
180 int i, j, pass = 0;
181 int opt_order;
182
183 av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
184 lpc_type > FF_LPC_TYPE_FIXED);
185 av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
186
187 /* reinit LPC context if parameters have changed */
188 if (blocksize != s->blocksize || max_order != s->max_order ||
189 lpc_type != s->lpc_type) {
190 ff_lpc_end(s);
191 ff_lpc_init(s, blocksize, max_order, lpc_type);
192 }
193
194 if(lpc_passes <= 0)
195 lpc_passes = 2;
196
197 if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
198 s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
199
200 s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
201
202 compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
203
204 for(i=0; i<max_order; i++)
205 ref[i] = fabs(lpc[i][i]);
206
207 pass++;
208 }
209
210 if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
211 LLSModel m[2];
212 LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
213 double av_uninit(weight);
214 memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
215
216 for(j=0; j<max_order; j++)
217 m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
218
219 for(; pass<lpc_passes; pass++){
220 avpriv_init_lls(&m[pass&1], max_order);
221
222 weight=0;
223 for(i=max_order; i<blocksize; i++){
224 for(j=0; j<=max_order; j++)
225 var[j]= samples[i-j];
226
227 if(pass){
228 double eval, inv, rinv;
229 eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
230 eval= (512>>pass) + fabs(eval - var[0]);
231 inv = 1/eval;
232 rinv = sqrt(inv);
233 for(j=0; j<=max_order; j++)
234 var[j] *= rinv;
235 weight += inv;
236 }else
237 weight++;
238
239 m[pass&1].update_lls(&m[pass&1], var);
240 }
241 avpriv_solve_lls(&m[pass&1], 0.001, 0);
242 }
243
244 for(i=0; i<max_order; i++){
245 for(j=0; j<max_order; j++)
246 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
247 ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
248 }
249 for(i=max_order-1; i>0; i--)
250 ref[i] = ref[i-1] - ref[i];
251 }
252
253 opt_order = max_order;
254
255 if(omethod == ORDER_METHOD_EST) {
256 opt_order = estimate_best_order(ref, min_order, max_order);
257 i = opt_order-1;
258 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
259 } else {
260 for(i=min_order-1; i<max_order; i++) {
261 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
262 }
263 }
264
265 return opt_order;
266}
267
268av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
269 enum FFLPCType lpc_type)
270{
271 s->blocksize = blocksize;
272 s->max_order = max_order;
273 s->lpc_type = lpc_type;
274
275 s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
276 sizeof(*s->windowed_samples));
277 if (!s->windowed_buffer)
278 return AVERROR(ENOMEM);
279 s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
280
281 s->lpc_apply_welch_window = lpc_apply_welch_window_c;
282 s->lpc_compute_autocorr = lpc_compute_autocorr_c;
283
284 if (ARCH_X86)
285 ff_lpc_init_x86(s);
286
287 return 0;
288}
289
290av_cold void ff_lpc_end(LPCContext *s)
291{
292 av_freep(&s->windowed_buffer);
293}