Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / mpegaudiodsp_template.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2001, 2002 Fabrice Bellard
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include <stdint.h>
22
23#include "libavutil/attributes.h"
24#include "libavutil/mem.h"
25#include "dct32.h"
26#include "mathops.h"
27#include "mpegaudiodsp.h"
28#include "mpegaudio.h"
29
30#if USE_FLOATS
31#define RENAME(n) n##_float
32
33static inline float round_sample(float *sum)
34{
35 float sum1=*sum;
36 *sum = 0;
37 return sum1;
38}
39
40#define MACS(rt, ra, rb) rt+=(ra)*(rb)
41#define MULS(ra, rb) ((ra)*(rb))
42#define MULH3(x, y, s) ((s)*(y)*(x))
43#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
44#define MULLx(x, y, s) ((y)*(x))
45#define FIXHR(x) ((float)(x))
46#define FIXR(x) ((float)(x))
47#define SHR(a,b) ((a)*(1.0f/(1<<(b))))
48
49#else
50
51#define RENAME(n) n##_fixed
52#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
53
54static inline int round_sample(int64_t *sum)
55{
56 int sum1;
57 sum1 = (int)((*sum) >> OUT_SHIFT);
58 *sum &= (1<<OUT_SHIFT)-1;
59 return av_clip_int16(sum1);
60}
61
62# define MULS(ra, rb) MUL64(ra, rb)
63# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
64# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
65# define MULH3(x, y, s) MULH((s)*(x), y)
66# define MULLx(x, y, s) MULL(x,y,s)
67# define SHR(a,b) ((a)>>(b))
68# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
69# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
70#endif
71
72/** Window for MDCT. Actually only the elements in [0,17] and
73 [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
74 is just to preserve alignment for SIMD implementations.
75*/
76DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
77
78DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
79
80#define SUM8(op, sum, w, p) \
81{ \
82 op(sum, (w)[0 * 64], (p)[0 * 64]); \
83 op(sum, (w)[1 * 64], (p)[1 * 64]); \
84 op(sum, (w)[2 * 64], (p)[2 * 64]); \
85 op(sum, (w)[3 * 64], (p)[3 * 64]); \
86 op(sum, (w)[4 * 64], (p)[4 * 64]); \
87 op(sum, (w)[5 * 64], (p)[5 * 64]); \
88 op(sum, (w)[6 * 64], (p)[6 * 64]); \
89 op(sum, (w)[7 * 64], (p)[7 * 64]); \
90}
91
92#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
93{ \
94 INTFLOAT tmp;\
95 tmp = p[0 * 64];\
96 op1(sum1, (w1)[0 * 64], tmp);\
97 op2(sum2, (w2)[0 * 64], tmp);\
98 tmp = p[1 * 64];\
99 op1(sum1, (w1)[1 * 64], tmp);\
100 op2(sum2, (w2)[1 * 64], tmp);\
101 tmp = p[2 * 64];\
102 op1(sum1, (w1)[2 * 64], tmp);\
103 op2(sum2, (w2)[2 * 64], tmp);\
104 tmp = p[3 * 64];\
105 op1(sum1, (w1)[3 * 64], tmp);\
106 op2(sum2, (w2)[3 * 64], tmp);\
107 tmp = p[4 * 64];\
108 op1(sum1, (w1)[4 * 64], tmp);\
109 op2(sum2, (w2)[4 * 64], tmp);\
110 tmp = p[5 * 64];\
111 op1(sum1, (w1)[5 * 64], tmp);\
112 op2(sum2, (w2)[5 * 64], tmp);\
113 tmp = p[6 * 64];\
114 op1(sum1, (w1)[6 * 64], tmp);\
115 op2(sum2, (w2)[6 * 64], tmp);\
116 tmp = p[7 * 64];\
117 op1(sum1, (w1)[7 * 64], tmp);\
118 op2(sum2, (w2)[7 * 64], tmp);\
119}
120
121void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
122 int *dither_state, OUT_INT *samples,
123 int incr)
124{
125 register const MPA_INT *w, *w2, *p;
126 int j;
127 OUT_INT *samples2;
128#if USE_FLOATS
129 float sum, sum2;
130#else
131 int64_t sum, sum2;
132#endif
133
134 /* copy to avoid wrap */
135 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
136
137 samples2 = samples + 31 * incr;
138 w = window;
139 w2 = window + 31;
140
141 sum = *dither_state;
142 p = synth_buf + 16;
143 SUM8(MACS, sum, w, p);
144 p = synth_buf + 48;
145 SUM8(MLSS, sum, w + 32, p);
146 *samples = round_sample(&sum);
147 samples += incr;
148 w++;
149
150 /* we calculate two samples at the same time to avoid one memory
151 access per two sample */
152 for(j=1;j<16;j++) {
153 sum2 = 0;
154 p = synth_buf + 16 + j;
155 SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
156 p = synth_buf + 48 - j;
157 SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
158
159 *samples = round_sample(&sum);
160 samples += incr;
161 sum += sum2;
162 *samples2 = round_sample(&sum);
163 samples2 -= incr;
164 w++;
165 w2--;
166 }
167
168 p = synth_buf + 32;
169 SUM8(MLSS, sum, w + 32, p);
170 *samples = round_sample(&sum);
171 *dither_state= sum;
172}
173
174/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
175 32 samples. */
176void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
177 int *synth_buf_offset,
178 MPA_INT *window, int *dither_state,
179 OUT_INT *samples, int incr,
180 MPA_INT *sb_samples)
181{
182 MPA_INT *synth_buf;
183 int offset;
184
185 offset = *synth_buf_offset;
186 synth_buf = synth_buf_ptr + offset;
187
188 s->RENAME(dct32)(synth_buf, sb_samples);
189 s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
190
191 offset = (offset - 32) & 511;
192 *synth_buf_offset = offset;
193}
194
195av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window)
196{
197 int i, j;
198
199 /* max = 18760, max sum over all 16 coefs : 44736 */
200 for(i=0;i<257;i++) {
201 INTFLOAT v;
202 v = ff_mpa_enwindow[i];
203#if USE_FLOATS
204 v *= 1.0 / (1LL<<(16 + FRAC_BITS));
205#endif
206 window[i] = v;
207 if ((i & 63) != 0)
208 v = -v;
209 if (i != 0)
210 window[512 - i] = v;
211 }
212
213
214 // Needed for avoiding shuffles in ASM implementations
215 for(i=0; i < 8; i++)
216 for(j=0; j < 16; j++)
217 window[512+16*i+j] = window[64*i+32-j];
218
219 for(i=0; i < 8; i++)
220 for(j=0; j < 16; j++)
221 window[512+128+16*i+j] = window[64*i+48-j];
222}
223
224av_cold void RENAME(ff_init_mpadsp_tabs)(void)
225{
226 int i, j;
227 /* compute mdct windows */
228 for (i = 0; i < 36; i++) {
229 for (j = 0; j < 4; j++) {
230 double d;
231
232 if (j == 2 && i % 3 != 1)
233 continue;
234
235 d = sin(M_PI * (i + 0.5) / 36.0);
236 if (j == 1) {
237 if (i >= 30) d = 0;
238 else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
239 else if (i >= 18) d = 1;
240 } else if (j == 3) {
241 if (i < 6) d = 0;
242 else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0);
243 else if (i < 18) d = 1;
244 }
245 //merge last stage of imdct into the window coefficients
246 d *= 0.5 * IMDCT_SCALAR / cos(M_PI * (2 * i + 19) / 72);
247
248 if (j == 2)
249 RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
250 else {
251 int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
252 RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
253 }
254 }
255 }
256
257 /* NOTE: we do frequency inversion adter the MDCT by changing
258 the sign of the right window coefs */
259 for (j = 0; j < 4; j++) {
260 for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
261 RENAME(ff_mdct_win)[j + 4][i ] = RENAME(ff_mdct_win)[j][i ];
262 RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
263 }
264 }
265}
266/* cos(pi*i/18) */
267#define C1 FIXHR(0.98480775301220805936/2)
268#define C2 FIXHR(0.93969262078590838405/2)
269#define C3 FIXHR(0.86602540378443864676/2)
270#define C4 FIXHR(0.76604444311897803520/2)
271#define C5 FIXHR(0.64278760968653932632/2)
272#define C6 FIXHR(0.5/2)
273#define C7 FIXHR(0.34202014332566873304/2)
274#define C8 FIXHR(0.17364817766693034885/2)
275
276/* 0.5 / cos(pi*(2*i+1)/36) */
277static const INTFLOAT icos36[9] = {
278 FIXR(0.50190991877167369479),
279 FIXR(0.51763809020504152469), //0
280 FIXR(0.55168895948124587824),
281 FIXR(0.61038729438072803416),
282 FIXR(0.70710678118654752439), //1
283 FIXR(0.87172339781054900991),
284 FIXR(1.18310079157624925896),
285 FIXR(1.93185165257813657349), //2
286 FIXR(5.73685662283492756461),
287};
288
289/* 0.5 / cos(pi*(2*i+1)/36) */
290static const INTFLOAT icos36h[9] = {
291 FIXHR(0.50190991877167369479/2),
292 FIXHR(0.51763809020504152469/2), //0
293 FIXHR(0.55168895948124587824/2),
294 FIXHR(0.61038729438072803416/2),
295 FIXHR(0.70710678118654752439/2), //1
296 FIXHR(0.87172339781054900991/2),
297 FIXHR(1.18310079157624925896/4),
298 FIXHR(1.93185165257813657349/4), //2
299// FIXHR(5.73685662283492756461),
300};
301
302/* using Lee like decomposition followed by hand coded 9 points DCT */
303static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
304{
305 int i, j;
306 INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
307 INTFLOAT tmp[18], *tmp1, *in1;
308
309 for (i = 17; i >= 1; i--)
310 in[i] += in[i-1];
311 for (i = 17; i >= 3; i -= 2)
312 in[i] += in[i-2];
313
314 for (j = 0; j < 2; j++) {
315 tmp1 = tmp + j;
316 in1 = in + j;
317
318 t2 = in1[2*4] + in1[2*8] - in1[2*2];
319
320 t3 = in1[2*0] + SHR(in1[2*6],1);
321 t1 = in1[2*0] - in1[2*6];
322 tmp1[ 6] = t1 - SHR(t2,1);
323 tmp1[16] = t1 + t2;
324
325 t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
326 t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
327 t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
328
329 tmp1[10] = t3 - t0 - t2;
330 tmp1[ 2] = t3 + t0 + t1;
331 tmp1[14] = t3 + t2 - t1;
332
333 tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
334 t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
335 t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
336 t0 = MULH3(in1[2*3], C3, 2);
337
338 t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
339
340 tmp1[ 0] = t2 + t3 + t0;
341 tmp1[12] = t2 + t1 - t0;
342 tmp1[ 8] = t3 - t1 - t0;
343 }
344
345 i = 0;
346 for (j = 0; j < 4; j++) {
347 t0 = tmp[i];
348 t1 = tmp[i + 2];
349 s0 = t1 + t0;
350 s2 = t1 - t0;
351
352 t2 = tmp[i + 1];
353 t3 = tmp[i + 3];
354 s1 = MULH3(t3 + t2, icos36h[ j], 2);
355 s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
356
357 t0 = s0 + s1;
358 t1 = s0 - s1;
359 out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)];
360 out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)];
361 buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
362 buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
363
364 t0 = s2 + s3;
365 t1 = s2 - s3;
366 out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
367 out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)];
368 buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
369 buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1);
370 i += 4;
371 }
372
373 s0 = tmp[16];
374 s1 = MULH3(tmp[17], icos36h[4], 2);
375 t0 = s0 + s1;
376 t1 = s0 - s1;
377 out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)];
378 out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)];
379 buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
380 buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
381}
382
383void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
384 int count, int switch_point, int block_type)
385{
386 int j;
387 for (j=0 ; j < count; j++) {
388 /* apply window & overlap with previous buffer */
389
390 /* select window */
391 int win_idx = (switch_point && j < 2) ? 0 : block_type;
392 INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
393
394 imdct36(out, buf, in, win);
395
396 in += 18;
397 buf += ((j&3) != 3 ? 1 : (72-3));
398 out++;
399 }
400}
401