Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / mss3.c
CommitLineData
2ba45a60
DM
1/*
2 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
3 * Copyright (c) 2012 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
25 */
26
27#include "avcodec.h"
28#include "bytestream.h"
29#include "internal.h"
30#include "mathops.h"
31#include "mss34dsp.h"
32
33#define HEADER_SIZE 27
34
35#define MODEL2_SCALE 13
36#define MODEL_SCALE 15
37#define MODEL256_SEC_SCALE 9
38
39typedef struct Model2 {
40 int upd_val, till_rescale;
41 unsigned zero_freq, zero_weight;
42 unsigned total_freq, total_weight;
43} Model2;
44
45typedef struct Model {
46 int weights[16], freqs[16];
47 int num_syms;
48 int tot_weight;
49 int upd_val, max_upd_val, till_rescale;
50} Model;
51
52typedef struct Model256 {
53 int weights[256], freqs[256];
54 int tot_weight;
55 int secondary[68];
56 int sec_size;
57 int upd_val, max_upd_val, till_rescale;
58} Model256;
59
60#define RAC_BOTTOM 0x01000000
61typedef struct RangeCoder {
62 const uint8_t *src, *src_end;
63
64 uint32_t range, low;
65 int got_error;
66} RangeCoder;
67
68enum BlockType {
69 FILL_BLOCK = 0,
70 IMAGE_BLOCK,
71 DCT_BLOCK,
72 HAAR_BLOCK,
73 SKIP_BLOCK
74};
75
76typedef struct BlockTypeContext {
77 int last_type;
78 Model bt_model[5];
79} BlockTypeContext;
80
81typedef struct FillBlockCoder {
82 int fill_val;
83 Model coef_model;
84} FillBlockCoder;
85
86typedef struct ImageBlockCoder {
87 Model256 esc_model, vec_entry_model;
88 Model vec_size_model;
89 Model vq_model[125];
90} ImageBlockCoder;
91
92typedef struct DCTBlockCoder {
93 int *prev_dc;
94 int prev_dc_stride;
95 int prev_dc_height;
96 int quality;
97 uint16_t qmat[64];
98 Model dc_model;
99 Model2 sign_model;
100 Model256 ac_model;
101} DCTBlockCoder;
102
103typedef struct HaarBlockCoder {
104 int quality, scale;
105 Model256 coef_model;
106 Model coef_hi_model;
107} HaarBlockCoder;
108
109typedef struct MSS3Context {
110 AVCodecContext *avctx;
111 AVFrame *pic;
112
113 int got_error;
114 RangeCoder coder;
115 BlockTypeContext btype[3];
116 FillBlockCoder fill_coder[3];
117 ImageBlockCoder image_coder[3];
118 DCTBlockCoder dct_coder[3];
119 HaarBlockCoder haar_coder[3];
120
121 int dctblock[64];
122 int hblock[16 * 16];
123} MSS3Context;
124
125
126static void model2_reset(Model2 *m)
127{
128 m->zero_weight = 1;
129 m->total_weight = 2;
130 m->zero_freq = 0x1000;
131 m->total_freq = 0x2000;
132 m->upd_val = 4;
133 m->till_rescale = 4;
134}
135
136static void model2_update(Model2 *m, int bit)
137{
138 unsigned scale;
139
140 if (!bit)
141 m->zero_weight++;
142 m->till_rescale--;
143 if (m->till_rescale)
144 return;
145
146 m->total_weight += m->upd_val;
147 if (m->total_weight > 0x2000) {
148 m->total_weight = (m->total_weight + 1) >> 1;
149 m->zero_weight = (m->zero_weight + 1) >> 1;
150 if (m->total_weight == m->zero_weight)
151 m->total_weight = m->zero_weight + 1;
152 }
153 m->upd_val = m->upd_val * 5 >> 2;
154 if (m->upd_val > 64)
155 m->upd_val = 64;
156 scale = 0x80000000u / m->total_weight;
157 m->zero_freq = m->zero_weight * scale >> 18;
158 m->total_freq = m->total_weight * scale >> 18;
159 m->till_rescale = m->upd_val;
160}
161
162static void model_update(Model *m, int val)
163{
164 int i, sum = 0;
165 unsigned scale;
166
167 m->weights[val]++;
168 m->till_rescale--;
169 if (m->till_rescale)
170 return;
171 m->tot_weight += m->upd_val;
172
173 if (m->tot_weight > 0x8000) {
174 m->tot_weight = 0;
175 for (i = 0; i < m->num_syms; i++) {
176 m->weights[i] = (m->weights[i] + 1) >> 1;
177 m->tot_weight += m->weights[i];
178 }
179 }
180 scale = 0x80000000u / m->tot_weight;
181 for (i = 0; i < m->num_syms; i++) {
182 m->freqs[i] = sum * scale >> 16;
183 sum += m->weights[i];
184 }
185
186 m->upd_val = m->upd_val * 5 >> 2;
187 if (m->upd_val > m->max_upd_val)
188 m->upd_val = m->max_upd_val;
189 m->till_rescale = m->upd_val;
190}
191
192static void model_reset(Model *m)
193{
194 int i;
195
196 m->tot_weight = 0;
197 for (i = 0; i < m->num_syms - 1; i++)
198 m->weights[i] = 1;
199 m->weights[m->num_syms - 1] = 0;
200
201 m->upd_val = m->num_syms;
202 m->till_rescale = 1;
203 model_update(m, m->num_syms - 1);
204 m->till_rescale =
205 m->upd_val = (m->num_syms + 6) >> 1;
206}
207
208static av_cold void model_init(Model *m, int num_syms)
209{
210 m->num_syms = num_syms;
211 m->max_upd_val = 8 * num_syms + 48;
212
213 model_reset(m);
214}
215
216static void model256_update(Model256 *m, int val)
217{
218 int i, sum = 0;
219 unsigned scale;
220 int send, sidx = 1;
221
222 m->weights[val]++;
223 m->till_rescale--;
224 if (m->till_rescale)
225 return;
226 m->tot_weight += m->upd_val;
227
228 if (m->tot_weight > 0x8000) {
229 m->tot_weight = 0;
230 for (i = 0; i < 256; i++) {
231 m->weights[i] = (m->weights[i] + 1) >> 1;
232 m->tot_weight += m->weights[i];
233 }
234 }
235 scale = 0x80000000u / m->tot_weight;
236 m->secondary[0] = 0;
237 for (i = 0; i < 256; i++) {
238 m->freqs[i] = sum * scale >> 16;
239 sum += m->weights[i];
240 send = m->freqs[i] >> MODEL256_SEC_SCALE;
241 while (sidx <= send)
242 m->secondary[sidx++] = i - 1;
243 }
244 while (sidx < m->sec_size)
245 m->secondary[sidx++] = 255;
246
247 m->upd_val = m->upd_val * 5 >> 2;
248 if (m->upd_val > m->max_upd_val)
249 m->upd_val = m->max_upd_val;
250 m->till_rescale = m->upd_val;
251}
252
253static void model256_reset(Model256 *m)
254{
255 int i;
256
257 for (i = 0; i < 255; i++)
258 m->weights[i] = 1;
259 m->weights[255] = 0;
260
261 m->tot_weight = 0;
262 m->upd_val = 256;
263 m->till_rescale = 1;
264 model256_update(m, 255);
265 m->till_rescale =
266 m->upd_val = (256 + 6) >> 1;
267}
268
269static av_cold void model256_init(Model256 *m)
270{
271 m->max_upd_val = 8 * 256 + 48;
272 m->sec_size = (1 << 6) + 2;
273
274 model256_reset(m);
275}
276
277static void rac_init(RangeCoder *c, const uint8_t *src, int size)
278{
279 int i;
280
281 c->src = src;
282 c->src_end = src + size;
283 c->low = 0;
284 for (i = 0; i < FFMIN(size, 4); i++)
285 c->low = (c->low << 8) | *c->src++;
286 c->range = 0xFFFFFFFF;
287 c->got_error = 0;
288}
289
290static void rac_normalise(RangeCoder *c)
291{
292 for (;;) {
293 c->range <<= 8;
294 c->low <<= 8;
295 if (c->src < c->src_end) {
296 c->low |= *c->src++;
297 } else if (!c->low) {
298 c->got_error = 1;
299 c->low = 1;
300 }
301 if (c->range >= RAC_BOTTOM)
302 return;
303 }
304}
305
306static int rac_get_bit(RangeCoder *c)
307{
308 int bit;
309
310 c->range >>= 1;
311
312 bit = (c->range <= c->low);
313 if (bit)
314 c->low -= c->range;
315
316 if (c->range < RAC_BOTTOM)
317 rac_normalise(c);
318
319 return bit;
320}
321
322static int rac_get_bits(RangeCoder *c, int nbits)
323{
324 int val;
325
326 c->range >>= nbits;
327 val = c->low / c->range;
328 c->low -= c->range * val;
329
330 if (c->range < RAC_BOTTOM)
331 rac_normalise(c);
332
333 return val;
334}
335
336static int rac_get_model2_sym(RangeCoder *c, Model2 *m)
337{
338 int bit, helper;
339
340 helper = m->zero_freq * (c->range >> MODEL2_SCALE);
341 bit = (c->low >= helper);
342 if (bit) {
343 c->low -= helper;
344 c->range -= helper;
345 } else {
346 c->range = helper;
347 }
348
349 if (c->range < RAC_BOTTOM)
350 rac_normalise(c);
351
352 model2_update(m, bit);
353
354 return bit;
355}
356
357static int rac_get_model_sym(RangeCoder *c, Model *m)
358{
359 int prob, prob2, helper, val;
360 int end, end2;
361
362 prob = 0;
363 prob2 = c->range;
364 c->range >>= MODEL_SCALE;
365 val = 0;
366 end = m->num_syms >> 1;
367 end2 = m->num_syms;
368 do {
369 helper = m->freqs[end] * c->range;
370 if (helper <= c->low) {
371 val = end;
372 prob = helper;
373 } else {
374 end2 = end;
375 prob2 = helper;
376 }
377 end = (end2 + val) >> 1;
378 } while (end != val);
379 c->low -= prob;
380 c->range = prob2 - prob;
381 if (c->range < RAC_BOTTOM)
382 rac_normalise(c);
383
384 model_update(m, val);
385
386 return val;
387}
388
389static int rac_get_model256_sym(RangeCoder *c, Model256 *m)
390{
391 int prob, prob2, helper, val;
392 int start, end;
393 int ssym;
394
395 prob2 = c->range;
396 c->range >>= MODEL_SCALE;
397
398 helper = c->low / c->range;
399 ssym = helper >> MODEL256_SEC_SCALE;
400 val = m->secondary[ssym];
401
402 end = start = m->secondary[ssym + 1] + 1;
403 while (end > val + 1) {
404 ssym = (end + val) >> 1;
405 if (m->freqs[ssym] <= helper) {
406 end = start;
407 val = ssym;
408 } else {
409 end = (end + val) >> 1;
410 start = ssym;
411 }
412 }
413 prob = m->freqs[val] * c->range;
414 if (val != 255)
415 prob2 = m->freqs[val + 1] * c->range;
416
417 c->low -= prob;
418 c->range = prob2 - prob;
419 if (c->range < RAC_BOTTOM)
420 rac_normalise(c);
421
422 model256_update(m, val);
423
424 return val;
425}
426
427static int decode_block_type(RangeCoder *c, BlockTypeContext *bt)
428{
429 bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]);
430
431 return bt->last_type;
432}
433
434static int decode_coeff(RangeCoder *c, Model *m)
435{
436 int val, sign;
437
438 val = rac_get_model_sym(c, m);
439 if (val) {
440 sign = rac_get_bit(c);
441 if (val > 1) {
442 val--;
443 val = (1 << val) + rac_get_bits(c, val);
444 }
445 if (!sign)
446 val = -val;
447 }
448
449 return val;
450}
451
452static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc,
453 uint8_t *dst, int stride, int block_size)
454{
455 int i;
456
457 fc->fill_val += decode_coeff(c, &fc->coef_model);
458
459 for (i = 0; i < block_size; i++, dst += stride)
460 memset(dst, fc->fill_val, block_size);
461}
462
463static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic,
464 uint8_t *dst, int stride, int block_size)
465{
466 int i, j;
467 int vec_size;
468 int vec[4];
469 int prev_line[16];
470 int A, B, C;
471
472 vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2;
473 for (i = 0; i < vec_size; i++)
474 vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model);
475 for (; i < 4; i++)
476 vec[i] = 0;
477 memset(prev_line, 0, sizeof(prev_line));
478
479 for (j = 0; j < block_size; j++) {
480 A = 0;
481 B = 0;
482 for (i = 0; i < block_size; i++) {
483 C = B;
484 B = prev_line[i];
485 A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]);
486
487 prev_line[i] = A;
488 if (A < 4)
489 dst[i] = vec[A];
490 else
491 dst[i] = rac_get_model256_sym(c, &ic->esc_model);
492 }
493 dst += stride;
494 }
495}
496
497static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block,
498 int bx, int by)
499{
500 int skip, val, sign, pos = 1, zz_pos, dc;
501 int blk_pos = bx + by * bc->prev_dc_stride;
502
503 memset(block, 0, sizeof(*block) * 64);
504
505 dc = decode_coeff(c, &bc->dc_model);
506 if (by) {
507 if (bx) {
508 int l, tl, t;
509
510 l = bc->prev_dc[blk_pos - 1];
511 tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride];
512 t = bc->prev_dc[blk_pos - bc->prev_dc_stride];
513
514 if (FFABS(t - tl) <= FFABS(l - tl))
515 dc += l;
516 else
517 dc += t;
518 } else {
519 dc += bc->prev_dc[blk_pos - bc->prev_dc_stride];
520 }
521 } else if (bx) {
522 dc += bc->prev_dc[bx - 1];
523 }
524 bc->prev_dc[blk_pos] = dc;
525 block[0] = dc * bc->qmat[0];
526
527 while (pos < 64) {
528 val = rac_get_model256_sym(c, &bc->ac_model);
529 if (!val)
530 return 0;
531 if (val == 0xF0) {
532 pos += 16;
533 continue;
534 }
535 skip = val >> 4;
536 val = val & 0xF;
537 if (!val)
538 return -1;
539 pos += skip;
540 if (pos >= 64)
541 return -1;
542
543 sign = rac_get_model2_sym(c, &bc->sign_model);
544 if (val > 1) {
545 val--;
546 val = (1 << val) + rac_get_bits(c, val);
547 }
548 if (!sign)
549 val = -val;
550
551 zz_pos = ff_zigzag_direct[pos];
552 block[zz_pos] = val * bc->qmat[zz_pos];
553 pos++;
554 }
555
556 return pos == 64 ? 0 : -1;
557}
558
559static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc,
560 uint8_t *dst, int stride, int block_size,
561 int *block, int mb_x, int mb_y)
562{
563 int i, j;
564 int bx, by;
565 int nblocks = block_size >> 3;
566
567 bx = mb_x * nblocks;
568 by = mb_y * nblocks;
569
570 for (j = 0; j < nblocks; j++) {
571 for (i = 0; i < nblocks; i++) {
572 if (decode_dct(c, bc, block, bx + i, by + j)) {
573 c->got_error = 1;
574 return;
575 }
576 ff_mss34_dct_put(dst + i * 8, stride, block);
577 }
578 dst += 8 * stride;
579 }
580}
581
582static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc,
583 uint8_t *dst, int stride, int block_size,
584 int *block)
585{
586 const int hsize = block_size >> 1;
587 int A, B, C, D, t1, t2, t3, t4;
588 int i, j;
589
590 for (j = 0; j < block_size; j++) {
591 for (i = 0; i < block_size; i++) {
592 if (i < hsize && j < hsize)
593 block[i] = rac_get_model256_sym(c, &hc->coef_model);
594 else
595 block[i] = decode_coeff(c, &hc->coef_hi_model);
596 block[i] *= hc->scale;
597 }
598 block += block_size;
599 }
600 block -= block_size * block_size;
601
602 for (j = 0; j < hsize; j++) {
603 for (i = 0; i < hsize; i++) {
604 A = block[i];
605 B = block[i + hsize];
606 C = block[i + hsize * block_size];
607 D = block[i + hsize * block_size + hsize];
608
609 t1 = A - B;
610 t2 = C - D;
611 t3 = A + B;
612 t4 = C + D;
613 dst[i * 2] = av_clip_uint8(t1 - t2);
614 dst[i * 2 + stride] = av_clip_uint8(t1 + t2);
615 dst[i * 2 + 1] = av_clip_uint8(t3 - t4);
616 dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4);
617 }
618 block += block_size;
619 dst += stride * 2;
620 }
621}
622
623static void reset_coders(MSS3Context *ctx, int quality)
624{
625 int i, j;
626
627 for (i = 0; i < 3; i++) {
628 ctx->btype[i].last_type = SKIP_BLOCK;
629 for (j = 0; j < 5; j++)
630 model_reset(&ctx->btype[i].bt_model[j]);
631 ctx->fill_coder[i].fill_val = 0;
632 model_reset(&ctx->fill_coder[i].coef_model);
633 model256_reset(&ctx->image_coder[i].esc_model);
634 model256_reset(&ctx->image_coder[i].vec_entry_model);
635 model_reset(&ctx->image_coder[i].vec_size_model);
636 for (j = 0; j < 125; j++)
637 model_reset(&ctx->image_coder[i].vq_model[j]);
638 if (ctx->dct_coder[i].quality != quality) {
639 ctx->dct_coder[i].quality = quality;
640 ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i);
641 }
642 memset(ctx->dct_coder[i].prev_dc, 0,
643 sizeof(*ctx->dct_coder[i].prev_dc) *
644 ctx->dct_coder[i].prev_dc_stride *
645 ctx->dct_coder[i].prev_dc_height);
646 model_reset(&ctx->dct_coder[i].dc_model);
647 model2_reset(&ctx->dct_coder[i].sign_model);
648 model256_reset(&ctx->dct_coder[i].ac_model);
649 if (ctx->haar_coder[i].quality != quality) {
650 ctx->haar_coder[i].quality = quality;
651 ctx->haar_coder[i].scale = 17 - 7 * quality / 50;
652 }
653 model_reset(&ctx->haar_coder[i].coef_hi_model);
654 model256_reset(&ctx->haar_coder[i].coef_model);
655 }
656}
657
658static av_cold void init_coders(MSS3Context *ctx)
659{
660 int i, j;
661
662 for (i = 0; i < 3; i++) {
663 for (j = 0; j < 5; j++)
664 model_init(&ctx->btype[i].bt_model[j], 5);
665 model_init(&ctx->fill_coder[i].coef_model, 12);
666 model256_init(&ctx->image_coder[i].esc_model);
667 model256_init(&ctx->image_coder[i].vec_entry_model);
668 model_init(&ctx->image_coder[i].vec_size_model, 3);
669 for (j = 0; j < 125; j++)
670 model_init(&ctx->image_coder[i].vq_model[j], 5);
671 model_init(&ctx->dct_coder[i].dc_model, 12);
672 model256_init(&ctx->dct_coder[i].ac_model);
673 model_init(&ctx->haar_coder[i].coef_hi_model, 12);
674 model256_init(&ctx->haar_coder[i].coef_model);
675 }
676}
677
678static int mss3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
679 AVPacket *avpkt)
680{
681 const uint8_t *buf = avpkt->data;
682 int buf_size = avpkt->size;
683 MSS3Context *c = avctx->priv_data;
684 RangeCoder *acoder = &c->coder;
685 GetByteContext gb;
686 uint8_t *dst[3];
687 int dec_width, dec_height, dec_x, dec_y, quality, keyframe;
688 int x, y, i, mb_width, mb_height, blk_size, btype;
689 int ret;
690
691 if (buf_size < HEADER_SIZE) {
692 av_log(avctx, AV_LOG_ERROR,
693 "Frame should have at least %d bytes, got %d instead\n",
694 HEADER_SIZE, buf_size);
695 return AVERROR_INVALIDDATA;
696 }
697
698 bytestream2_init(&gb, buf, buf_size);
699 keyframe = bytestream2_get_be32(&gb);
700 if (keyframe & ~0x301) {
701 av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe);
702 return AVERROR_INVALIDDATA;
703 }
704 keyframe = !(keyframe & 1);
705 bytestream2_skip(&gb, 6);
706 dec_x = bytestream2_get_be16(&gb);
707 dec_y = bytestream2_get_be16(&gb);
708 dec_width = bytestream2_get_be16(&gb);
709 dec_height = bytestream2_get_be16(&gb);
710
711 if (dec_x + dec_width > avctx->width ||
712 dec_y + dec_height > avctx->height ||
713 (dec_width | dec_height) & 0xF) {
714 av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n",
715 dec_width, dec_height, dec_x, dec_y);
716 return AVERROR_INVALIDDATA;
717 }
718 bytestream2_skip(&gb, 4);
719 quality = bytestream2_get_byte(&gb);
720 if (quality < 1 || quality > 100) {
721 av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
722 return AVERROR_INVALIDDATA;
723 }
724 bytestream2_skip(&gb, 4);
725
726 if (keyframe && !bytestream2_get_bytes_left(&gb)) {
727 av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n");
728 return AVERROR_INVALIDDATA;
729 }
730 if (!keyframe && c->got_error)
731 return buf_size;
732 c->got_error = 0;
733
734 if ((ret = ff_reget_buffer(avctx, c->pic)) < 0)
735 return ret;
736 c->pic->key_frame = keyframe;
737 c->pic->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
738 if (!bytestream2_get_bytes_left(&gb)) {
739 if ((ret = av_frame_ref(data, c->pic)) < 0)
740 return ret;
741 *got_frame = 1;
742
743 return buf_size;
744 }
745
746 reset_coders(c, quality);
747
748 rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE);
749
750 mb_width = dec_width >> 4;
751 mb_height = dec_height >> 4;
752 dst[0] = c->pic->data[0] + dec_x + dec_y * c->pic->linesize[0];
753 dst[1] = c->pic->data[1] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[1];
754 dst[2] = c->pic->data[2] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[2];
755 for (y = 0; y < mb_height; y++) {
756 for (x = 0; x < mb_width; x++) {
757 for (i = 0; i < 3; i++) {
758 blk_size = 8 << !i;
759
760 btype = decode_block_type(acoder, c->btype + i);
761 switch (btype) {
762 case FILL_BLOCK:
763 decode_fill_block(acoder, c->fill_coder + i,
764 dst[i] + x * blk_size,
765 c->pic->linesize[i], blk_size);
766 break;
767 case IMAGE_BLOCK:
768 decode_image_block(acoder, c->image_coder + i,
769 dst[i] + x * blk_size,
770 c->pic->linesize[i], blk_size);
771 break;
772 case DCT_BLOCK:
773 decode_dct_block(acoder, c->dct_coder + i,
774 dst[i] + x * blk_size,
775 c->pic->linesize[i], blk_size,
776 c->dctblock, x, y);
777 break;
778 case HAAR_BLOCK:
779 decode_haar_block(acoder, c->haar_coder + i,
780 dst[i] + x * blk_size,
781 c->pic->linesize[i], blk_size,
782 c->hblock);
783 break;
784 }
785 if (c->got_error || acoder->got_error) {
786 av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n",
787 x, y);
788 c->got_error = 1;
789 return AVERROR_INVALIDDATA;
790 }
791 }
792 }
793 dst[0] += c->pic->linesize[0] * 16;
794 dst[1] += c->pic->linesize[1] * 8;
795 dst[2] += c->pic->linesize[2] * 8;
796 }
797
798 if ((ret = av_frame_ref(data, c->pic)) < 0)
799 return ret;
800
801 *got_frame = 1;
802
803 return buf_size;
804}
805
806static av_cold int mss3_decode_end(AVCodecContext *avctx)
807{
808 MSS3Context * const c = avctx->priv_data;
809 int i;
810
811 av_frame_free(&c->pic);
812 for (i = 0; i < 3; i++)
813 av_freep(&c->dct_coder[i].prev_dc);
814
815 return 0;
816}
817
818static av_cold int mss3_decode_init(AVCodecContext *avctx)
819{
820 MSS3Context * const c = avctx->priv_data;
821 int i;
822
823 c->avctx = avctx;
824
825 if ((avctx->width & 0xF) || (avctx->height & 0xF)) {
826 av_log(avctx, AV_LOG_ERROR,
827 "Image dimensions should be a multiple of 16.\n");
828 return AVERROR_INVALIDDATA;
829 }
830
831 c->got_error = 0;
832 for (i = 0; i < 3; i++) {
833 int b_width = avctx->width >> (2 + !!i);
834 int b_height = avctx->height >> (2 + !!i);
835 c->dct_coder[i].prev_dc_stride = b_width;
836 c->dct_coder[i].prev_dc_height = b_height;
837 c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) *
838 b_width * b_height);
839 if (!c->dct_coder[i].prev_dc) {
840 av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
841 av_frame_free(&c->pic);
842 while (i >= 0) {
843 av_freep(&c->dct_coder[i].prev_dc);
844 i--;
845 }
846 return AVERROR(ENOMEM);
847 }
848 }
849
850 c->pic = av_frame_alloc();
851 if (!c->pic) {
852 mss3_decode_end(avctx);
853 return AVERROR(ENOMEM);
854 }
855
856 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
857
858 init_coders(c);
859
860 return 0;
861}
862
863AVCodec ff_msa1_decoder = {
864 .name = "msa1",
865 .long_name = NULL_IF_CONFIG_SMALL("MS ATC Screen"),
866 .type = AVMEDIA_TYPE_VIDEO,
867 .id = AV_CODEC_ID_MSA1,
868 .priv_data_size = sizeof(MSS3Context),
869 .init = mss3_decode_init,
870 .close = mss3_decode_end,
871 .decode = mss3_decode_frame,
872 .capabilities = CODEC_CAP_DR1,
873};