Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / proresdec_lgpl.c
CommitLineData
2ba45a60
DM
1/*
2 * Apple ProRes compatible decoder
3 *
4 * Copyright (c) 2010-2011 Maxim Poliakovski
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26 * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
27 *
28 * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
29 */
30
31#define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32
33#include <stdint.h>
34
35#include "libavutil/intmath.h"
36#include "avcodec.h"
37#include "idctdsp.h"
38#include "internal.h"
39#include "proresdata.h"
40#include "proresdsp.h"
41#include "get_bits.h"
42
43typedef struct {
44 const uint8_t *index; ///< pointers to the data of this slice
45 int slice_num;
46 int x_pos, y_pos;
47 int slice_width;
48 int prev_slice_sf; ///< scalefactor of the previous decoded slice
49 DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64];
50 DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
51 DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64];
52} ProresThreadData;
53
54typedef struct {
55 ProresDSPContext dsp;
56 AVFrame *frame;
57 ScanTable scantable;
58 int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
59
60 int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
61 int pic_format; ///< 2 = 422, 3 = 444
62 uint8_t qmat_luma[64]; ///< dequantization matrix for luma
63 uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
64 int qmat_changed; ///< 1 - global quantization matrices changed
65 int total_slices; ///< total number of slices in a picture
66 ProresThreadData *slice_data;
67 int pic_num;
68 int chroma_factor;
69 int mb_chroma_factor;
70 int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
71 int num_x_slices;
72 int num_y_slices;
73 int slice_width_factor;
74 int slice_height_factor;
75 int num_x_mbs;
76 int num_y_mbs;
77 int alpha_info;
78} ProresContext;
79
80
81static av_cold int decode_init(AVCodecContext *avctx)
82{
83 ProresContext *ctx = avctx->priv_data;
84
85 ctx->total_slices = 0;
86 ctx->slice_data = NULL;
87
88 avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE;
89 ff_proresdsp_init(&ctx->dsp, avctx);
90
91 ctx->scantable_type = -1; // set scantable type to uninitialized
92 memset(ctx->qmat_luma, 4, 64);
93 memset(ctx->qmat_chroma, 4, 64);
94
95 return 0;
96}
97
98
99static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
100 const int data_size, AVCodecContext *avctx)
101{
102 int hdr_size, version, width, height, flags;
103 const uint8_t *ptr;
104
105 hdr_size = AV_RB16(buf);
106 if (hdr_size > data_size) {
107 av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
108 return AVERROR_INVALIDDATA;
109 }
110
111 version = AV_RB16(buf + 2);
112 if (version >= 2) {
113 av_log(avctx, AV_LOG_ERROR,
114 "unsupported header version: %d\n", version);
115 return AVERROR_INVALIDDATA;
116 }
117
118 width = AV_RB16(buf + 8);
119 height = AV_RB16(buf + 10);
120 if (width != avctx->width || height != avctx->height) {
121 av_log(avctx, AV_LOG_ERROR,
122 "picture dimension changed: old: %d x %d, new: %d x %d\n",
123 avctx->width, avctx->height, width, height);
124 return AVERROR_INVALIDDATA;
125 }
126
127 ctx->frame_type = (buf[12] >> 2) & 3;
128 if (ctx->frame_type > 2) {
129 av_log(avctx, AV_LOG_ERROR,
130 "unsupported frame type: %d\n", ctx->frame_type);
131 return AVERROR_INVALIDDATA;
132 }
133
134 ctx->chroma_factor = (buf[12] >> 6) & 3;
135 ctx->mb_chroma_factor = ctx->chroma_factor + 2;
136 ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
137 ctx->alpha_info = buf[17] & 0xf;
138
139 if (ctx->alpha_info > 2) {
140 av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
141 return AVERROR_INVALIDDATA;
142 }
143 if (avctx->skip_alpha) ctx->alpha_info = 0;
144
145 switch (ctx->chroma_factor) {
146 case 2:
147 avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10
148 : AV_PIX_FMT_YUV422P10;
149 break;
150 case 3:
151 avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10
152 : AV_PIX_FMT_YUV444P10;
153 break;
154 default:
155 av_log(avctx, AV_LOG_ERROR,
156 "unsupported picture format: %d\n", ctx->pic_format);
157 return AVERROR_INVALIDDATA;
158 }
159
160 if (ctx->scantable_type != ctx->frame_type) {
161 if (!ctx->frame_type)
162 ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
163 ff_prores_progressive_scan);
164 else
165 ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
166 ff_prores_interlaced_scan);
167 ctx->scantable_type = ctx->frame_type;
168 }
169
170 if (ctx->frame_type) { /* if interlaced */
171 ctx->frame->interlaced_frame = 1;
172 ctx->frame->top_field_first = ctx->frame_type & 1;
173 } else {
174 ctx->frame->interlaced_frame = 0;
175 }
176
177 avctx->color_primaries = buf[14];
178 avctx->color_trc = buf[15];
179 avctx->colorspace = buf[16];
180
181 ctx->qmat_changed = 0;
182 ptr = buf + 20;
183 flags = buf[19];
184 if (flags & 2) {
185 if (ptr - buf > hdr_size - 64) {
186 av_log(avctx, AV_LOG_ERROR, "header data too small\n");
187 return AVERROR_INVALIDDATA;
188 }
189 if (memcmp(ctx->qmat_luma, ptr, 64)) {
190 memcpy(ctx->qmat_luma, ptr, 64);
191 ctx->qmat_changed = 1;
192 }
193 ptr += 64;
194 } else {
195 memset(ctx->qmat_luma, 4, 64);
196 ctx->qmat_changed = 1;
197 }
198
199 if (flags & 1) {
200 if (ptr - buf > hdr_size - 64) {
201 av_log(avctx, AV_LOG_ERROR, "header data too small\n");
202 return -1;
203 }
204 if (memcmp(ctx->qmat_chroma, ptr, 64)) {
205 memcpy(ctx->qmat_chroma, ptr, 64);
206 ctx->qmat_changed = 1;
207 }
208 } else {
209 memset(ctx->qmat_chroma, 4, 64);
210 ctx->qmat_changed = 1;
211 }
212
213 return hdr_size;
214}
215
216
217static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
218 const int data_size, AVCodecContext *avctx)
219{
220 int i, hdr_size, pic_data_size, num_slices;
221 int slice_width_factor, slice_height_factor;
222 int remainder, num_x_slices;
223 const uint8_t *data_ptr, *index_ptr;
224
225 hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
226 if (hdr_size < 8 || hdr_size > data_size) {
227 av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
228 return AVERROR_INVALIDDATA;
229 }
230
231 pic_data_size = AV_RB32(buf + 1);
232 if (pic_data_size > data_size) {
233 av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
234 return AVERROR_INVALIDDATA;
235 }
236
237 slice_width_factor = buf[7] >> 4;
238 slice_height_factor = buf[7] & 0xF;
239 if (slice_width_factor > 3 || slice_height_factor) {
240 av_log(avctx, AV_LOG_ERROR,
241 "unsupported slice dimension: %d x %d\n",
242 1 << slice_width_factor, 1 << slice_height_factor);
243 return AVERROR_INVALIDDATA;
244 }
245
246 ctx->slice_width_factor = slice_width_factor;
247 ctx->slice_height_factor = slice_height_factor;
248
249 ctx->num_x_mbs = (avctx->width + 15) >> 4;
250 ctx->num_y_mbs = (avctx->height +
251 (1 << (4 + ctx->frame->interlaced_frame)) - 1) >>
252 (4 + ctx->frame->interlaced_frame);
253
254 remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
255 num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
256 ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
257
258 num_slices = num_x_slices * ctx->num_y_mbs;
259 if (num_slices != AV_RB16(buf + 5)) {
260 av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
261 return AVERROR_INVALIDDATA;
262 }
263
264 if (ctx->total_slices != num_slices) {
265 av_freep(&ctx->slice_data);
266 ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
267 if (!ctx->slice_data)
268 return AVERROR(ENOMEM);
269 ctx->total_slices = num_slices;
270 }
271
272 if (hdr_size + num_slices * 2 > data_size) {
273 av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
274 return AVERROR_INVALIDDATA;
275 }
276
277 /* parse slice table allowing quick access to the slice data */
278 index_ptr = buf + hdr_size;
279 data_ptr = index_ptr + num_slices * 2;
280
281 for (i = 0; i < num_slices; i++) {
282 ctx->slice_data[i].index = data_ptr;
283 ctx->slice_data[i].prev_slice_sf = 0;
284 data_ptr += AV_RB16(index_ptr + i * 2);
285 }
286 ctx->slice_data[i].index = data_ptr;
287 ctx->slice_data[i].prev_slice_sf = 0;
288
289 if (data_ptr > buf + data_size) {
290 av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
291 return -1;
292 }
293
294 return pic_data_size;
295}
296
297
298/**
299 * Read an unsigned rice/exp golomb codeword.
300 */
301static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
302{
303 unsigned int rice_order, exp_order, switch_bits;
304 unsigned int buf, code;
305 int log, prefix_len, len;
306
307 OPEN_READER(re, gb);
308 UPDATE_CACHE(re, gb);
309 buf = GET_CACHE(re, gb);
310
311 /* number of prefix bits to switch between Rice and expGolomb */
312 switch_bits = (codebook & 3) + 1;
313 rice_order = codebook >> 5; /* rice code order */
314 exp_order = (codebook >> 2) & 7; /* exp golomb code order */
315
316 log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
317
318 if (log < switch_bits) { /* ok, we got a rice code */
319 if (!rice_order) {
320 /* shortcut for faster decoding of rice codes without remainder */
321 code = log;
322 LAST_SKIP_BITS(re, gb, log + 1);
323 } else {
324 prefix_len = log + 1;
325 code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
326 LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
327 }
328 } else { /* otherwise we got a exp golomb code */
329 len = (log << 1) - switch_bits + exp_order + 1;
330 code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
331 LAST_SKIP_BITS(re, gb, len);
332 }
333
334 CLOSE_READER(re, gb);
335
336 return code;
337}
338
339#define LSB2SIGN(x) (-((x) & 1))
340#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
341
342/**
343 * Decode DC coefficients for all blocks in a slice.
344 */
345static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
346 int nblocks)
347{
348 int16_t prev_dc;
349 int i, sign;
350 int16_t delta;
351 unsigned int code;
352
353 code = decode_vlc_codeword(gb, FIRST_DC_CB);
354 out[0] = prev_dc = TOSIGNED(code);
355
356 out += 64; /* move to the DC coeff of the next block */
357 delta = 3;
358
359 for (i = 1; i < nblocks; i++, out += 64) {
360 code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
361
362 sign = -(((delta >> 15) & 1) ^ (code & 1));
363 delta = (((code + 1) >> 1) ^ sign) - sign;
364 prev_dc += delta;
365 out[0] = prev_dc;
366 }
367}
368
369
370/**
371 * Decode AC coefficients for all blocks in a slice.
372 */
373static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out,
374 int blocks_per_slice,
375 int plane_size_factor,
376 const uint8_t *scan)
377{
378 int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
379 int max_coeffs, bits_left;
380
381 /* set initial prediction values */
382 run = 4;
383 level = 2;
384
385 max_coeffs = blocks_per_slice << 6;
386 block_mask = blocks_per_slice - 1;
387
388 for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
389 run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
390 lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
391
392 bits_left = get_bits_left(gb);
393 if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
394 return 0;
395
396 run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
397 if (run < 0)
398 return AVERROR_INVALIDDATA;
399
400 bits_left = get_bits_left(gb);
401 if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
402 return AVERROR_INVALIDDATA;
403
404 level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
405 if (level < 0)
406 return AVERROR_INVALIDDATA;
407
408 pos += run + 1;
409 if (pos >= max_coeffs)
410 break;
411
412 sign = get_sbits(gb, 1);
413 out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
414 (level ^ sign) - sign;
415 }
416
417 return 0;
418}
419
420
421/**
422 * Decode a slice plane (luma or chroma).
423 */
424static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td,
425 const uint8_t *buf,
426 int data_size, uint16_t *out_ptr,
427 int linesize, int mbs_per_slice,
428 int blocks_per_mb, int plane_size_factor,
429 const int16_t *qmat, int is_chroma)
430{
431 GetBitContext gb;
432 int16_t *block_ptr;
433 int mb_num, blocks_per_slice, ret;
434
435 blocks_per_slice = mbs_per_slice * blocks_per_mb;
436
437 memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
438
439 init_get_bits(&gb, buf, data_size << 3);
440
441 decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
442
443 ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
444 plane_size_factor, ctx->scantable.permutated);
445 if (ret < 0)
446 return ret;
447
448 /* inverse quantization, inverse transform and output */
449 block_ptr = td->blocks;
450
451 if (!is_chroma) {
452 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
453 ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
454 block_ptr += 64;
455 if (blocks_per_mb > 2) {
456 ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
457 block_ptr += 64;
458 }
459 ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
460 block_ptr += 64;
461 if (blocks_per_mb > 2) {
462 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
463 block_ptr += 64;
464 }
465 }
466 } else {
467 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
468 ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
469 block_ptr += 64;
470 ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
471 block_ptr += 64;
472 if (blocks_per_mb > 2) {
473 ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
474 block_ptr += 64;
475 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
476 block_ptr += 64;
477 }
478 }
479 }
480 return 0;
481}
482
483
484static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
485 const int num_bits)
486{
487 const int mask = (1 << num_bits) - 1;
488 int i, idx, val, alpha_val;
489
490 idx = 0;
491 alpha_val = mask;
492 do {
493 do {
494 if (get_bits1(gb))
495 val = get_bits(gb, num_bits);
496 else {
497 int sign;
498 val = get_bits(gb, num_bits == 16 ? 7 : 4);
499 sign = val & 1;
500 val = (val + 2) >> 1;
501 if (sign)
502 val = -val;
503 }
504 alpha_val = (alpha_val + val) & mask;
505 if (num_bits == 16)
506 dst[idx++] = alpha_val >> 6;
507 else
508 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
509 if (idx >= num_coeffs) {
510 break;
511 }
512 } while (get_bits1(gb));
513 val = get_bits(gb, 4);
514 if (!val)
515 val = get_bits(gb, 11);
516 if (idx + val > num_coeffs)
517 val = num_coeffs - idx;
518 if (num_bits == 16)
519 for (i = 0; i < val; i++)
520 dst[idx++] = alpha_val >> 6;
521 else
522 for (i = 0; i < val; i++)
523 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
524 } while (idx < num_coeffs);
525}
526
527/**
528 * Decode alpha slice plane.
529 */
530static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td,
531 const uint8_t *buf, int data_size,
532 uint16_t *out_ptr, int linesize,
533 int mbs_per_slice)
534{
535 GetBitContext gb;
536 int i;
537 uint16_t *block_ptr;
538
539 memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
540
541 init_get_bits(&gb, buf, data_size << 3);
542
543 if (ctx->alpha_info == 2)
544 unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16);
545 else
546 unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8);
547
548 block_ptr = td->blocks;
549
550 for (i = 0; i < 16; i++) {
551 memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
552 out_ptr += linesize >> 1;
553 block_ptr += 16 * mbs_per_slice;
554 }
555}
556
557static int decode_slice(AVCodecContext *avctx, void *tdata)
558{
559 ProresThreadData *td = tdata;
560 ProresContext *ctx = avctx->priv_data;
561 int mb_x_pos = td->x_pos;
562 int mb_y_pos = td->y_pos;
563 int pic_num = ctx->pic_num;
564 int slice_num = td->slice_num;
565 int mbs_per_slice = td->slice_width;
566 const uint8_t *buf;
567 uint8_t *y_data, *u_data, *v_data, *a_data;
568 AVFrame *pic = ctx->frame;
569 int i, sf, slice_width_factor;
570 int slice_data_size, hdr_size;
571 int y_data_size, u_data_size, v_data_size, a_data_size;
572 int y_linesize, u_linesize, v_linesize, a_linesize;
573 int coff[4];
574 int ret;
575
576 buf = ctx->slice_data[slice_num].index;
577 slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
578
579 slice_width_factor = av_log2(mbs_per_slice);
580
581 y_data = pic->data[0];
582 u_data = pic->data[1];
583 v_data = pic->data[2];
584 a_data = pic->data[3];
585 y_linesize = pic->linesize[0];
586 u_linesize = pic->linesize[1];
587 v_linesize = pic->linesize[2];
588 a_linesize = pic->linesize[3];
589
590 if (pic->interlaced_frame) {
591 if (!(pic_num ^ pic->top_field_first)) {
592 y_data += y_linesize;
593 u_data += u_linesize;
594 v_data += v_linesize;
595 if (a_data)
596 a_data += a_linesize;
597 }
598 y_linesize <<= 1;
599 u_linesize <<= 1;
600 v_linesize <<= 1;
601 a_linesize <<= 1;
602 }
603 y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
604 u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor);
605 v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor);
606 if (a_data)
607 a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
608
609 if (slice_data_size < 6) {
610 av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
611 return AVERROR_INVALIDDATA;
612 }
613
614 /* parse slice header */
615 hdr_size = buf[0] >> 3;
616 coff[0] = hdr_size;
617 y_data_size = AV_RB16(buf + 2);
618 coff[1] = coff[0] + y_data_size;
619 u_data_size = AV_RB16(buf + 4);
620 coff[2] = coff[1] + u_data_size;
621 v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2];
622 coff[3] = coff[2] + v_data_size;
623 a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0;
624
625 /* if V or alpha component size is negative that means that previous
626 component sizes are too large */
627 if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) {
628 av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
629 return AVERROR_INVALIDDATA;
630 }
631
632 sf = av_clip(buf[1], 1, 224);
633 sf = sf > 128 ? (sf - 96) << 2 : sf;
634
635 /* scale quantization matrixes according with slice's scale factor */
636 /* TODO: this can be SIMD-optimized a lot */
637 if (ctx->qmat_changed || sf != td->prev_slice_sf) {
638 td->prev_slice_sf = sf;
639 for (i = 0; i < 64; i++) {
640 td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
641 td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
642 }
643 }
644
645 /* decode luma plane */
646 ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size,
647 (uint16_t*) y_data, y_linesize,
648 mbs_per_slice, 4, slice_width_factor + 2,
649 td->qmat_luma_scaled, 0);
650
651 if (ret < 0)
652 return ret;
653
654 /* decode U chroma plane */
655 ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size,
656 (uint16_t*) u_data, u_linesize,
657 mbs_per_slice, ctx->num_chroma_blocks,
658 slice_width_factor + ctx->chroma_factor - 1,
659 td->qmat_chroma_scaled, 1);
660 if (ret < 0)
661 return ret;
662
663 /* decode V chroma plane */
664 ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size,
665 (uint16_t*) v_data, v_linesize,
666 mbs_per_slice, ctx->num_chroma_blocks,
667 slice_width_factor + ctx->chroma_factor - 1,
668 td->qmat_chroma_scaled, 1);
669 if (ret < 0)
670 return ret;
671
672 /* decode alpha plane if available */
673 if (a_data && a_data_size)
674 decode_alpha_plane(ctx, td, buf + coff[3], a_data_size,
675 (uint16_t*) a_data, a_linesize,
676 mbs_per_slice);
677
678 return 0;
679}
680
681
682static int decode_picture(ProresContext *ctx, int pic_num,
683 AVCodecContext *avctx)
684{
685 int slice_num, slice_width, x_pos, y_pos;
686
687 slice_num = 0;
688
689 ctx->pic_num = pic_num;
690 for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
691 slice_width = 1 << ctx->slice_width_factor;
692
693 for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
694 x_pos += slice_width) {
695 while (ctx->num_x_mbs - x_pos < slice_width)
696 slice_width >>= 1;
697
698 ctx->slice_data[slice_num].slice_num = slice_num;
699 ctx->slice_data[slice_num].x_pos = x_pos;
700 ctx->slice_data[slice_num].y_pos = y_pos;
701 ctx->slice_data[slice_num].slice_width = slice_width;
702
703 slice_num++;
704 }
705 }
706
707 return avctx->execute(avctx, decode_slice,
708 ctx->slice_data, NULL, slice_num,
709 sizeof(ctx->slice_data[0]));
710}
711
712
713#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
714
715static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
716 AVPacket *avpkt)
717{
718 ProresContext *ctx = avctx->priv_data;
719 const uint8_t *buf = avpkt->data;
720 int buf_size = avpkt->size;
721 int frame_hdr_size, pic_num, pic_data_size;
722
723 ctx->frame = data;
724 ctx->frame->pict_type = AV_PICTURE_TYPE_I;
725 ctx->frame->key_frame = 1;
726
727 /* check frame atom container */
728 if (buf_size < 28 || buf_size < AV_RB32(buf) ||
729 AV_RB32(buf + 4) != FRAME_ID) {
730 av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
731 return AVERROR_INVALIDDATA;
732 }
733
734 MOVE_DATA_PTR(8);
735
736 frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
737 if (frame_hdr_size < 0)
738 return AVERROR_INVALIDDATA;
739
740 MOVE_DATA_PTR(frame_hdr_size);
741
742 if (ff_get_buffer(avctx, ctx->frame, 0) < 0)
743 return -1;
744
745 for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) {
746 pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
747 if (pic_data_size < 0)
748 return AVERROR_INVALIDDATA;
749
750 if (decode_picture(ctx, pic_num, avctx))
751 return -1;
752
753 MOVE_DATA_PTR(pic_data_size);
754 }
755
756 ctx->frame = NULL;
757 *got_frame = 1;
758
759 return avpkt->size;
760}
761
762
763static av_cold int decode_close(AVCodecContext *avctx)
764{
765 ProresContext *ctx = avctx->priv_data;
766
767 av_freep(&ctx->slice_data);
768
769 return 0;
770}
771
772
773AVCodec ff_prores_lgpl_decoder = {
774 .name = "prores_lgpl",
775 .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
776 .type = AVMEDIA_TYPE_VIDEO,
777 .id = AV_CODEC_ID_PRORES,
778 .priv_data_size = sizeof(ProresContext),
779 .init = decode_init,
780 .close = decode_close,
781 .decode = decode_frame,
782 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
783};