Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / snowenc.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include "libavutil/intmath.h"
22#include "libavutil/log.h"
23#include "libavutil/opt.h"
24#include "avcodec.h"
25#include "internal.h"
26#include "snow_dwt.h"
27#include "snow.h"
28
29#include "rangecoder.h"
30#include "mathops.h"
31
32#include "mpegvideo.h"
33#include "h263.h"
34
35static av_cold int encode_init(AVCodecContext *avctx)
36{
37 SnowContext *s = avctx->priv_data;
38 int plane_index, ret;
39 int i;
40
41 if(avctx->prediction_method == DWT_97
42 && (avctx->flags & CODEC_FLAG_QSCALE)
43 && avctx->global_quality == 0){
44 av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
45 return -1;
46 }
47
48 s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
49
50 s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
51 s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
52
53 for(plane_index=0; plane_index<3; plane_index++){
54 s->plane[plane_index].diag_mc= 1;
55 s->plane[plane_index].htaps= 6;
56 s->plane[plane_index].hcoeff[0]= 40;
57 s->plane[plane_index].hcoeff[1]= -10;
58 s->plane[plane_index].hcoeff[2]= 2;
59 s->plane[plane_index].fast_mc= 1;
60 }
61
62 if ((ret = ff_snow_common_init(avctx)) < 0) {
63 ff_snow_common_end(avctx->priv_data);
64 return ret;
65 }
66 ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
67
68 ff_snow_alloc_blocks(s);
69
70 s->version=0;
71
72 s->m.avctx = avctx;
73 s->m.flags = avctx->flags;
74 s->m.bit_rate= avctx->bit_rate;
75
76 s->m.me.temp =
77 s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
78 s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
79 s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
80 s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
81 if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.obmc_scratchpad)
82 return AVERROR(ENOMEM);
83
84 ff_h263_encode_init(&s->m); //mv_penalty
85
86 s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
87
88 if(avctx->flags&CODEC_FLAG_PASS1){
89 if(!avctx->stats_out)
90 avctx->stats_out = av_mallocz(256);
91
92 if (!avctx->stats_out)
93 return AVERROR(ENOMEM);
94 }
95 if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
96 if(ff_rate_control_init(&s->m) < 0)
97 return -1;
98 }
99 s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
100
101 switch(avctx->pix_fmt){
102 case AV_PIX_FMT_YUV444P:
103// case AV_PIX_FMT_YUV422P:
104 case AV_PIX_FMT_YUV420P:
105// case AV_PIX_FMT_YUV411P:
106 case AV_PIX_FMT_YUV410P:
107 s->nb_planes = 3;
108 s->colorspace_type= 0;
109 break;
110 case AV_PIX_FMT_GRAY8:
111 s->nb_planes = 1;
112 s->colorspace_type = 1;
113 break;
114/* case AV_PIX_FMT_RGB32:
115 s->colorspace= 1;
116 break;*/
117 default:
118 av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
119 return -1;
120 }
121 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
122
123 ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
124 ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
125
126 s->input_picture = av_frame_alloc();
127 if (!s->input_picture)
128 return AVERROR(ENOMEM);
129
130 if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
131 return ret;
132
133 if(s->avctx->me_method == ME_ITER){
134 int size= s->b_width * s->b_height << 2*s->block_max_depth;
135 for(i=0; i<s->max_ref_frames; i++){
136 s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
137 s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
138 if (!s->ref_mvs[i] || !s->ref_scores[i])
139 return AVERROR(ENOMEM);
140 }
141 }
142
143 return 0;
144}
145
146//near copy & paste from dsputil, FIXME
147static int pix_sum(uint8_t * pix, int line_size, int w, int h)
148{
149 int s, i, j;
150
151 s = 0;
152 for (i = 0; i < h; i++) {
153 for (j = 0; j < w; j++) {
154 s += pix[0];
155 pix ++;
156 }
157 pix += line_size - w;
158 }
159 return s;
160}
161
162//near copy & paste from dsputil, FIXME
163static int pix_norm1(uint8_t * pix, int line_size, int w)
164{
165 int s, i, j;
166 uint32_t *sq = ff_square_tab + 256;
167
168 s = 0;
169 for (i = 0; i < w; i++) {
170 for (j = 0; j < w; j ++) {
171 s += sq[pix[0]];
172 pix ++;
173 }
174 pix += line_size - w;
175 }
176 return s;
177}
178
179static inline int get_penalty_factor(int lambda, int lambda2, int type){
180 switch(type&0xFF){
181 default:
182 case FF_CMP_SAD:
183 return lambda>>FF_LAMBDA_SHIFT;
184 case FF_CMP_DCT:
185 return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
186 case FF_CMP_W53:
187 return (4*lambda)>>(FF_LAMBDA_SHIFT);
188 case FF_CMP_W97:
189 return (2*lambda)>>(FF_LAMBDA_SHIFT);
190 case FF_CMP_SATD:
191 case FF_CMP_DCT264:
192 return (2*lambda)>>FF_LAMBDA_SHIFT;
193 case FF_CMP_RD:
194 case FF_CMP_PSNR:
195 case FF_CMP_SSE:
196 case FF_CMP_NSSE:
197 return lambda2>>FF_LAMBDA_SHIFT;
198 case FF_CMP_BIT:
199 return 1;
200 }
201}
202
203//FIXME copy&paste
204#define P_LEFT P[1]
205#define P_TOP P[2]
206#define P_TOPRIGHT P[3]
207#define P_MEDIAN P[4]
208#define P_MV1 P[9]
209#define FLAG_QPEL 1 //must be 1
210
211static int encode_q_branch(SnowContext *s, int level, int x, int y){
212 uint8_t p_buffer[1024];
213 uint8_t i_buffer[1024];
214 uint8_t p_state[sizeof(s->block_state)];
215 uint8_t i_state[sizeof(s->block_state)];
216 RangeCoder pc, ic;
217 uint8_t *pbbak= s->c.bytestream;
218 uint8_t *pbbak_start= s->c.bytestream_start;
219 int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
220 const int w= s->b_width << s->block_max_depth;
221 const int h= s->b_height << s->block_max_depth;
222 const int rem_depth= s->block_max_depth - level;
223 const int index= (x + y*w) << rem_depth;
224 const int block_w= 1<<(LOG2_MB_SIZE - level);
225 int trx= (x+1)<<rem_depth;
226 int try= (y+1)<<rem_depth;
227 const BlockNode *left = x ? &s->block[index-1] : &null_block;
228 const BlockNode *top = y ? &s->block[index-w] : &null_block;
229 const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
230 const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
231 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
232 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
233 int pl = left->color[0];
234 int pcb= left->color[1];
235 int pcr= left->color[2];
236 int pmx, pmy;
237 int mx=0, my=0;
238 int l,cr,cb;
239 const int stride= s->current_picture->linesize[0];
240 const int uvstride= s->current_picture->linesize[1];
241 uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
242 s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
243 s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
244 int P[10][2];
245 int16_t last_mv[3][2];
246 int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
247 const int shift= 1+qpel;
248 MotionEstContext *c= &s->m.me;
249 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
250 int mx_context= av_log2(2*FFABS(left->mx - top->mx));
251 int my_context= av_log2(2*FFABS(left->my - top->my));
252 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
253 int ref, best_ref, ref_score, ref_mx, ref_my;
254
255 av_assert0(sizeof(s->block_state) >= 256);
256 if(s->keyframe){
257 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
258 return 0;
259 }
260
261// clip predictors / edge ?
262
263 P_LEFT[0]= left->mx;
264 P_LEFT[1]= left->my;
265 P_TOP [0]= top->mx;
266 P_TOP [1]= top->my;
267 P_TOPRIGHT[0]= tr->mx;
268 P_TOPRIGHT[1]= tr->my;
269
270 last_mv[0][0]= s->block[index].mx;
271 last_mv[0][1]= s->block[index].my;
272 last_mv[1][0]= right->mx;
273 last_mv[1][1]= right->my;
274 last_mv[2][0]= bottom->mx;
275 last_mv[2][1]= bottom->my;
276
277 s->m.mb_stride=2;
278 s->m.mb_x=
279 s->m.mb_y= 0;
280 c->skip= 0;
281
282 av_assert1(c-> stride == stride);
283 av_assert1(c->uvstride == uvstride);
284
285 c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
286 c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
287 c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
288 c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
289
290 c->xmin = - x*block_w - 16+3;
291 c->ymin = - y*block_w - 16+3;
292 c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
293 c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
294
295 if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
296 if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
297 if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
298 if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
299 if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
300 if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
301 if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
302
303 P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
304 P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
305
306 if (!y) {
307 c->pred_x= P_LEFT[0];
308 c->pred_y= P_LEFT[1];
309 } else {
310 c->pred_x = P_MEDIAN[0];
311 c->pred_y = P_MEDIAN[1];
312 }
313
314 score= INT_MAX;
315 best_ref= 0;
316 for(ref=0; ref<s->ref_frames; ref++){
317 init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
318
319 ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
320 (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
321
322 av_assert2(ref_mx >= c->xmin);
323 av_assert2(ref_mx <= c->xmax);
324 av_assert2(ref_my >= c->ymin);
325 av_assert2(ref_my <= c->ymax);
326
327 ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
328 ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
329 ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
330 if(s->ref_mvs[ref]){
331 s->ref_mvs[ref][index][0]= ref_mx;
332 s->ref_mvs[ref][index][1]= ref_my;
333 s->ref_scores[ref][index]= ref_score;
334 }
335 if(score > ref_score){
336 score= ref_score;
337 best_ref= ref;
338 mx= ref_mx;
339 my= ref_my;
340 }
341 }
342 //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
343
344 // subpel search
345 base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
346 pc= s->c;
347 pc.bytestream_start=
348 pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
349 memcpy(p_state, s->block_state, sizeof(s->block_state));
350
351 if(level!=s->block_max_depth)
352 put_rac(&pc, &p_state[4 + s_context], 1);
353 put_rac(&pc, &p_state[1 + left->type + top->type], 0);
354 if(s->ref_frames > 1)
355 put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
356 pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
357 put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
358 put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
359 p_len= pc.bytestream - pc.bytestream_start;
360 score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
361
362 block_s= block_w*block_w;
363 sum = pix_sum(current_data[0], stride, block_w, block_w);
364 l= (sum + block_s/2)/block_s;
365 iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
366
367 if (s->nb_planes > 2) {
368 block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
369 sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
370 cb= (sum + block_s/2)/block_s;
371 // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
372 sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
373 cr= (sum + block_s/2)/block_s;
374 // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
375 }else
376 cb = cr = 0;
377
378 ic= s->c;
379 ic.bytestream_start=
380 ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
381 memcpy(i_state, s->block_state, sizeof(s->block_state));
382 if(level!=s->block_max_depth)
383 put_rac(&ic, &i_state[4 + s_context], 1);
384 put_rac(&ic, &i_state[1 + left->type + top->type], 1);
385 put_symbol(&ic, &i_state[32], l-pl , 1);
386 if (s->nb_planes > 2) {
387 put_symbol(&ic, &i_state[64], cb-pcb, 1);
388 put_symbol(&ic, &i_state[96], cr-pcr, 1);
389 }
390 i_len= ic.bytestream - ic.bytestream_start;
391 iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
392
393 av_assert1(iscore < 255*255*256 + s->lambda2*10);
394 av_assert1(iscore >= 0);
395 av_assert1(l>=0 && l<=255);
396 av_assert1(pl>=0 && pl<=255);
397
398 if(level==0){
399 int varc= iscore >> 8;
400 int vard= score >> 8;
401 if (vard <= 64 || vard < varc)
402 c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
403 else
404 c->scene_change_score+= s->m.qscale;
405 }
406
407 if(level!=s->block_max_depth){
408 put_rac(&s->c, &s->block_state[4 + s_context], 0);
409 score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
410 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
411 score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
412 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
413 score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
414
415 if(score2 < score && score2 < iscore)
416 return score2;
417 }
418
419 if(iscore < score){
420 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
421 memcpy(pbbak, i_buffer, i_len);
422 s->c= ic;
423 s->c.bytestream_start= pbbak_start;
424 s->c.bytestream= pbbak + i_len;
425 set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
426 memcpy(s->block_state, i_state, sizeof(s->block_state));
427 return iscore;
428 }else{
429 memcpy(pbbak, p_buffer, p_len);
430 s->c= pc;
431 s->c.bytestream_start= pbbak_start;
432 s->c.bytestream= pbbak + p_len;
433 set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
434 memcpy(s->block_state, p_state, sizeof(s->block_state));
435 return score;
436 }
437}
438
439static void encode_q_branch2(SnowContext *s, int level, int x, int y){
440 const int w= s->b_width << s->block_max_depth;
441 const int rem_depth= s->block_max_depth - level;
442 const int index= (x + y*w) << rem_depth;
443 int trx= (x+1)<<rem_depth;
444 BlockNode *b= &s->block[index];
445 const BlockNode *left = x ? &s->block[index-1] : &null_block;
446 const BlockNode *top = y ? &s->block[index-w] : &null_block;
447 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
448 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
449 int pl = left->color[0];
450 int pcb= left->color[1];
451 int pcr= left->color[2];
452 int pmx, pmy;
453 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
454 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
455 int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
456 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
457
458 if(s->keyframe){
459 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
460 return;
461 }
462
463 if(level!=s->block_max_depth){
464 if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
465 put_rac(&s->c, &s->block_state[4 + s_context], 1);
466 }else{
467 put_rac(&s->c, &s->block_state[4 + s_context], 0);
468 encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
469 encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
470 encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
471 encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
472 return;
473 }
474 }
475 if(b->type & BLOCK_INTRA){
476 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
477 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
478 put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
479 if (s->nb_planes > 2) {
480 put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
481 put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
482 }
483 set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
484 }else{
485 pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
486 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
487 if(s->ref_frames > 1)
488 put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
489 put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
490 put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
491 set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
492 }
493}
494
495static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
496 int i, x2, y2;
497 Plane *p= &s->plane[plane_index];
498 const int block_size = MB_SIZE >> s->block_max_depth;
499 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
500 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
501 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
502 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
503 const int ref_stride= s->current_picture->linesize[plane_index];
504 uint8_t *src= s-> input_picture->data[plane_index];
505 IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
506 const int b_stride = s->b_width << s->block_max_depth;
507 const int w= p->width;
508 const int h= p->height;
509 int index= mb_x + mb_y*b_stride;
510 BlockNode *b= &s->block[index];
511 BlockNode backup= *b;
512 int ab=0;
513 int aa=0;
514
515 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
516
517 b->type|= BLOCK_INTRA;
518 b->color[plane_index]= 0;
519 memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
520
521 for(i=0; i<4; i++){
522 int mb_x2= mb_x + (i &1) - 1;
523 int mb_y2= mb_y + (i>>1) - 1;
524 int x= block_w*mb_x2 + block_w/2;
525 int y= block_h*mb_y2 + block_h/2;
526
527 add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
528 x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
529
530 for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
531 for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
532 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
533 int obmc_v= obmc[index];
534 int d;
535 if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
536 if(x<0) obmc_v += obmc[index + block_w];
537 if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
538 if(x+block_w>w) obmc_v += obmc[index - block_w];
539 //FIXME precalculate this or simplify it somehow else
540
541 d = -dst[index] + (1<<(FRAC_BITS-1));
542 dst[index] = d;
543 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
544 aa += obmc_v * obmc_v; //FIXME precalculate this
545 }
546 }
547 }
548 *b= backup;
549
550 return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
551}
552
553static inline int get_block_bits(SnowContext *s, int x, int y, int w){
554 const int b_stride = s->b_width << s->block_max_depth;
555 const int b_height = s->b_height<< s->block_max_depth;
556 int index= x + y*b_stride;
557 const BlockNode *b = &s->block[index];
558 const BlockNode *left = x ? &s->block[index-1] : &null_block;
559 const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
560 const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
561 const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
562 int dmx, dmy;
563// int mx_context= av_log2(2*FFABS(left->mx - top->mx));
564// int my_context= av_log2(2*FFABS(left->my - top->my));
565
566 if(x<0 || x>=b_stride || y>=b_height)
567 return 0;
568/*
5691 0 0
57001X 1-2 1
571001XX 3-6 2-3
5720001XXX 7-14 4-7
57300001XXXX 15-30 8-15
574*/
575//FIXME try accurate rate
576//FIXME intra and inter predictors if surrounding blocks are not the same type
577 if(b->type & BLOCK_INTRA){
578 return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
579 + av_log2(2*FFABS(left->color[1] - b->color[1]))
580 + av_log2(2*FFABS(left->color[2] - b->color[2])));
581 }else{
582 pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
583 dmx-= b->mx;
584 dmy-= b->my;
585 return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
586 + av_log2(2*FFABS(dmy))
587 + av_log2(2*b->ref));
588 }
589}
590
591static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
592 Plane *p= &s->plane[plane_index];
593 const int block_size = MB_SIZE >> s->block_max_depth;
594 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
595 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
596 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
597 const int ref_stride= s->current_picture->linesize[plane_index];
598 uint8_t *dst= s->current_picture->data[plane_index];
599 uint8_t *src= s-> input_picture->data[plane_index];
600 IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
601 uint8_t *cur = s->scratchbuf;
602 uint8_t *tmp = s->emu_edge_buffer;
603 const int b_stride = s->b_width << s->block_max_depth;
604 const int b_height = s->b_height<< s->block_max_depth;
605 const int w= p->width;
606 const int h= p->height;
607 int distortion;
608 int rate= 0;
609 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
610 int sx= block_w*mb_x - block_w/2;
611 int sy= block_h*mb_y - block_h/2;
612 int x0= FFMAX(0,-sx);
613 int y0= FFMAX(0,-sy);
614 int x1= FFMIN(block_w*2, w-sx);
615 int y1= FFMIN(block_h*2, h-sy);
616 int i,x,y;
617
618 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
619
620 ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
621
622 for(y=y0; y<y1; y++){
623 const uint8_t *obmc1= obmc_edged[y];
624 const IDWTELEM *pred1 = pred + y*obmc_stride;
625 uint8_t *cur1 = cur + y*ref_stride;
626 uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
627 for(x=x0; x<x1; x++){
628#if FRAC_BITS >= LOG2_OBMC_MAX
629 int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
630#else
631 int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
632#endif
633 v = (v + pred1[x]) >> FRAC_BITS;
634 if(v&(~255)) v= ~(v>>31);
635 dst1[x] = v;
636 }
637 }
638
639 /* copy the regions where obmc[] = (uint8_t)256 */
640 if(LOG2_OBMC_MAX == 8
641 && (mb_x == 0 || mb_x == b_stride-1)
642 && (mb_y == 0 || mb_y == b_height-1)){
643 if(mb_x == 0)
644 x1 = block_w;
645 else
646 x0 = block_w;
647 if(mb_y == 0)
648 y1 = block_h;
649 else
650 y0 = block_h;
651 for(y=y0; y<y1; y++)
652 memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
653 }
654
655 if(block_w==16){
656 /* FIXME rearrange dsputil to fit 32x32 cmp functions */
657 /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
658 /* FIXME cmps overlap but do not cover the wavelet's whole support.
659 * So improving the score of one block is not strictly guaranteed
660 * to improve the score of the whole frame, thus iterative motion
661 * estimation does not always converge. */
662 if(s->avctx->me_cmp == FF_CMP_W97)
663 distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
664 else if(s->avctx->me_cmp == FF_CMP_W53)
665 distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
666 else{
667 distortion = 0;
668 for(i=0; i<4; i++){
669 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
670 distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
671 }
672 }
673 }else{
674 av_assert2(block_w==8);
675 distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
676 }
677
678 if(plane_index==0){
679 for(i=0; i<4; i++){
680/* ..RRr
681 * .RXx.
682 * rxx..
683 */
684 rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
685 }
686 if(mb_x == b_stride-2)
687 rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
688 }
689 return distortion + rate*penalty_factor;
690}
691
692static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
693 int i, y2;
694 Plane *p= &s->plane[plane_index];
695 const int block_size = MB_SIZE >> s->block_max_depth;
696 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
697 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
698 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
699 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
700 const int ref_stride= s->current_picture->linesize[plane_index];
701 uint8_t *dst= s->current_picture->data[plane_index];
702 uint8_t *src= s-> input_picture->data[plane_index];
703 //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
704 // const has only been removed from zero_dst to suppress a warning
705 static IDWTELEM zero_dst[4096]; //FIXME
706 const int b_stride = s->b_width << s->block_max_depth;
707 const int w= p->width;
708 const int h= p->height;
709 int distortion= 0;
710 int rate= 0;
711 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
712
713 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
714
715 for(i=0; i<9; i++){
716 int mb_x2= mb_x + (i%3) - 1;
717 int mb_y2= mb_y + (i/3) - 1;
718 int x= block_w*mb_x2 + block_w/2;
719 int y= block_h*mb_y2 + block_h/2;
720
721 add_yblock(s, 0, NULL, zero_dst, dst, obmc,
722 x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
723
724 //FIXME find a cleaner/simpler way to skip the outside stuff
725 for(y2= y; y2<0; y2++)
726 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
727 for(y2= h; y2<y+block_h; y2++)
728 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
729 if(x<0){
730 for(y2= y; y2<y+block_h; y2++)
731 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
732 }
733 if(x+block_w > w){
734 for(y2= y; y2<y+block_h; y2++)
735 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
736 }
737
738 av_assert1(block_w== 8 || block_w==16);
739 distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
740 }
741
742 if(plane_index==0){
743 BlockNode *b= &s->block[mb_x+mb_y*b_stride];
744 int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
745
746/* ..RRRr
747 * .RXXx.
748 * .RXXx.
749 * rxxx.
750 */
751 if(merged)
752 rate = get_block_bits(s, mb_x, mb_y, 2);
753 for(i=merged?4:0; i<9; i++){
754 static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
755 rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
756 }
757 }
758 return distortion + rate*penalty_factor;
759}
760
761static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
762 const int w= b->width;
763 const int h= b->height;
764 int x, y;
765
766 if(1){
767 int run=0;
768 int *runs = s->run_buffer;
769 int run_index=0;
770 int max_index;
771
772 for(y=0; y<h; y++){
773 for(x=0; x<w; x++){
774 int v, p=0;
775 int /*ll=0, */l=0, lt=0, t=0, rt=0;
776 v= src[x + y*stride];
777
778 if(y){
779 t= src[x + (y-1)*stride];
780 if(x){
781 lt= src[x - 1 + (y-1)*stride];
782 }
783 if(x + 1 < w){
784 rt= src[x + 1 + (y-1)*stride];
785 }
786 }
787 if(x){
788 l= src[x - 1 + y*stride];
789 /*if(x > 1){
790 if(orientation==1) ll= src[y + (x-2)*stride];
791 else ll= src[x - 2 + y*stride];
792 }*/
793 }
794 if(parent){
795 int px= x>>1;
796 int py= y>>1;
797 if(px<b->parent->width && py<b->parent->height)
798 p= parent[px + py*2*stride];
799 }
800 if(!(/*ll|*/l|lt|t|rt|p)){
801 if(v){
802 runs[run_index++]= run;
803 run=0;
804 }else{
805 run++;
806 }
807 }
808 }
809 }
810 max_index= run_index;
811 runs[run_index++]= run;
812 run_index=0;
813 run= runs[run_index++];
814
815 put_symbol2(&s->c, b->state[30], max_index, 0);
816 if(run_index <= max_index)
817 put_symbol2(&s->c, b->state[1], run, 3);
818
819 for(y=0; y<h; y++){
820 if(s->c.bytestream_end - s->c.bytestream < w*40){
821 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
822 return -1;
823 }
824 for(x=0; x<w; x++){
825 int v, p=0;
826 int /*ll=0, */l=0, lt=0, t=0, rt=0;
827 v= src[x + y*stride];
828
829 if(y){
830 t= src[x + (y-1)*stride];
831 if(x){
832 lt= src[x - 1 + (y-1)*stride];
833 }
834 if(x + 1 < w){
835 rt= src[x + 1 + (y-1)*stride];
836 }
837 }
838 if(x){
839 l= src[x - 1 + y*stride];
840 /*if(x > 1){
841 if(orientation==1) ll= src[y + (x-2)*stride];
842 else ll= src[x - 2 + y*stride];
843 }*/
844 }
845 if(parent){
846 int px= x>>1;
847 int py= y>>1;
848 if(px<b->parent->width && py<b->parent->height)
849 p= parent[px + py*2*stride];
850 }
851 if(/*ll|*/l|lt|t|rt|p){
852 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
853
854 put_rac(&s->c, &b->state[0][context], !!v);
855 }else{
856 if(!run){
857 run= runs[run_index++];
858
859 if(run_index <= max_index)
860 put_symbol2(&s->c, b->state[1], run, 3);
861 av_assert2(v);
862 }else{
863 run--;
864 av_assert2(!v);
865 }
866 }
867 if(v){
868 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
869 int l2= 2*FFABS(l) + (l<0);
870 int t2= 2*FFABS(t) + (t<0);
871
872 put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
873 put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
874 }
875 }
876 }
877 }
878 return 0;
879}
880
881static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
882// encode_subband_qtree(s, b, src, parent, stride, orientation);
883// encode_subband_z0run(s, b, src, parent, stride, orientation);
884 return encode_subband_c0run(s, b, src, parent, stride, orientation);
885// encode_subband_dzr(s, b, src, parent, stride, orientation);
886}
887
888static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
889 const int b_stride= s->b_width << s->block_max_depth;
890 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
891 BlockNode backup= *block;
892 unsigned value;
893 int rd, index;
894
895 av_assert2(mb_x>=0 && mb_y>=0);
896 av_assert2(mb_x<b_stride);
897
898 if(intra){
899 block->color[0] = p[0];
900 block->color[1] = p[1];
901 block->color[2] = p[2];
902 block->type |= BLOCK_INTRA;
903 }else{
904 index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
905 value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
906 if(s->me_cache[index] == value)
907 return 0;
908 s->me_cache[index]= value;
909
910 block->mx= p[0];
911 block->my= p[1];
912 block->type &= ~BLOCK_INTRA;
913 }
914
915 rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
916
917//FIXME chroma
918 if(rd < *best_rd){
919 *best_rd= rd;
920 return 1;
921 }else{
922 *block= backup;
923 return 0;
924 }
925}
926
927/* special case for int[2] args we discard afterwards,
928 * fixes compilation problem with gcc 2.95 */
929static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
930 int p[2] = {p0, p1};
931 return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
932}
933
934static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
935 const int b_stride= s->b_width << s->block_max_depth;
936 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
937 BlockNode backup[4];
938 unsigned value;
939 int rd, index;
940
941 /* We don't initialize backup[] during variable declaration, because
942 * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
943 * 'int16_t'". */
944 backup[0] = block[0];
945 backup[1] = block[1];
946 backup[2] = block[b_stride];
947 backup[3] = block[b_stride + 1];
948
949 av_assert2(mb_x>=0 && mb_y>=0);
950 av_assert2(mb_x<b_stride);
951 av_assert2(((mb_x|mb_y)&1) == 0);
952
953 index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
954 value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
955 if(s->me_cache[index] == value)
956 return 0;
957 s->me_cache[index]= value;
958
959 block->mx= p0;
960 block->my= p1;
961 block->ref= ref;
962 block->type &= ~BLOCK_INTRA;
963 block[1]= block[b_stride]= block[b_stride+1]= *block;
964
965 rd= get_4block_rd(s, mb_x, mb_y, 0);
966
967//FIXME chroma
968 if(rd < *best_rd){
969 *best_rd= rd;
970 return 1;
971 }else{
972 block[0]= backup[0];
973 block[1]= backup[1];
974 block[b_stride]= backup[2];
975 block[b_stride+1]= backup[3];
976 return 0;
977 }
978}
979
980static void iterative_me(SnowContext *s){
981 int pass, mb_x, mb_y;
982 const int b_width = s->b_width << s->block_max_depth;
983 const int b_height= s->b_height << s->block_max_depth;
984 const int b_stride= b_width;
985 int color[3];
986
987 {
988 RangeCoder r = s->c;
989 uint8_t state[sizeof(s->block_state)];
990 memcpy(state, s->block_state, sizeof(s->block_state));
991 for(mb_y= 0; mb_y<s->b_height; mb_y++)
992 for(mb_x= 0; mb_x<s->b_width; mb_x++)
993 encode_q_branch(s, 0, mb_x, mb_y);
994 s->c = r;
995 memcpy(s->block_state, state, sizeof(s->block_state));
996 }
997
998 for(pass=0; pass<25; pass++){
999 int change= 0;
1000
1001 for(mb_y= 0; mb_y<b_height; mb_y++){
1002 for(mb_x= 0; mb_x<b_width; mb_x++){
1003 int dia_change, i, j, ref;
1004 int best_rd= INT_MAX, ref_rd;
1005 BlockNode backup, ref_b;
1006 const int index= mb_x + mb_y * b_stride;
1007 BlockNode *block= &s->block[index];
1008 BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1009 BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1010 BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1011 BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1012 BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1013 BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1014 BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1015 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1016 const int b_w= (MB_SIZE >> s->block_max_depth);
1017 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1018
1019 if(pass && (block->type & BLOCK_OPT))
1020 continue;
1021 block->type |= BLOCK_OPT;
1022
1023 backup= *block;
1024
1025 if(!s->me_cache_generation)
1026 memset(s->me_cache, 0, sizeof(s->me_cache));
1027 s->me_cache_generation += 1<<22;
1028
1029 //FIXME precalculate
1030 {
1031 int x, y;
1032 for (y = 0; y < b_w * 2; y++)
1033 memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1034 if(mb_x==0)
1035 for(y=0; y<b_w*2; y++)
1036 memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1037 if(mb_x==b_stride-1)
1038 for(y=0; y<b_w*2; y++)
1039 memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1040 if(mb_y==0){
1041 for(x=0; x<b_w*2; x++)
1042 obmc_edged[0][x] += obmc_edged[b_w-1][x];
1043 for(y=1; y<b_w; y++)
1044 memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1045 }
1046 if(mb_y==b_height-1){
1047 for(x=0; x<b_w*2; x++)
1048 obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1049 for(y=b_w; y<b_w*2-1; y++)
1050 memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1051 }
1052 }
1053
1054 //skip stuff outside the picture
1055 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1056 uint8_t *src= s-> input_picture->data[0];
1057 uint8_t *dst= s->current_picture->data[0];
1058 const int stride= s->current_picture->linesize[0];
1059 const int block_w= MB_SIZE >> s->block_max_depth;
1060 const int block_h= MB_SIZE >> s->block_max_depth;
1061 const int sx= block_w*mb_x - block_w/2;
1062 const int sy= block_h*mb_y - block_h/2;
1063 const int w= s->plane[0].width;
1064 const int h= s->plane[0].height;
1065 int y;
1066
1067 for(y=sy; y<0; y++)
1068 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1069 for(y=h; y<sy+block_h*2; y++)
1070 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1071 if(sx<0){
1072 for(y=sy; y<sy+block_h*2; y++)
1073 memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1074 }
1075 if(sx+block_w*2 > w){
1076 for(y=sy; y<sy+block_h*2; y++)
1077 memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1078 }
1079 }
1080
1081 // intra(black) = neighbors' contribution to the current block
1082 for(i=0; i < s->nb_planes; i++)
1083 color[i]= get_dc(s, mb_x, mb_y, i);
1084
1085 // get previous score (cannot be cached due to OBMC)
1086 if(pass > 0 && (block->type&BLOCK_INTRA)){
1087 int color0[3]= {block->color[0], block->color[1], block->color[2]};
1088 check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1089 }else
1090 check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1091
1092 ref_b= *block;
1093 ref_rd= best_rd;
1094 for(ref=0; ref < s->ref_frames; ref++){
1095 int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1096 if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1097 continue;
1098 block->ref= ref;
1099 best_rd= INT_MAX;
1100
1101 check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1102 check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1103 if(tb)
1104 check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1105 if(lb)
1106 check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1107 if(rb)
1108 check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1109 if(bb)
1110 check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1111
1112 /* fullpel ME */
1113 //FIXME avoid subpel interpolation / round to nearest integer
1114 do{
1115 dia_change=0;
1116 for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1117 for(j=0; j<i; j++){
1118 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1119 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1120 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1121 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1122 }
1123 }
1124 }while(dia_change);
1125 /* subpel ME */
1126 do{
1127 static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1128 dia_change=0;
1129 for(i=0; i<8; i++)
1130 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1131 }while(dia_change);
1132 //FIXME or try the standard 2 pass qpel or similar
1133
1134 mvr[0][0]= block->mx;
1135 mvr[0][1]= block->my;
1136 if(ref_rd > best_rd){
1137 ref_rd= best_rd;
1138 ref_b= *block;
1139 }
1140 }
1141 best_rd= ref_rd;
1142 *block= ref_b;
1143 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1144 //FIXME RD style color selection
1145 if(!same_block(block, &backup)){
1146 if(tb ) tb ->type &= ~BLOCK_OPT;
1147 if(lb ) lb ->type &= ~BLOCK_OPT;
1148 if(rb ) rb ->type &= ~BLOCK_OPT;
1149 if(bb ) bb ->type &= ~BLOCK_OPT;
1150 if(tlb) tlb->type &= ~BLOCK_OPT;
1151 if(trb) trb->type &= ~BLOCK_OPT;
1152 if(blb) blb->type &= ~BLOCK_OPT;
1153 if(brb) brb->type &= ~BLOCK_OPT;
1154 change ++;
1155 }
1156 }
1157 }
1158 av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1159 if(!change)
1160 break;
1161 }
1162
1163 if(s->block_max_depth == 1){
1164 int change= 0;
1165 for(mb_y= 0; mb_y<b_height; mb_y+=2){
1166 for(mb_x= 0; mb_x<b_width; mb_x+=2){
1167 int i;
1168 int best_rd, init_rd;
1169 const int index= mb_x + mb_y * b_stride;
1170 BlockNode *b[4];
1171
1172 b[0]= &s->block[index];
1173 b[1]= b[0]+1;
1174 b[2]= b[0]+b_stride;
1175 b[3]= b[2]+1;
1176 if(same_block(b[0], b[1]) &&
1177 same_block(b[0], b[2]) &&
1178 same_block(b[0], b[3]))
1179 continue;
1180
1181 if(!s->me_cache_generation)
1182 memset(s->me_cache, 0, sizeof(s->me_cache));
1183 s->me_cache_generation += 1<<22;
1184
1185 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1186
1187 //FIXME more multiref search?
1188 check_4block_inter(s, mb_x, mb_y,
1189 (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1190 (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1191
1192 for(i=0; i<4; i++)
1193 if(!(b[i]->type&BLOCK_INTRA))
1194 check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1195
1196 if(init_rd != best_rd)
1197 change++;
1198 }
1199 }
1200 av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1201 }
1202}
1203
1204static void encode_blocks(SnowContext *s, int search){
1205 int x, y;
1206 int w= s->b_width;
1207 int h= s->b_height;
1208
1209 if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1210 iterative_me(s);
1211
1212 for(y=0; y<h; y++){
1213 if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1214 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1215 return;
1216 }
1217 for(x=0; x<w; x++){
1218 if(s->avctx->me_method == ME_ITER || !search)
1219 encode_q_branch2(s, 0, x, y);
1220 else
1221 encode_q_branch (s, 0, x, y);
1222 }
1223 }
1224}
1225
1226static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1227 const int w= b->width;
1228 const int h= b->height;
1229 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1230 const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1231 int x,y, thres1, thres2;
1232
1233 if(s->qlog == LOSSLESS_QLOG){
1234 for(y=0; y<h; y++)
1235 for(x=0; x<w; x++)
1236 dst[x + y*stride]= src[x + y*stride];
1237 return;
1238 }
1239
1240 bias= bias ? 0 : (3*qmul)>>3;
1241 thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1242 thres2= 2*thres1;
1243
1244 if(!bias){
1245 for(y=0; y<h; y++){
1246 for(x=0; x<w; x++){
1247 int i= src[x + y*stride];
1248
1249 if((unsigned)(i+thres1) > thres2){
1250 if(i>=0){
1251 i<<= QEXPSHIFT;
1252 i/= qmul; //FIXME optimize
1253 dst[x + y*stride]= i;
1254 }else{
1255 i= -i;
1256 i<<= QEXPSHIFT;
1257 i/= qmul; //FIXME optimize
1258 dst[x + y*stride]= -i;
1259 }
1260 }else
1261 dst[x + y*stride]= 0;
1262 }
1263 }
1264 }else{
1265 for(y=0; y<h; y++){
1266 for(x=0; x<w; x++){
1267 int i= src[x + y*stride];
1268
1269 if((unsigned)(i+thres1) > thres2){
1270 if(i>=0){
1271 i<<= QEXPSHIFT;
1272 i= (i + bias) / qmul; //FIXME optimize
1273 dst[x + y*stride]= i;
1274 }else{
1275 i= -i;
1276 i<<= QEXPSHIFT;
1277 i= (i + bias) / qmul; //FIXME optimize
1278 dst[x + y*stride]= -i;
1279 }
1280 }else
1281 dst[x + y*stride]= 0;
1282 }
1283 }
1284 }
1285}
1286
1287static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1288 const int w= b->width;
1289 const int h= b->height;
1290 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1291 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1292 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1293 int x,y;
1294
1295 if(s->qlog == LOSSLESS_QLOG) return;
1296
1297 for(y=0; y<h; y++){
1298 for(x=0; x<w; x++){
1299 int i= src[x + y*stride];
1300 if(i<0){
1301 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1302 }else if(i>0){
1303 src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1304 }
1305 }
1306 }
1307}
1308
1309static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1310 const int w= b->width;
1311 const int h= b->height;
1312 int x,y;
1313
1314 for(y=h-1; y>=0; y--){
1315 for(x=w-1; x>=0; x--){
1316 int i= x + y*stride;
1317
1318 if(x){
1319 if(use_median){
1320 if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1321 else src[i] -= src[i - 1];
1322 }else{
1323 if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1324 else src[i] -= src[i - 1];
1325 }
1326 }else{
1327 if(y) src[i] -= src[i - stride];
1328 }
1329 }
1330 }
1331}
1332
1333static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1334 const int w= b->width;
1335 const int h= b->height;
1336 int x,y;
1337
1338 for(y=0; y<h; y++){
1339 for(x=0; x<w; x++){
1340 int i= x + y*stride;
1341
1342 if(x){
1343 if(use_median){
1344 if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1345 else src[i] += src[i - 1];
1346 }else{
1347 if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1348 else src[i] += src[i - 1];
1349 }
1350 }else{
1351 if(y) src[i] += src[i - stride];
1352 }
1353 }
1354 }
1355}
1356
1357static void encode_qlogs(SnowContext *s){
1358 int plane_index, level, orientation;
1359
1360 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1361 for(level=0; level<s->spatial_decomposition_count; level++){
1362 for(orientation=level ? 1:0; orientation<4; orientation++){
1363 if(orientation==2) continue;
1364 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1365 }
1366 }
1367 }
1368}
1369
1370static void encode_header(SnowContext *s){
1371 int plane_index, i;
1372 uint8_t kstate[32];
1373
1374 memset(kstate, MID_STATE, sizeof(kstate));
1375
1376 put_rac(&s->c, kstate, s->keyframe);
1377 if(s->keyframe || s->always_reset){
1378 ff_snow_reset_contexts(s);
1379 s->last_spatial_decomposition_type=
1380 s->last_qlog=
1381 s->last_qbias=
1382 s->last_mv_scale=
1383 s->last_block_max_depth= 0;
1384 for(plane_index=0; plane_index<2; plane_index++){
1385 Plane *p= &s->plane[plane_index];
1386 p->last_htaps=0;
1387 p->last_diag_mc=0;
1388 memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1389 }
1390 }
1391 if(s->keyframe){
1392 put_symbol(&s->c, s->header_state, s->version, 0);
1393 put_rac(&s->c, s->header_state, s->always_reset);
1394 put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1395 put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1396 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1397 put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1398 if (s->nb_planes > 2) {
1399 put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1400 put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1401 }
1402 put_rac(&s->c, s->header_state, s->spatial_scalability);
1403// put_rac(&s->c, s->header_state, s->rate_scalability);
1404 put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1405
1406 encode_qlogs(s);
1407 }
1408
1409 if(!s->keyframe){
1410 int update_mc=0;
1411 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1412 Plane *p= &s->plane[plane_index];
1413 update_mc |= p->last_htaps != p->htaps;
1414 update_mc |= p->last_diag_mc != p->diag_mc;
1415 update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1416 }
1417 put_rac(&s->c, s->header_state, update_mc);
1418 if(update_mc){
1419 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1420 Plane *p= &s->plane[plane_index];
1421 put_rac(&s->c, s->header_state, p->diag_mc);
1422 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1423 for(i= p->htaps/2; i; i--)
1424 put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1425 }
1426 }
1427 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1428 put_rac(&s->c, s->header_state, 1);
1429 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1430 encode_qlogs(s);
1431 }else
1432 put_rac(&s->c, s->header_state, 0);
1433 }
1434
1435 put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1436 put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1437 put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1438 put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1439 put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1440
1441}
1442
1443static void update_last_header_values(SnowContext *s){
1444 int plane_index;
1445
1446 if(!s->keyframe){
1447 for(plane_index=0; plane_index<2; plane_index++){
1448 Plane *p= &s->plane[plane_index];
1449 p->last_diag_mc= p->diag_mc;
1450 p->last_htaps = p->htaps;
1451 memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1452 }
1453 }
1454
1455 s->last_spatial_decomposition_type = s->spatial_decomposition_type;
1456 s->last_qlog = s->qlog;
1457 s->last_qbias = s->qbias;
1458 s->last_mv_scale = s->mv_scale;
1459 s->last_block_max_depth = s->block_max_depth;
1460 s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1461}
1462
1463static int qscale2qlog(int qscale){
1464 return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1465 + 61*QROOT/8; ///< 64 > 60
1466}
1467
1468static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1469{
1470 /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1471 * FIXME we know exact mv bits at this point,
1472 * but ratecontrol isn't set up to include them. */
1473 uint32_t coef_sum= 0;
1474 int level, orientation, delta_qlog;
1475
1476 for(level=0; level<s->spatial_decomposition_count; level++){
1477 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1478 SubBand *b= &s->plane[0].band[level][orientation];
1479 IDWTELEM *buf= b->ibuf;
1480 const int w= b->width;
1481 const int h= b->height;
1482 const int stride= b->stride;
1483 const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1484 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1485 const int qdiv= (1<<16)/qmul;
1486 int x, y;
1487 //FIXME this is ugly
1488 for(y=0; y<h; y++)
1489 for(x=0; x<w; x++)
1490 buf[x+y*stride]= b->buf[x+y*stride];
1491 if(orientation==0)
1492 decorrelate(s, b, buf, stride, 1, 0);
1493 for(y=0; y<h; y++)
1494 for(x=0; x<w; x++)
1495 coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1496 }
1497 }
1498
1499 /* ugly, ratecontrol just takes a sqrt again */
1500 av_assert0(coef_sum < INT_MAX);
1501 coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1502
1503 if(pict->pict_type == AV_PICTURE_TYPE_I){
1504 s->m.current_picture.mb_var_sum= coef_sum;
1505 s->m.current_picture.mc_mb_var_sum= 0;
1506 }else{
1507 s->m.current_picture.mc_mb_var_sum= coef_sum;
1508 s->m.current_picture.mb_var_sum= 0;
1509 }
1510
1511 pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1512 if (pict->quality < 0)
1513 return INT_MIN;
1514 s->lambda= pict->quality * 3/2;
1515 delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1516 s->qlog+= delta_qlog;
1517 return delta_qlog;
1518}
1519
1520static void calculate_visual_weight(SnowContext *s, Plane *p){
1521 int width = p->width;
1522 int height= p->height;
1523 int level, orientation, x, y;
1524
1525 for(level=0; level<s->spatial_decomposition_count; level++){
1526 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1527 SubBand *b= &p->band[level][orientation];
1528 IDWTELEM *ibuf= b->ibuf;
1529 int64_t error=0;
1530
1531 memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1532 ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1533 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1534 for(y=0; y<height; y++){
1535 for(x=0; x<width; x++){
1536 int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1537 error += d*d;
1538 }
1539 }
1540
1541 b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1542 }
1543 }
1544}
1545
1546static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1547 const AVFrame *pict, int *got_packet)
1548{
1549 SnowContext *s = avctx->priv_data;
1550 RangeCoder * const c= &s->c;
1551 AVFrame *pic = pict;
1552 const int width= s->avctx->width;
1553 const int height= s->avctx->height;
1554 int level, orientation, plane_index, i, y, ret;
1555 uint8_t rc_header_bak[sizeof(s->header_state)];
1556 uint8_t rc_block_bak[sizeof(s->block_state)];
1557
1558 if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1559 return ret;
1560
1561 ff_init_range_encoder(c, pkt->data, pkt->size);
1562 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1563
1564 for(i=0; i < s->nb_planes; i++){
1565 int hshift= i ? s->chroma_h_shift : 0;
1566 int vshift= i ? s->chroma_v_shift : 0;
1567 for(y=0; y<(height>>vshift); y++)
1568 memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1569 &pict->data[i][y * pict->linesize[i]],
1570 width>>hshift);
1571 s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1572 width >> hshift, height >> vshift,
1573 EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1574 EDGE_TOP | EDGE_BOTTOM);
1575
1576 }
1577 emms_c();
1578 s->new_picture = pict;
1579
1580 s->m.picture_number= avctx->frame_number;
1581 if(avctx->flags&CODEC_FLAG_PASS2){
1582 s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1583 s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1584 if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1585 pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1586 if (pic->quality < 0)
1587 return -1;
1588 }
1589 }else{
1590 s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1591 s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1592 }
1593
1594 if(s->pass1_rc && avctx->frame_number == 0)
1595 pic->quality = 2*FF_QP2LAMBDA;
1596 if (pic->quality) {
1597 s->qlog = qscale2qlog(pic->quality);
1598 s->lambda = pic->quality * 3/2;
1599 }
1600 if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1601 s->qlog= LOSSLESS_QLOG;
1602 s->lambda = 0;
1603 }//else keep previous frame's qlog until after motion estimation
1604
1605 if (s->current_picture->data[0] && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)) {
1606 int w = s->avctx->width;
1607 int h = s->avctx->height;
1608
1609 s->mpvencdsp.draw_edges(s->current_picture->data[0],
1610 s->current_picture->linesize[0], w , h ,
1611 EDGE_WIDTH , EDGE_WIDTH , EDGE_TOP | EDGE_BOTTOM);
1612 if (s->current_picture->data[2]) {
1613 s->mpvencdsp.draw_edges(s->current_picture->data[1],
1614 s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1615 EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1616 s->mpvencdsp.draw_edges(s->current_picture->data[2],
1617 s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1618 EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1619 }
1620 }
1621
1622 ff_snow_frame_start(s);
1623 avctx->coded_frame= s->current_picture;
1624
1625 s->m.current_picture_ptr= &s->m.current_picture;
1626 s->m.current_picture.f = s->current_picture;
1627 s->m.current_picture.f->pts = pict->pts;
1628 if(pic->pict_type == AV_PICTURE_TYPE_P){
1629 int block_width = (width +15)>>4;
1630 int block_height= (height+15)>>4;
1631 int stride= s->current_picture->linesize[0];
1632
1633 av_assert0(s->current_picture->data[0]);
1634 av_assert0(s->last_picture[0]->data[0]);
1635
1636 s->m.avctx= s->avctx;
1637 s->m. last_picture.f = s->last_picture[0];
1638 s->m. new_picture.f = s->input_picture;
1639 s->m. last_picture_ptr= &s->m. last_picture;
1640 s->m.linesize = stride;
1641 s->m.uvlinesize= s->current_picture->linesize[1];
1642 s->m.width = width;
1643 s->m.height= height;
1644 s->m.mb_width = block_width;
1645 s->m.mb_height= block_height;
1646 s->m.mb_stride= s->m.mb_width+1;
1647 s->m.b8_stride= 2*s->m.mb_width+1;
1648 s->m.f_code=1;
1649 s->m.pict_type = pic->pict_type;
1650 s->m.me_method= s->avctx->me_method;
1651 s->m.me.scene_change_score=0;
1652 s->m.flags= s->avctx->flags;
1653 s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1654 s->m.out_format= FMT_H263;
1655 s->m.unrestricted_mv= 1;
1656
1657 s->m.lambda = s->lambda;
1658 s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1659 s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1660
1661 s->m.mecc= s->mecc; //move
1662 s->m.qdsp= s->qdsp; //move
1663 s->m.hdsp = s->hdsp;
1664 ff_init_me(&s->m);
1665 s->hdsp = s->m.hdsp;
1666 s->mecc= s->m.mecc;
1667 }
1668
1669 if(s->pass1_rc){
1670 memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1671 memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1672 }
1673
1674redo_frame:
1675
1676 s->spatial_decomposition_count= 5;
1677
1678 while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1679 || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1680 s->spatial_decomposition_count--;
1681
1682 if (s->spatial_decomposition_count <= 0) {
1683 av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1684 return AVERROR(EINVAL);
1685 }
1686
1687 s->m.pict_type = pic->pict_type;
1688 s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1689
1690 ff_snow_common_init_after_header(avctx);
1691
1692 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1693 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1694 calculate_visual_weight(s, &s->plane[plane_index]);
1695 }
1696 }
1697
1698 encode_header(s);
1699 s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1700 encode_blocks(s, 1);
1701 s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1702
1703 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1704 Plane *p= &s->plane[plane_index];
1705 int w= p->width;
1706 int h= p->height;
1707 int x, y;
1708// int bits= put_bits_count(&s->c.pb);
1709
1710 if (!s->memc_only) {
1711 //FIXME optimize
1712 if(pict->data[plane_index]) //FIXME gray hack
1713 for(y=0; y<h; y++){
1714 for(x=0; x<w; x++){
1715 s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1716 }
1717 }
1718 predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1719
1720 if( plane_index==0
1721 && pic->pict_type == AV_PICTURE_TYPE_P
1722 && !(avctx->flags&CODEC_FLAG_PASS2)
1723 && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
1724 ff_init_range_encoder(c, pkt->data, pkt->size);
1725 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1726 pic->pict_type= AV_PICTURE_TYPE_I;
1727 s->keyframe=1;
1728 s->current_picture->key_frame=1;
1729 goto redo_frame;
1730 }
1731
1732 if(s->qlog == LOSSLESS_QLOG){
1733 for(y=0; y<h; y++){
1734 for(x=0; x<w; x++){
1735 s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1736 }
1737 }
1738 }else{
1739 for(y=0; y<h; y++){
1740 for(x=0; x<w; x++){
1741 s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1742 }
1743 }
1744 }
1745
1746 ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1747
1748 if(s->pass1_rc && plane_index==0){
1749 int delta_qlog = ratecontrol_1pass(s, pic);
1750 if (delta_qlog <= INT_MIN)
1751 return -1;
1752 if(delta_qlog){
1753 //reordering qlog in the bitstream would eliminate this reset
1754 ff_init_range_encoder(c, pkt->data, pkt->size);
1755 memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1756 memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1757 encode_header(s);
1758 encode_blocks(s, 0);
1759 }
1760 }
1761
1762 for(level=0; level<s->spatial_decomposition_count; level++){
1763 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1764 SubBand *b= &p->band[level][orientation];
1765
1766 quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1767 if(orientation==0)
1768 decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1769 if (!s->no_bitstream)
1770 encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1771 av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1772 if(orientation==0)
1773 correlate(s, b, b->ibuf, b->stride, 1, 0);
1774 }
1775 }
1776
1777 for(level=0; level<s->spatial_decomposition_count; level++){
1778 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1779 SubBand *b= &p->band[level][orientation];
1780
1781 dequantize(s, b, b->ibuf, b->stride);
1782 }
1783 }
1784
1785 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1786 if(s->qlog == LOSSLESS_QLOG){
1787 for(y=0; y<h; y++){
1788 for(x=0; x<w; x++){
1789 s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1790 }
1791 }
1792 }
1793 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1794 }else{
1795 //ME/MC only
1796 if(pic->pict_type == AV_PICTURE_TYPE_I){
1797 for(y=0; y<h; y++){
1798 for(x=0; x<w; x++){
1799 s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1800 pict->data[plane_index][y*pict->linesize[plane_index] + x];
1801 }
1802 }
1803 }else{
1804 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1805 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1806 }
1807 }
1808 if(s->avctx->flags&CODEC_FLAG_PSNR){
1809 int64_t error= 0;
1810
1811 if(pict->data[plane_index]) //FIXME gray hack
1812 for(y=0; y<h; y++){
1813 for(x=0; x<w; x++){
1814 int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1815 error += d*d;
1816 }
1817 }
1818 s->avctx->error[plane_index] += error;
1819 s->current_picture->error[plane_index] = error;
1820 }
1821
1822 }
1823
1824 update_last_header_values(s);
1825
1826 ff_snow_release_buffer(avctx);
1827
1828 s->current_picture->coded_picture_number = avctx->frame_number;
1829 s->current_picture->pict_type = pict->pict_type;
1830 s->current_picture->quality = pict->quality;
1831 s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1832 s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1833 s->m.current_picture.f->display_picture_number =
1834 s->m.current_picture.f->coded_picture_number = avctx->frame_number;
1835 s->m.current_picture.f->quality = pic->quality;
1836 s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1837 if(s->pass1_rc)
1838 if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1839 return -1;
1840 if(avctx->flags&CODEC_FLAG_PASS1)
1841 ff_write_pass1_stats(&s->m);
1842 s->m.last_pict_type = s->m.pict_type;
1843 avctx->frame_bits = s->m.frame_bits;
1844 avctx->mv_bits = s->m.mv_bits;
1845 avctx->misc_bits = s->m.misc_bits;
1846 avctx->p_tex_bits = s->m.p_tex_bits;
1847
1848 emms_c();
1849
1850 pkt->size = ff_rac_terminate(c);
1851 if (avctx->coded_frame->key_frame)
1852 pkt->flags |= AV_PKT_FLAG_KEY;
1853 *got_packet = 1;
1854
1855 return 0;
1856}
1857
1858static av_cold int encode_end(AVCodecContext *avctx)
1859{
1860 SnowContext *s = avctx->priv_data;
1861
1862 ff_snow_common_end(s);
1863 ff_rate_control_uninit(&s->m);
1864 av_frame_free(&s->input_picture);
1865 av_free(avctx->stats_out);
1866
1867 return 0;
1868}
1869
1870#define OFFSET(x) offsetof(SnowContext, x)
1871#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1872static const AVOption options[] = {
1873 { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1874 { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1875 { NULL },
1876};
1877
1878static const AVClass snowenc_class = {
1879 .class_name = "snow encoder",
1880 .item_name = av_default_item_name,
1881 .option = options,
1882 .version = LIBAVUTIL_VERSION_INT,
1883};
1884
1885AVCodec ff_snow_encoder = {
1886 .name = "snow",
1887 .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1888 .type = AVMEDIA_TYPE_VIDEO,
1889 .id = AV_CODEC_ID_SNOW,
1890 .priv_data_size = sizeof(SnowContext),
1891 .init = encode_init,
1892 .encode2 = encode_frame,
1893 .close = encode_end,
1894 .pix_fmts = (const enum AVPixelFormat[]){
1895 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1896 AV_PIX_FMT_GRAY8,
1897 AV_PIX_FMT_NONE
1898 },
1899 .priv_class = &snowenc_class,
1900};
1901
1902
1903#ifdef TEST
1904#undef malloc
1905#undef free
1906#undef printf
1907
1908#include "libavutil/lfg.h"
1909#include "libavutil/mathematics.h"
1910
1911int main(void){
1912#define width 256
1913#define height 256
1914 int buffer[2][width*height];
1915 SnowContext s;
1916 int i;
1917 AVLFG prng;
1918 s.spatial_decomposition_count=6;
1919 s.spatial_decomposition_type=1;
1920
1921 s.temp_dwt_buffer = av_mallocz(width * sizeof(DWTELEM));
1922 s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1923
1924 av_lfg_init(&prng, 1);
1925
1926 printf("testing 5/3 DWT\n");
1927 for(i=0; i<width*height; i++)
1928 buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1929
1930 ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1931 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1932
1933 for(i=0; i<width*height; i++)
1934 if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1935
1936 printf("testing 9/7 DWT\n");
1937 s.spatial_decomposition_type=0;
1938 for(i=0; i<width*height; i++)
1939 buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1940
1941 ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1942 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1943
1944 for(i=0; i<width*height; i++)
1945 if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1946
1947 {
1948 int level, orientation, x, y;
1949 int64_t errors[8][4];
1950 int64_t g=0;
1951
1952 memset(errors, 0, sizeof(errors));
1953 s.spatial_decomposition_count=3;
1954 s.spatial_decomposition_type=0;
1955 for(level=0; level<s.spatial_decomposition_count; level++){
1956 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1957 int w= width >> (s.spatial_decomposition_count-level);
1958 int h= height >> (s.spatial_decomposition_count-level);
1959 int stride= width << (s.spatial_decomposition_count-level);
1960 DWTELEM *buf= buffer[0];
1961 int64_t error=0;
1962
1963 if(orientation&1) buf+=w;
1964 if(orientation>1) buf+=stride>>1;
1965
1966 memset(buffer[0], 0, sizeof(int)*width*height);
1967 buf[w/2 + h/2*stride]= 256*256;
1968 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1969 for(y=0; y<height; y++){
1970 for(x=0; x<width; x++){
1971 int64_t d= buffer[0][x + y*width];
1972 error += d*d;
1973 if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
1974 }
1975 if(FFABS(height/2-y)<9 && level==2) printf("\n");
1976 }
1977 error= (int)(sqrt(error)+0.5);
1978 errors[level][orientation]= error;
1979 if(g) g=av_gcd(g, error);
1980 else g= error;
1981 }
1982 }
1983 printf("static int const visual_weight[][4]={\n");
1984 for(level=0; level<s.spatial_decomposition_count; level++){
1985 printf(" {");
1986 for(orientation=0; orientation<4; orientation++){
1987 printf("%8"PRId64",", errors[level][orientation]/g);
1988 }
1989 printf("},\n");
1990 }
1991 printf("};\n");
1992 {
1993 int level=2;
1994 int w= width >> (s.spatial_decomposition_count-level);
1995 //int h= height >> (s.spatial_decomposition_count-level);
1996 int stride= width << (s.spatial_decomposition_count-level);
1997 DWTELEM *buf= buffer[0];
1998 int64_t error=0;
1999
2000 buf+=w;
2001 buf+=stride>>1;
2002
2003 memset(buffer[0], 0, sizeof(int)*width*height);
2004 for(y=0; y<height; y++){
2005 for(x=0; x<width; x++){
2006 int tab[4]={0,2,3,1};
2007 buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2008 }
2009 }
2010 ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
2011 for(y=0; y<height; y++){
2012 for(x=0; x<width; x++){
2013 int64_t d= buffer[0][x + y*width];
2014 error += d*d;
2015 if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2016 }
2017 if(FFABS(height/2-y)<9) printf("\n");
2018 }
2019 }
2020
2021 }
2022 return 0;
2023}
2024#endif /* TEST */