Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavcodec / wma.c
CommitLineData
2ba45a60
DM
1/*
2 * WMA compatible codec
3 * Copyright (c) 2002-2007 The FFmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "libavutil/attributes.h"
23
24#include "avcodec.h"
25#include "sinewin.h"
26#include "wma.h"
27#include "wma_common.h"
28#include "wma_freqs.h"
29#include "wmadata.h"
30
31#undef NDEBUG
32#include <assert.h>
33
34/* XXX: use same run/length optimization as mpeg decoders */
35// FIXME maybe split decode / encode or pass flag
36static av_cold void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
37 float **plevel_table, uint16_t **pint_table,
38 const CoefVLCTable *vlc_table)
39{
40 int n = vlc_table->n;
41 const uint8_t *table_bits = vlc_table->huffbits;
42 const uint32_t *table_codes = vlc_table->huffcodes;
43 const uint16_t *levels_table = vlc_table->levels;
44 uint16_t *run_table, *level_table, *int_table;
45 float *flevel_table;
46 int i, l, j, k, level;
47
48 init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
49
50 run_table = av_malloc_array(n, sizeof(uint16_t));
51 level_table = av_malloc_array(n, sizeof(uint16_t));
52 flevel_table = av_malloc_array(n, sizeof(*flevel_table));
53 int_table = av_malloc_array(n, sizeof(uint16_t));
54 i = 2;
55 level = 1;
56 k = 0;
57 while (i < n) {
58 int_table[k] = i;
59 l = levels_table[k++];
60 for (j = 0; j < l; j++) {
61 run_table[i] = j;
62 level_table[i] = level;
63 flevel_table[i] = level;
64 i++;
65 }
66 level++;
67 }
68 *prun_table = run_table;
69 *plevel_table = flevel_table;
70 *pint_table = int_table;
71 av_free(level_table);
72}
73
74av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
75{
76 WMACodecContext *s = avctx->priv_data;
77 int i;
78 float bps1, high_freq;
79 volatile float bps;
80 int sample_rate1;
81 int coef_vlc_table;
82
83 if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
84 avctx->channels <= 0 || avctx->channels > 2 ||
85 avctx->bit_rate <= 0)
86 return -1;
87
88 ff_fmt_convert_init(&s->fmt_conv, avctx);
89 avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
90
91 if (avctx->codec->id == AV_CODEC_ID_WMAV1)
92 s->version = 1;
93 else
94 s->version = 2;
95
96 /* compute MDCT block size */
97 s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
98 s->version, 0);
99 s->next_block_len_bits = s->frame_len_bits;
100 s->prev_block_len_bits = s->frame_len_bits;
101 s->block_len_bits = s->frame_len_bits;
102
103 s->frame_len = 1 << s->frame_len_bits;
104 if (s->use_variable_block_len) {
105 int nb_max, nb;
106 nb = ((flags2 >> 3) & 3) + 1;
107 if ((avctx->bit_rate / avctx->channels) >= 32000)
108 nb += 2;
109 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
110 if (nb > nb_max)
111 nb = nb_max;
112 s->nb_block_sizes = nb + 1;
113 } else
114 s->nb_block_sizes = 1;
115
116 /* init rate dependent parameters */
117 s->use_noise_coding = 1;
118 high_freq = avctx->sample_rate * 0.5;
119
120 /* if version 2, then the rates are normalized */
121 sample_rate1 = avctx->sample_rate;
122 if (s->version == 2) {
123 if (sample_rate1 >= 44100)
124 sample_rate1 = 44100;
125 else if (sample_rate1 >= 22050)
126 sample_rate1 = 22050;
127 else if (sample_rate1 >= 16000)
128 sample_rate1 = 16000;
129 else if (sample_rate1 >= 11025)
130 sample_rate1 = 11025;
131 else if (sample_rate1 >= 8000)
132 sample_rate1 = 8000;
133 }
134
135 bps = (float) avctx->bit_rate /
136 (float) (avctx->channels * avctx->sample_rate);
137 s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
138 if (s->byte_offset_bits + 3 > MIN_CACHE_BITS) {
139 av_log(avctx, AV_LOG_ERROR, "byte_offset_bits %d is too large\n", s->byte_offset_bits);
140 return AVERROR_PATCHWELCOME;
141 }
142
143 /* compute high frequency value and choose if noise coding should
144 * be activated */
145 bps1 = bps;
146 if (avctx->channels == 2)
147 bps1 = bps * 1.6;
148 if (sample_rate1 == 44100) {
149 if (bps1 >= 0.61)
150 s->use_noise_coding = 0;
151 else
152 high_freq = high_freq * 0.4;
153 } else if (sample_rate1 == 22050) {
154 if (bps1 >= 1.16)
155 s->use_noise_coding = 0;
156 else if (bps1 >= 0.72)
157 high_freq = high_freq * 0.7;
158 else
159 high_freq = high_freq * 0.6;
160 } else if (sample_rate1 == 16000) {
161 if (bps > 0.5)
162 high_freq = high_freq * 0.5;
163 else
164 high_freq = high_freq * 0.3;
165 } else if (sample_rate1 == 11025)
166 high_freq = high_freq * 0.7;
167 else if (sample_rate1 == 8000) {
168 if (bps <= 0.625)
169 high_freq = high_freq * 0.5;
170 else if (bps > 0.75)
171 s->use_noise_coding = 0;
172 else
173 high_freq = high_freq * 0.65;
174 } else {
175 if (bps >= 0.8)
176 high_freq = high_freq * 0.75;
177 else if (bps >= 0.6)
178 high_freq = high_freq * 0.6;
179 else
180 high_freq = high_freq * 0.5;
181 }
182 av_dlog(s->avctx, "flags2=0x%x\n", flags2);
183 av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
184 s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
185 avctx->block_align);
186 av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
187 bps, bps1, high_freq, s->byte_offset_bits);
188 av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
189 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
190
191 /* compute the scale factor band sizes for each MDCT block size */
192 {
193 int a, b, pos, lpos, k, block_len, i, j, n;
194 const uint8_t *table;
195
196 if (s->version == 1)
197 s->coefs_start = 3;
198 else
199 s->coefs_start = 0;
200 for (k = 0; k < s->nb_block_sizes; k++) {
201 block_len = s->frame_len >> k;
202
203 if (s->version == 1) {
204 lpos = 0;
205 for (i = 0; i < 25; i++) {
206 a = ff_wma_critical_freqs[i];
207 b = avctx->sample_rate;
208 pos = ((block_len * 2 * a) + (b >> 1)) / b;
209 if (pos > block_len)
210 pos = block_len;
211 s->exponent_bands[0][i] = pos - lpos;
212 if (pos >= block_len) {
213 i++;
214 break;
215 }
216 lpos = pos;
217 }
218 s->exponent_sizes[0] = i;
219 } else {
220 /* hardcoded tables */
221 table = NULL;
222 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
223 if (a < 3) {
224 if (avctx->sample_rate >= 44100)
225 table = exponent_band_44100[a];
226 else if (avctx->sample_rate >= 32000)
227 table = exponent_band_32000[a];
228 else if (avctx->sample_rate >= 22050)
229 table = exponent_band_22050[a];
230 }
231 if (table) {
232 n = *table++;
233 for (i = 0; i < n; i++)
234 s->exponent_bands[k][i] = table[i];
235 s->exponent_sizes[k] = n;
236 } else {
237 j = 0;
238 lpos = 0;
239 for (i = 0; i < 25; i++) {
240 a = ff_wma_critical_freqs[i];
241 b = avctx->sample_rate;
242 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
243 pos <<= 2;
244 if (pos > block_len)
245 pos = block_len;
246 if (pos > lpos)
247 s->exponent_bands[k][j++] = pos - lpos;
248 if (pos >= block_len)
249 break;
250 lpos = pos;
251 }
252 s->exponent_sizes[k] = j;
253 }
254 }
255
256 /* max number of coefs */
257 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
258 /* high freq computation */
259 s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
260 avctx->sample_rate + 0.5);
261 n = s->exponent_sizes[k];
262 j = 0;
263 pos = 0;
264 for (i = 0; i < n; i++) {
265 int start, end;
266 start = pos;
267 pos += s->exponent_bands[k][i];
268 end = pos;
269 if (start < s->high_band_start[k])
270 start = s->high_band_start[k];
271 if (end > s->coefs_end[k])
272 end = s->coefs_end[k];
273 if (end > start)
274 s->exponent_high_bands[k][j++] = end - start;
275 }
276 s->exponent_high_sizes[k] = j;
277#if 0
278 tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
279 s->frame_len >> k,
280 s->coefs_end[k],
281 s->high_band_start[k],
282 s->exponent_high_sizes[k]);
283 for (j = 0; j < s->exponent_high_sizes[k]; j++)
284 tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
285 tprintf(s->avctx, "\n");
286#endif /* 0 */
287 }
288 }
289
290#ifdef TRACE
291 {
292 int i, j;
293 for (i = 0; i < s->nb_block_sizes; i++) {
294 tprintf(s->avctx, "%5d: n=%2d:",
295 s->frame_len >> i,
296 s->exponent_sizes[i]);
297 for (j = 0; j < s->exponent_sizes[i]; j++)
298 tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
299 tprintf(s->avctx, "\n");
300 }
301 }
302#endif /* TRACE */
303
304 /* init MDCT windows : simple sine window */
305 for (i = 0; i < s->nb_block_sizes; i++) {
306 ff_init_ff_sine_windows(s->frame_len_bits - i);
307 s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
308 }
309
310 s->reset_block_lengths = 1;
311
312 if (s->use_noise_coding) {
313 /* init the noise generator */
314 if (s->use_exp_vlc)
315 s->noise_mult = 0.02;
316 else
317 s->noise_mult = 0.04;
318
319#ifdef TRACE
320 for (i = 0; i < NOISE_TAB_SIZE; i++)
321 s->noise_table[i] = 1.0 * s->noise_mult;
322#else
323 {
324 unsigned int seed;
325 float norm;
326 seed = 1;
327 norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
328 for (i = 0; i < NOISE_TAB_SIZE; i++) {
329 seed = seed * 314159 + 1;
330 s->noise_table[i] = (float) ((int) seed) * norm;
331 }
332 }
333#endif /* TRACE */
334 }
335
336 /* choose the VLC tables for the coefficients */
337 coef_vlc_table = 2;
338 if (avctx->sample_rate >= 32000) {
339 if (bps1 < 0.72)
340 coef_vlc_table = 0;
341 else if (bps1 < 1.16)
342 coef_vlc_table = 1;
343 }
344 s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
345 s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
346 init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
347 &s->int_table[0], s->coef_vlcs[0]);
348 init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
349 &s->int_table[1], s->coef_vlcs[1]);
350
351 return 0;
352}
353
354int ff_wma_total_gain_to_bits(int total_gain)
355{
356 if (total_gain < 15)
357 return 13;
358 else if (total_gain < 32)
359 return 12;
360 else if (total_gain < 40)
361 return 11;
362 else if (total_gain < 45)
363 return 10;
364 else
365 return 9;
366}
367
368int ff_wma_end(AVCodecContext *avctx)
369{
370 WMACodecContext *s = avctx->priv_data;
371 int i;
372
373 for (i = 0; i < s->nb_block_sizes; i++)
374 ff_mdct_end(&s->mdct_ctx[i]);
375
376 if (s->use_exp_vlc)
377 ff_free_vlc(&s->exp_vlc);
378 if (s->use_noise_coding)
379 ff_free_vlc(&s->hgain_vlc);
380 for (i = 0; i < 2; i++) {
381 ff_free_vlc(&s->coef_vlc[i]);
382 av_freep(&s->run_table[i]);
383 av_freep(&s->level_table[i]);
384 av_freep(&s->int_table[i]);
385 }
386
387 return 0;
388}
389
390/**
391 * Decode an uncompressed coefficient.
392 * @param gb GetBitContext
393 * @return the decoded coefficient
394 */
395unsigned int ff_wma_get_large_val(GetBitContext *gb)
396{
397 /** consumes up to 34 bits */
398 int n_bits = 8;
399 /** decode length */
400 if (get_bits1(gb)) {
401 n_bits += 8;
402 if (get_bits1(gb)) {
403 n_bits += 8;
404 if (get_bits1(gb))
405 n_bits += 7;
406 }
407 }
408 return get_bits_long(gb, n_bits);
409}
410
411/**
412 * Decode run level compressed coefficients.
413 * @param avctx codec context
414 * @param gb bitstream reader context
415 * @param vlc vlc table for get_vlc2
416 * @param level_table level codes
417 * @param run_table run codes
418 * @param version 0 for wma1,2 1 for wmapro
419 * @param ptr output buffer
420 * @param offset offset in the output buffer
421 * @param num_coefs number of input coefficents
422 * @param block_len input buffer length (2^n)
423 * @param frame_len_bits number of bits for escaped run codes
424 * @param coef_nb_bits number of bits for escaped level codes
425 * @return 0 on success, -1 otherwise
426 */
427int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
428 VLC *vlc, const float *level_table,
429 const uint16_t *run_table, int version,
430 WMACoef *ptr, int offset, int num_coefs,
431 int block_len, int frame_len_bits,
432 int coef_nb_bits)
433{
434 int code, level, sign;
435 const uint32_t *ilvl = (const uint32_t *) level_table;
436 uint32_t *iptr = (uint32_t *) ptr;
437 const unsigned int coef_mask = block_len - 1;
438 for (; offset < num_coefs; offset++) {
439 code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
440 if (code > 1) {
441 /** normal code */
442 offset += run_table[code];
443 sign = get_bits1(gb) - 1;
444 iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
445 } else if (code == 1) {
446 /** EOB */
447 break;
448 } else {
449 /** escape */
450 if (!version) {
451 level = get_bits(gb, coef_nb_bits);
452 /** NOTE: this is rather suboptimal. reading
453 * block_len_bits would be better */
454 offset += get_bits(gb, frame_len_bits);
455 } else {
456 level = ff_wma_get_large_val(gb);
457 /** escape decode */
458 if (get_bits1(gb)) {
459 if (get_bits1(gb)) {
460 if (get_bits1(gb)) {
461 av_log(avctx, AV_LOG_ERROR,
462 "broken escape sequence\n");
463 return -1;
464 } else
465 offset += get_bits(gb, frame_len_bits) + 4;
466 } else
467 offset += get_bits(gb, 2) + 1;
468 }
469 }
470 sign = get_bits1(gb) - 1;
471 ptr[offset & coef_mask] = (level ^ sign) - sign;
472 }
473 }
474 /** NOTE: EOB can be omitted */
475 if (offset > num_coefs) {
476 av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
477 return -1;
478 }
479
480 return 0;
481}