Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavfilter / af_atempo.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2012 Pavel Koshevoy <pkoshevoy at gmail dot com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * tempo scaling audio filter -- an implementation of WSOLA algorithm
24 *
25 * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
26 * from Apprentice Video player by Pavel Koshevoy.
27 * https://sourceforge.net/projects/apprenticevideo/
28 *
29 * An explanation of SOLA algorithm is available at
30 * http://www.surina.net/article/time-and-pitch-scaling.html
31 *
32 * WSOLA is very similar to SOLA, only one major difference exists between
33 * these algorithms. SOLA shifts audio fragments along the output stream,
34 * where as WSOLA shifts audio fragments along the input stream.
35 *
36 * The advantage of WSOLA algorithm is that the overlap region size is
37 * always the same, therefore the blending function is constant and
38 * can be precomputed.
39 */
40
41#include <float.h>
42#include "libavcodec/avfft.h"
43#include "libavutil/avassert.h"
44#include "libavutil/avstring.h"
45#include "libavutil/channel_layout.h"
46#include "libavutil/eval.h"
47#include "libavutil/opt.h"
48#include "libavutil/samplefmt.h"
49#include "avfilter.h"
50#include "audio.h"
51#include "internal.h"
52
53/**
54 * A fragment of audio waveform
55 */
56typedef struct {
57 // index of the first sample of this fragment in the overall waveform;
58 // 0: input sample position
59 // 1: output sample position
60 int64_t position[2];
61
62 // original packed multi-channel samples:
63 uint8_t *data;
64
65 // number of samples in this fragment:
66 int nsamples;
67
68 // rDFT transform of the down-mixed mono fragment, used for
69 // fast waveform alignment via correlation in frequency domain:
70 FFTSample *xdat;
71} AudioFragment;
72
73/**
74 * Filter state machine states
75 */
76typedef enum {
77 YAE_LOAD_FRAGMENT,
78 YAE_ADJUST_POSITION,
79 YAE_RELOAD_FRAGMENT,
80 YAE_OUTPUT_OVERLAP_ADD,
81 YAE_FLUSH_OUTPUT,
82} FilterState;
83
84/**
85 * Filter state machine
86 */
87typedef struct {
88 const AVClass *class;
89
90 // ring-buffer of input samples, necessary because some times
91 // input fragment position may be adjusted backwards:
92 uint8_t *buffer;
93
94 // ring-buffer maximum capacity, expressed in sample rate time base:
95 int ring;
96
97 // ring-buffer house keeping:
98 int size;
99 int head;
100 int tail;
101
102 // 0: input sample position corresponding to the ring buffer tail
103 // 1: output sample position
104 int64_t position[2];
105
106 // sample format:
107 enum AVSampleFormat format;
108
109 // number of channels:
110 int channels;
111
112 // row of bytes to skip from one sample to next, across multple channels;
113 // stride = (number-of-channels * bits-per-sample-per-channel) / 8
114 int stride;
115
116 // fragment window size, power-of-two integer:
117 int window;
118
119 // Hann window coefficients, for feathering
120 // (blending) the overlapping fragment region:
121 float *hann;
122
123 // tempo scaling factor:
124 double tempo;
125
126 // a snapshot of previous fragment input and output position values
127 // captured when the tempo scale factor was set most recently:
128 int64_t origin[2];
129
130 // current/previous fragment ring-buffer:
131 AudioFragment frag[2];
132
133 // current fragment index:
134 uint64_t nfrag;
135
136 // current state:
137 FilterState state;
138
139 // for fast correlation calculation in frequency domain:
140 RDFTContext *real_to_complex;
141 RDFTContext *complex_to_real;
142 FFTSample *correlation;
143
144 // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
145 AVFrame *dst_buffer;
146 uint8_t *dst;
147 uint8_t *dst_end;
148 uint64_t nsamples_in;
149 uint64_t nsamples_out;
150} ATempoContext;
151
152#define OFFSET(x) offsetof(ATempoContext, x)
153
154static const AVOption atempo_options[] = {
155 { "tempo", "set tempo scale factor",
156 OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 0.5, 2.0,
157 AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM },
158 { NULL }
159};
160
161AVFILTER_DEFINE_CLASS(atempo);
162
163inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
164{
165 return &atempo->frag[atempo->nfrag % 2];
166}
167
168inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
169{
170 return &atempo->frag[(atempo->nfrag + 1) % 2];
171}
172
173/**
174 * Reset filter to initial state, do not deallocate existing local buffers.
175 */
176static void yae_clear(ATempoContext *atempo)
177{
178 atempo->size = 0;
179 atempo->head = 0;
180 atempo->tail = 0;
181
182 atempo->nfrag = 0;
183 atempo->state = YAE_LOAD_FRAGMENT;
184
185 atempo->position[0] = 0;
186 atempo->position[1] = 0;
187
188 atempo->origin[0] = 0;
189 atempo->origin[1] = 0;
190
191 atempo->frag[0].position[0] = 0;
192 atempo->frag[0].position[1] = 0;
193 atempo->frag[0].nsamples = 0;
194
195 atempo->frag[1].position[0] = 0;
196 atempo->frag[1].position[1] = 0;
197 atempo->frag[1].nsamples = 0;
198
199 // shift left position of 1st fragment by half a window
200 // so that no re-normalization would be required for
201 // the left half of the 1st fragment:
202 atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
203 atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);
204
205 av_frame_free(&atempo->dst_buffer);
206 atempo->dst = NULL;
207 atempo->dst_end = NULL;
208
209 atempo->nsamples_in = 0;
210 atempo->nsamples_out = 0;
211}
212
213/**
214 * Reset filter to initial state and deallocate all buffers.
215 */
216static void yae_release_buffers(ATempoContext *atempo)
217{
218 yae_clear(atempo);
219
220 av_freep(&atempo->frag[0].data);
221 av_freep(&atempo->frag[1].data);
222 av_freep(&atempo->frag[0].xdat);
223 av_freep(&atempo->frag[1].xdat);
224
225 av_freep(&atempo->buffer);
226 av_freep(&atempo->hann);
227 av_freep(&atempo->correlation);
228
229 av_rdft_end(atempo->real_to_complex);
230 atempo->real_to_complex = NULL;
231
232 av_rdft_end(atempo->complex_to_real);
233 atempo->complex_to_real = NULL;
234}
235
236/* av_realloc is not aligned enough; fortunately, the data does not need to
237 * be preserved */
238#define RE_MALLOC_OR_FAIL(field, field_size) \
239 do { \
240 av_freep(&field); \
241 field = av_malloc(field_size); \
242 if (!field) { \
243 yae_release_buffers(atempo); \
244 return AVERROR(ENOMEM); \
245 } \
246 } while (0)
247
248/**
249 * Prepare filter for processing audio data of given format,
250 * sample rate and number of channels.
251 */
252static int yae_reset(ATempoContext *atempo,
253 enum AVSampleFormat format,
254 int sample_rate,
255 int channels)
256{
257 const int sample_size = av_get_bytes_per_sample(format);
258 uint32_t nlevels = 0;
259 uint32_t pot;
260 int i;
261
262 atempo->format = format;
263 atempo->channels = channels;
264 atempo->stride = sample_size * channels;
265
266 // pick a segment window size:
267 atempo->window = sample_rate / 24;
268
269 // adjust window size to be a power-of-two integer:
270 nlevels = av_log2(atempo->window);
271 pot = 1 << nlevels;
272 av_assert0(pot <= atempo->window);
273
274 if (pot < atempo->window) {
275 atempo->window = pot * 2;
276 nlevels++;
277 }
278
279 // initialize audio fragment buffers:
280 RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride);
281 RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride);
282 RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex));
283 RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex));
284
285 // initialize rDFT contexts:
286 av_rdft_end(atempo->real_to_complex);
287 atempo->real_to_complex = NULL;
288
289 av_rdft_end(atempo->complex_to_real);
290 atempo->complex_to_real = NULL;
291
292 atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C);
293 if (!atempo->real_to_complex) {
294 yae_release_buffers(atempo);
295 return AVERROR(ENOMEM);
296 }
297
298 atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R);
299 if (!atempo->complex_to_real) {
300 yae_release_buffers(atempo);
301 return AVERROR(ENOMEM);
302 }
303
304 RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex));
305
306 atempo->ring = atempo->window * 3;
307 RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride);
308
309 // initialize the Hann window function:
310 RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float));
311
312 for (i = 0; i < atempo->window; i++) {
313 double t = (double)i / (double)(atempo->window - 1);
314 double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
315 atempo->hann[i] = (float)h;
316 }
317
318 yae_clear(atempo);
319 return 0;
320}
321
322static int yae_set_tempo(AVFilterContext *ctx, const char *arg_tempo)
323{
324 const AudioFragment *prev;
325 ATempoContext *atempo = ctx->priv;
326 char *tail = NULL;
327 double tempo = av_strtod(arg_tempo, &tail);
328
329 if (tail && *tail) {
330 av_log(ctx, AV_LOG_ERROR, "Invalid tempo value '%s'\n", arg_tempo);
331 return AVERROR(EINVAL);
332 }
333
334 if (tempo < 0.5 || tempo > 2.0) {
335 av_log(ctx, AV_LOG_ERROR, "Tempo value %f exceeds [0.5, 2.0] range\n",
336 tempo);
337 return AVERROR(EINVAL);
338 }
339
340 prev = yae_prev_frag(atempo);
341 atempo->origin[0] = prev->position[0] + atempo->window / 2;
342 atempo->origin[1] = prev->position[1] + atempo->window / 2;
343 atempo->tempo = tempo;
344 return 0;
345}
346
347/**
348 * A helper macro for initializing complex data buffer with scalar data
349 * of a given type.
350 */
351#define yae_init_xdat(scalar_type, scalar_max) \
352 do { \
353 const uint8_t *src_end = src + \
354 frag->nsamples * atempo->channels * sizeof(scalar_type); \
355 \
356 FFTSample *xdat = frag->xdat; \
357 scalar_type tmp; \
358 \
359 if (atempo->channels == 1) { \
360 for (; src < src_end; xdat++) { \
361 tmp = *(const scalar_type *)src; \
362 src += sizeof(scalar_type); \
363 \
364 *xdat = (FFTSample)tmp; \
365 } \
366 } else { \
367 FFTSample s, max, ti, si; \
368 int i; \
369 \
370 for (; src < src_end; xdat++) { \
371 tmp = *(const scalar_type *)src; \
372 src += sizeof(scalar_type); \
373 \
374 max = (FFTSample)tmp; \
375 s = FFMIN((FFTSample)scalar_max, \
376 (FFTSample)fabsf(max)); \
377 \
378 for (i = 1; i < atempo->channels; i++) { \
379 tmp = *(const scalar_type *)src; \
380 src += sizeof(scalar_type); \
381 \
382 ti = (FFTSample)tmp; \
383 si = FFMIN((FFTSample)scalar_max, \
384 (FFTSample)fabsf(ti)); \
385 \
386 if (s < si) { \
387 s = si; \
388 max = ti; \
389 } \
390 } \
391 \
392 *xdat = max; \
393 } \
394 } \
395 } while (0)
396
397/**
398 * Initialize complex data buffer of a given audio fragment
399 * with down-mixed mono data of appropriate scalar type.
400 */
401static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
402{
403 // shortcuts:
404 const uint8_t *src = frag->data;
405
406 // init complex data buffer used for FFT and Correlation:
407 memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window);
408
409 if (atempo->format == AV_SAMPLE_FMT_U8) {
410 yae_init_xdat(uint8_t, 127);
411 } else if (atempo->format == AV_SAMPLE_FMT_S16) {
412 yae_init_xdat(int16_t, 32767);
413 } else if (atempo->format == AV_SAMPLE_FMT_S32) {
414 yae_init_xdat(int, 2147483647);
415 } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
416 yae_init_xdat(float, 1);
417 } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
418 yae_init_xdat(double, 1);
419 }
420}
421
422/**
423 * Populate the internal data buffer on as-needed basis.
424 *
425 * @return
426 * 0 if requested data was already available or was successfully loaded,
427 * AVERROR(EAGAIN) if more input data is required.
428 */
429static int yae_load_data(ATempoContext *atempo,
430 const uint8_t **src_ref,
431 const uint8_t *src_end,
432 int64_t stop_here)
433{
434 // shortcut:
435 const uint8_t *src = *src_ref;
436 const int read_size = stop_here - atempo->position[0];
437
438 if (stop_here <= atempo->position[0]) {
439 return 0;
440 }
441
442 // samples are not expected to be skipped:
443 av_assert0(read_size <= atempo->ring);
444
445 while (atempo->position[0] < stop_here && src < src_end) {
446 int src_samples = (src_end - src) / atempo->stride;
447
448 // load data piece-wise, in order to avoid complicating the logic:
449 int nsamples = FFMIN(read_size, src_samples);
450 int na;
451 int nb;
452
453 nsamples = FFMIN(nsamples, atempo->ring);
454 na = FFMIN(nsamples, atempo->ring - atempo->tail);
455 nb = FFMIN(nsamples - na, atempo->ring);
456
457 if (na) {
458 uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
459 memcpy(a, src, na * atempo->stride);
460
461 src += na * atempo->stride;
462 atempo->position[0] += na;
463
464 atempo->size = FFMIN(atempo->size + na, atempo->ring);
465 atempo->tail = (atempo->tail + na) % atempo->ring;
466 atempo->head =
467 atempo->size < atempo->ring ?
468 atempo->tail - atempo->size :
469 atempo->tail;
470 }
471
472 if (nb) {
473 uint8_t *b = atempo->buffer;
474 memcpy(b, src, nb * atempo->stride);
475
476 src += nb * atempo->stride;
477 atempo->position[0] += nb;
478
479 atempo->size = FFMIN(atempo->size + nb, atempo->ring);
480 atempo->tail = (atempo->tail + nb) % atempo->ring;
481 atempo->head =
482 atempo->size < atempo->ring ?
483 atempo->tail - atempo->size :
484 atempo->tail;
485 }
486 }
487
488 // pass back the updated source buffer pointer:
489 *src_ref = src;
490
491 // sanity check:
492 av_assert0(atempo->position[0] <= stop_here);
493
494 return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
495}
496
497/**
498 * Populate current audio fragment data buffer.
499 *
500 * @return
501 * 0 when the fragment is ready,
502 * AVERROR(EAGAIN) if more input data is required.
503 */
504static int yae_load_frag(ATempoContext *atempo,
505 const uint8_t **src_ref,
506 const uint8_t *src_end)
507{
508 // shortcuts:
509 AudioFragment *frag = yae_curr_frag(atempo);
510 uint8_t *dst;
511 int64_t missing, start, zeros;
512 uint32_t nsamples;
513 const uint8_t *a, *b;
514 int i0, i1, n0, n1, na, nb;
515
516 int64_t stop_here = frag->position[0] + atempo->window;
517 if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
518 return AVERROR(EAGAIN);
519 }
520
521 // calculate the number of samples we don't have:
522 missing =
523 stop_here > atempo->position[0] ?
524 stop_here - atempo->position[0] : 0;
525
526 nsamples =
527 missing < (int64_t)atempo->window ?
528 (uint32_t)(atempo->window - missing) : 0;
529
530 // setup the output buffer:
531 frag->nsamples = nsamples;
532 dst = frag->data;
533
534 start = atempo->position[0] - atempo->size;
535 zeros = 0;
536
537 if (frag->position[0] < start) {
538 // what we don't have we substitute with zeros:
539 zeros = FFMIN(start - frag->position[0], (int64_t)nsamples);
540 av_assert0(zeros != nsamples);
541
542 memset(dst, 0, zeros * atempo->stride);
543 dst += zeros * atempo->stride;
544 }
545
546 if (zeros == nsamples) {
547 return 0;
548 }
549
550 // get the remaining data from the ring buffer:
551 na = (atempo->head < atempo->tail ?
552 atempo->tail - atempo->head :
553 atempo->ring - atempo->head);
554
555 nb = atempo->head < atempo->tail ? 0 : atempo->tail;
556
557 // sanity check:
558 av_assert0(nsamples <= zeros + na + nb);
559
560 a = atempo->buffer + atempo->head * atempo->stride;
561 b = atempo->buffer;
562
563 i0 = frag->position[0] + zeros - start;
564 i1 = i0 < na ? 0 : i0 - na;
565
566 n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
567 n1 = nsamples - zeros - n0;
568
569 if (n0) {
570 memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
571 dst += n0 * atempo->stride;
572 }
573
574 if (n1) {
575 memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
576 }
577
578 return 0;
579}
580
581/**
582 * Prepare for loading next audio fragment.
583 */
584static void yae_advance_to_next_frag(ATempoContext *atempo)
585{
586 const double fragment_step = atempo->tempo * (double)(atempo->window / 2);
587
588 const AudioFragment *prev;
589 AudioFragment *frag;
590
591 atempo->nfrag++;
592 prev = yae_prev_frag(atempo);
593 frag = yae_curr_frag(atempo);
594
595 frag->position[0] = prev->position[0] + (int64_t)fragment_step;
596 frag->position[1] = prev->position[1] + atempo->window / 2;
597 frag->nsamples = 0;
598}
599
600/**
601 * Calculate cross-correlation via rDFT.
602 *
603 * Multiply two vectors of complex numbers (result of real_to_complex rDFT)
604 * and transform back via complex_to_real rDFT.
605 */
606static void yae_xcorr_via_rdft(FFTSample *xcorr,
607 RDFTContext *complex_to_real,
608 const FFTComplex *xa,
609 const FFTComplex *xb,
610 const int window)
611{
612 FFTComplex *xc = (FFTComplex *)xcorr;
613 int i;
614
615 // NOTE: first element requires special care -- Given Y = rDFT(X),
616 // Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc
617 // stores Re(Y[N/2]) in place of Im(Y[0]).
618
619 xc->re = xa->re * xb->re;
620 xc->im = xa->im * xb->im;
621 xa++;
622 xb++;
623 xc++;
624
625 for (i = 1; i < window; i++, xa++, xb++, xc++) {
626 xc->re = (xa->re * xb->re + xa->im * xb->im);
627 xc->im = (xa->im * xb->re - xa->re * xb->im);
628 }
629
630 // apply inverse rDFT:
631 av_rdft_calc(complex_to_real, xcorr);
632}
633
634/**
635 * Calculate alignment offset for given fragment
636 * relative to the previous fragment.
637 *
638 * @return alignment offset of current fragment relative to previous.
639 */
640static int yae_align(AudioFragment *frag,
641 const AudioFragment *prev,
642 const int window,
643 const int delta_max,
644 const int drift,
645 FFTSample *correlation,
646 RDFTContext *complex_to_real)
647{
648 int best_offset = -drift;
649 FFTSample best_metric = -FLT_MAX;
650 FFTSample *xcorr;
651
652 int i0;
653 int i1;
654 int i;
655
656 yae_xcorr_via_rdft(correlation,
657 complex_to_real,
658 (const FFTComplex *)prev->xdat,
659 (const FFTComplex *)frag->xdat,
660 window);
661
662 // identify search window boundaries:
663 i0 = FFMAX(window / 2 - delta_max - drift, 0);
664 i0 = FFMIN(i0, window);
665
666 i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
667 i1 = FFMAX(i1, 0);
668
669 // identify cross-correlation peaks within search window:
670 xcorr = correlation + i0;
671
672 for (i = i0; i < i1; i++, xcorr++) {
673 FFTSample metric = *xcorr;
674
675 // normalize:
676 FFTSample drifti = (FFTSample)(drift + i);
677 metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i);
678
679 if (metric > best_metric) {
680 best_metric = metric;
681 best_offset = i - window / 2;
682 }
683 }
684
685 return best_offset;
686}
687
688/**
689 * Adjust current fragment position for better alignment
690 * with previous fragment.
691 *
692 * @return alignment correction.
693 */
694static int yae_adjust_position(ATempoContext *atempo)
695{
696 const AudioFragment *prev = yae_prev_frag(atempo);
697 AudioFragment *frag = yae_curr_frag(atempo);
698
699 const double prev_output_position =
700 (double)(prev->position[1] - atempo->origin[1] + atempo->window / 2);
701
702 const double ideal_output_position =
703 (double)(prev->position[0] - atempo->origin[0] + atempo->window / 2) /
704 atempo->tempo;
705
706 const int drift = (int)(prev_output_position - ideal_output_position);
707
708 const int delta_max = atempo->window / 2;
709 const int correction = yae_align(frag,
710 prev,
711 atempo->window,
712 delta_max,
713 drift,
714 atempo->correlation,
715 atempo->complex_to_real);
716
717 if (correction) {
718 // adjust fragment position:
719 frag->position[0] -= correction;
720
721 // clear so that the fragment can be reloaded:
722 frag->nsamples = 0;
723 }
724
725 return correction;
726}
727
728/**
729 * A helper macro for blending the overlap region of previous
730 * and current audio fragment.
731 */
732#define yae_blend(scalar_type) \
733 do { \
734 const scalar_type *aaa = (const scalar_type *)a; \
735 const scalar_type *bbb = (const scalar_type *)b; \
736 \
737 scalar_type *out = (scalar_type *)dst; \
738 scalar_type *out_end = (scalar_type *)dst_end; \
739 int64_t i; \
740 \
741 for (i = 0; i < overlap && out < out_end; \
742 i++, atempo->position[1]++, wa++, wb++) { \
743 float w0 = *wa; \
744 float w1 = *wb; \
745 int j; \
746 \
747 for (j = 0; j < atempo->channels; \
748 j++, aaa++, bbb++, out++) { \
749 float t0 = (float)*aaa; \
750 float t1 = (float)*bbb; \
751 \
752 *out = \
753 frag->position[0] + i < 0 ? \
754 *aaa : \
755 (scalar_type)(t0 * w0 + t1 * w1); \
756 } \
757 } \
758 dst = (uint8_t *)out; \
759 } while (0)
760
761/**
762 * Blend the overlap region of previous and current audio fragment
763 * and output the results to the given destination buffer.
764 *
765 * @return
766 * 0 if the overlap region was completely stored in the dst buffer,
767 * AVERROR(EAGAIN) if more destination buffer space is required.
768 */
769static int yae_overlap_add(ATempoContext *atempo,
770 uint8_t **dst_ref,
771 uint8_t *dst_end)
772{
773 // shortcuts:
774 const AudioFragment *prev = yae_prev_frag(atempo);
775 const AudioFragment *frag = yae_curr_frag(atempo);
776
777 const int64_t start_here = FFMAX(atempo->position[1],
778 frag->position[1]);
779
780 const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
781 frag->position[1] + frag->nsamples);
782
783 const int64_t overlap = stop_here - start_here;
784
785 const int64_t ia = start_here - prev->position[1];
786 const int64_t ib = start_here - frag->position[1];
787
788 const float *wa = atempo->hann + ia;
789 const float *wb = atempo->hann + ib;
790
791 const uint8_t *a = prev->data + ia * atempo->stride;
792 const uint8_t *b = frag->data + ib * atempo->stride;
793
794 uint8_t *dst = *dst_ref;
795
796 av_assert0(start_here <= stop_here &&
797 frag->position[1] <= start_here &&
798 overlap <= frag->nsamples);
799
800 if (atempo->format == AV_SAMPLE_FMT_U8) {
801 yae_blend(uint8_t);
802 } else if (atempo->format == AV_SAMPLE_FMT_S16) {
803 yae_blend(int16_t);
804 } else if (atempo->format == AV_SAMPLE_FMT_S32) {
805 yae_blend(int);
806 } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
807 yae_blend(float);
808 } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
809 yae_blend(double);
810 }
811
812 // pass-back the updated destination buffer pointer:
813 *dst_ref = dst;
814
815 return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
816}
817
818/**
819 * Feed as much data to the filter as it is able to consume
820 * and receive as much processed data in the destination buffer
821 * as it is able to produce or store.
822 */
823static void
824yae_apply(ATempoContext *atempo,
825 const uint8_t **src_ref,
826 const uint8_t *src_end,
827 uint8_t **dst_ref,
828 uint8_t *dst_end)
829{
830 while (1) {
831 if (atempo->state == YAE_LOAD_FRAGMENT) {
832 // load additional data for the current fragment:
833 if (yae_load_frag(atempo, src_ref, src_end) != 0) {
834 break;
835 }
836
837 // down-mix to mono:
838 yae_downmix(atempo, yae_curr_frag(atempo));
839
840 // apply rDFT:
841 av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
842
843 // must load the second fragment before alignment can start:
844 if (!atempo->nfrag) {
845 yae_advance_to_next_frag(atempo);
846 continue;
847 }
848
849 atempo->state = YAE_ADJUST_POSITION;
850 }
851
852 if (atempo->state == YAE_ADJUST_POSITION) {
853 // adjust position for better alignment:
854 if (yae_adjust_position(atempo)) {
855 // reload the fragment at the corrected position, so that the
856 // Hann window blending would not require normalization:
857 atempo->state = YAE_RELOAD_FRAGMENT;
858 } else {
859 atempo->state = YAE_OUTPUT_OVERLAP_ADD;
860 }
861 }
862
863 if (atempo->state == YAE_RELOAD_FRAGMENT) {
864 // load additional data if necessary due to position adjustment:
865 if (yae_load_frag(atempo, src_ref, src_end) != 0) {
866 break;
867 }
868
869 // down-mix to mono:
870 yae_downmix(atempo, yae_curr_frag(atempo));
871
872 // apply rDFT:
873 av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
874
875 atempo->state = YAE_OUTPUT_OVERLAP_ADD;
876 }
877
878 if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
879 // overlap-add and output the result:
880 if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
881 break;
882 }
883
884 // advance to the next fragment, repeat:
885 yae_advance_to_next_frag(atempo);
886 atempo->state = YAE_LOAD_FRAGMENT;
887 }
888 }
889}
890
891/**
892 * Flush any buffered data from the filter.
893 *
894 * @return
895 * 0 if all data was completely stored in the dst buffer,
896 * AVERROR(EAGAIN) if more destination buffer space is required.
897 */
898static int yae_flush(ATempoContext *atempo,
899 uint8_t **dst_ref,
900 uint8_t *dst_end)
901{
902 AudioFragment *frag = yae_curr_frag(atempo);
903 int64_t overlap_end;
904 int64_t start_here;
905 int64_t stop_here;
906 int64_t offset;
907
908 const uint8_t *src;
909 uint8_t *dst;
910
911 int src_size;
912 int dst_size;
913 int nbytes;
914
915 atempo->state = YAE_FLUSH_OUTPUT;
916
917 if (atempo->position[0] == frag->position[0] + frag->nsamples &&
918 atempo->position[1] == frag->position[1] + frag->nsamples) {
919 // the current fragment is already flushed:
920 return 0;
921 }
922
923 if (frag->position[0] + frag->nsamples < atempo->position[0]) {
924 // finish loading the current (possibly partial) fragment:
925 yae_load_frag(atempo, NULL, NULL);
926
927 if (atempo->nfrag) {
928 // down-mix to mono:
929 yae_downmix(atempo, frag);
930
931 // apply rDFT:
932 av_rdft_calc(atempo->real_to_complex, frag->xdat);
933
934 // align current fragment to previous fragment:
935 if (yae_adjust_position(atempo)) {
936 // reload the current fragment due to adjusted position:
937 yae_load_frag(atempo, NULL, NULL);
938 }
939 }
940 }
941
942 // flush the overlap region:
943 overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
944 frag->nsamples);
945
946 while (atempo->position[1] < overlap_end) {
947 if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
948 return AVERROR(EAGAIN);
949 }
950 }
951
952 // check whether all of the input samples have been consumed:
953 if (frag->position[0] + frag->nsamples < atempo->position[0]) {
954 yae_advance_to_next_frag(atempo);
955 return AVERROR(EAGAIN);
956 }
957
958 // flush the remainder of the current fragment:
959 start_here = FFMAX(atempo->position[1], overlap_end);
960 stop_here = frag->position[1] + frag->nsamples;
961 offset = start_here - frag->position[1];
962 av_assert0(start_here <= stop_here && frag->position[1] <= start_here);
963
964 src = frag->data + offset * atempo->stride;
965 dst = (uint8_t *)*dst_ref;
966
967 src_size = (int)(stop_here - start_here) * atempo->stride;
968 dst_size = dst_end - dst;
969 nbytes = FFMIN(src_size, dst_size);
970
971 memcpy(dst, src, nbytes);
972 dst += nbytes;
973
974 atempo->position[1] += (nbytes / atempo->stride);
975
976 // pass-back the updated destination buffer pointer:
977 *dst_ref = (uint8_t *)dst;
978
979 return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
980}
981
982static av_cold int init(AVFilterContext *ctx)
983{
984 ATempoContext *atempo = ctx->priv;
985 atempo->format = AV_SAMPLE_FMT_NONE;
986 atempo->state = YAE_LOAD_FRAGMENT;
987 return 0;
988}
989
990static av_cold void uninit(AVFilterContext *ctx)
991{
992 ATempoContext *atempo = ctx->priv;
993 yae_release_buffers(atempo);
994}
995
996static int query_formats(AVFilterContext *ctx)
997{
998 AVFilterChannelLayouts *layouts = NULL;
999 AVFilterFormats *formats = NULL;
1000
1001 // WSOLA necessitates an internal sliding window ring buffer
1002 // for incoming audio stream.
1003 //
1004 // Planar sample formats are too cumbersome to store in a ring buffer,
1005 // therefore planar sample formats are not supported.
1006 //
1007 static const enum AVSampleFormat sample_fmts[] = {
1008 AV_SAMPLE_FMT_U8,
1009 AV_SAMPLE_FMT_S16,
1010 AV_SAMPLE_FMT_S32,
1011 AV_SAMPLE_FMT_FLT,
1012 AV_SAMPLE_FMT_DBL,
1013 AV_SAMPLE_FMT_NONE
1014 };
1015
1016 layouts = ff_all_channel_layouts();
1017 if (!layouts) {
1018 return AVERROR(ENOMEM);
1019 }
1020 ff_set_common_channel_layouts(ctx, layouts);
1021
1022 formats = ff_make_format_list(sample_fmts);
1023 if (!formats) {
1024 return AVERROR(ENOMEM);
1025 }
1026 ff_set_common_formats(ctx, formats);
1027
1028 formats = ff_all_samplerates();
1029 if (!formats) {
1030 return AVERROR(ENOMEM);
1031 }
1032 ff_set_common_samplerates(ctx, formats);
1033
1034 return 0;
1035}
1036
1037static int config_props(AVFilterLink *inlink)
1038{
1039 AVFilterContext *ctx = inlink->dst;
1040 ATempoContext *atempo = ctx->priv;
1041
1042 enum AVSampleFormat format = inlink->format;
1043 int sample_rate = (int)inlink->sample_rate;
1044 int channels = av_get_channel_layout_nb_channels(inlink->channel_layout);
1045
1046 ctx->outputs[0]->flags |= FF_LINK_FLAG_REQUEST_LOOP;
1047
1048 return yae_reset(atempo, format, sample_rate, channels);
1049}
1050
1051static int push_samples(ATempoContext *atempo,
1052 AVFilterLink *outlink,
1053 int n_out)
1054{
1055 int ret;
1056
1057 atempo->dst_buffer->sample_rate = outlink->sample_rate;
1058 atempo->dst_buffer->nb_samples = n_out;
1059
1060 // adjust the PTS:
1061 atempo->dst_buffer->pts =
1062 av_rescale_q(atempo->nsamples_out,
1063 (AVRational){ 1, outlink->sample_rate },
1064 outlink->time_base);
1065
1066 ret = ff_filter_frame(outlink, atempo->dst_buffer);
1067 atempo->dst_buffer = NULL;
1068 atempo->dst = NULL;
1069 atempo->dst_end = NULL;
1070 if (ret < 0)
1071 return ret;
1072
1073 atempo->nsamples_out += n_out;
1074 return 0;
1075}
1076
1077static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
1078{
1079 AVFilterContext *ctx = inlink->dst;
1080 ATempoContext *atempo = ctx->priv;
1081 AVFilterLink *outlink = ctx->outputs[0];
1082
1083 int ret = 0;
1084 int n_in = src_buffer->nb_samples;
1085 int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);
1086
1087 const uint8_t *src = src_buffer->data[0];
1088 const uint8_t *src_end = src + n_in * atempo->stride;
1089
1090 while (src < src_end) {
1091 if (!atempo->dst_buffer) {
1092 atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
1093 if (!atempo->dst_buffer)
1094 return AVERROR(ENOMEM);
1095 av_frame_copy_props(atempo->dst_buffer, src_buffer);
1096
1097 atempo->dst = atempo->dst_buffer->data[0];
1098 atempo->dst_end = atempo->dst + n_out * atempo->stride;
1099 }
1100
1101 yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);
1102
1103 if (atempo->dst == atempo->dst_end) {
1104 int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
1105 atempo->stride);
1106 ret = push_samples(atempo, outlink, n_samples);
1107 if (ret < 0)
1108 goto end;
1109 }
1110 }
1111
1112 atempo->nsamples_in += n_in;
1113end:
1114 av_frame_free(&src_buffer);
1115 return ret;
1116}
1117
1118static int request_frame(AVFilterLink *outlink)
1119{
1120 AVFilterContext *ctx = outlink->src;
1121 ATempoContext *atempo = ctx->priv;
1122 int ret;
1123
1124 ret = ff_request_frame(ctx->inputs[0]);
1125
1126 if (ret == AVERROR_EOF) {
1127 // flush the filter:
1128 int n_max = atempo->ring;
1129 int n_out;
1130 int err = AVERROR(EAGAIN);
1131
1132 while (err == AVERROR(EAGAIN)) {
1133 if (!atempo->dst_buffer) {
1134 atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
1135 if (!atempo->dst_buffer)
1136 return AVERROR(ENOMEM);
1137
1138 atempo->dst = atempo->dst_buffer->data[0];
1139 atempo->dst_end = atempo->dst + n_max * atempo->stride;
1140 }
1141
1142 err = yae_flush(atempo, &atempo->dst, atempo->dst_end);
1143
1144 n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
1145 atempo->stride);
1146
1147 if (n_out) {
1148 ret = push_samples(atempo, outlink, n_out);
1149 }
1150 }
1151
1152 av_frame_free(&atempo->dst_buffer);
1153 atempo->dst = NULL;
1154 atempo->dst_end = NULL;
1155
1156 return AVERROR_EOF;
1157 }
1158
1159 return ret;
1160}
1161
1162static int process_command(AVFilterContext *ctx,
1163 const char *cmd,
1164 const char *arg,
1165 char *res,
1166 int res_len,
1167 int flags)
1168{
1169 return !strcmp(cmd, "tempo") ? yae_set_tempo(ctx, arg) : AVERROR(ENOSYS);
1170}
1171
1172static const AVFilterPad atempo_inputs[] = {
1173 {
1174 .name = "default",
1175 .type = AVMEDIA_TYPE_AUDIO,
1176 .filter_frame = filter_frame,
1177 .config_props = config_props,
1178 },
1179 { NULL }
1180};
1181
1182static const AVFilterPad atempo_outputs[] = {
1183 {
1184 .name = "default",
1185 .request_frame = request_frame,
1186 .type = AVMEDIA_TYPE_AUDIO,
1187 },
1188 { NULL }
1189};
1190
1191AVFilter ff_af_atempo = {
1192 .name = "atempo",
1193 .description = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
1194 .init = init,
1195 .uninit = uninit,
1196 .query_formats = query_formats,
1197 .process_command = process_command,
1198 .priv_size = sizeof(ATempoContext),
1199 .priv_class = &atempo_class,
1200 .inputs = atempo_inputs,
1201 .outputs = atempo_outputs,
1202};