Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavfilter / f_ebur128.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2012 Clément Bœsch
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21/**
22 * @file
23 * EBU R.128 implementation
24 * @see http://tech.ebu.ch/loudness
25 * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26 * @todo implement start/stop/reset through filter command injection
27 * @todo support other frequencies to avoid resampling
28 */
29
30#include <math.h>
31
32#include "libavutil/avassert.h"
33#include "libavutil/avstring.h"
34#include "libavutil/channel_layout.h"
35#include "libavutil/dict.h"
36#include "libavutil/xga_font_data.h"
37#include "libavutil/opt.h"
38#include "libavutil/timestamp.h"
39#include "libswresample/swresample.h"
40#include "audio.h"
41#include "avfilter.h"
42#include "formats.h"
43#include "internal.h"
44
45#define MAX_CHANNELS 63
46
47/* pre-filter coefficients */
48#define PRE_B0 1.53512485958697
49#define PRE_B1 -2.69169618940638
50#define PRE_B2 1.19839281085285
51#define PRE_A1 -1.69065929318241
52#define PRE_A2 0.73248077421585
53
54/* RLB-filter coefficients */
55#define RLB_B0 1.0
56#define RLB_B1 -2.0
57#define RLB_B2 1.0
58#define RLB_A1 -1.99004745483398
59#define RLB_A2 0.99007225036621
60
61#define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
62#define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
63#define HIST_GRAIN 100 ///< defines histogram precision
64#define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
65
66/**
67 * A histogram is an array of HIST_SIZE hist_entry storing all the energies
68 * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
69 * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
70 * This fixed-size system avoids the need of a list of energies growing
71 * infinitely over the time and is thus more scalable.
72 */
73struct hist_entry {
74 int count; ///< how many times the corresponding value occurred
75 double energy; ///< E = 10^((L + 0.691) / 10)
76 double loudness; ///< L = -0.691 + 10 * log10(E)
77};
78
79struct integrator {
80 double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
81 int cache_pos; ///< focus on the last added bin in the cache array
82 double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
83 int filled; ///< 1 if the cache is completely filled, 0 otherwise
84 double rel_threshold; ///< relative threshold
85 double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
86 int nb_kept_powers; ///< number of sum above absolute threshold
87 struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
88};
89
90struct rect { int x, y, w, h; };
91
92typedef struct {
93 const AVClass *class; ///< AVClass context for log and options purpose
94
95 /* peak metering */
96 int peak_mode; ///< enabled peak modes
97 double *true_peaks; ///< true peaks per channel
98 double *sample_peaks; ///< sample peaks per channel
99 double *true_peaks_per_frame; ///< true peaks in a frame per channel
100#if CONFIG_SWRESAMPLE
101 SwrContext *swr_ctx; ///< over-sampling context for true peak metering
102 double *swr_buf; ///< resampled audio data for true peak metering
103 int swr_linesize;
104#endif
105
106 /* video */
107 int do_video; ///< 1 if video output enabled, 0 otherwise
108 int w, h; ///< size of the video output
109 struct rect text; ///< rectangle for the LU legend on the left
110 struct rect graph; ///< rectangle for the main graph in the center
111 struct rect gauge; ///< rectangle for the gauge on the right
112 AVFrame *outpicref; ///< output picture reference, updated regularly
113 int meter; ///< select a EBU mode between +9 and +18
114 int scale_range; ///< the range of LU values according to the meter
115 int y_zero_lu; ///< the y value (pixel position) for 0 LU
116 int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
117
118 /* audio */
119 int nb_channels; ///< number of channels in the input
120 double *ch_weighting; ///< channel weighting mapping
121 int sample_count; ///< sample count used for refresh frequency, reset at refresh
122
123 /* Filter caches.
124 * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
125 double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
126 double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
127 double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
128
129#define I400_BINS (48000 * 4 / 10)
130#define I3000_BINS (48000 * 3)
131 struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
132 struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
133
134 /* I and LRA specific */
135 double integrated_loudness; ///< integrated loudness in LUFS (I)
136 double loudness_range; ///< loudness range in LU (LRA)
137 double lra_low, lra_high; ///< low and high LRA values
138
139 /* misc */
140 int loglevel; ///< log level for frame logging
141 int metadata; ///< whether or not to inject loudness results in frames
142} EBUR128Context;
143
144enum {
145 PEAK_MODE_NONE = 0,
146 PEAK_MODE_SAMPLES_PEAKS = 1<<1,
147 PEAK_MODE_TRUE_PEAKS = 1<<2,
148};
149
150#define OFFSET(x) offsetof(EBUR128Context, x)
151#define A AV_OPT_FLAG_AUDIO_PARAM
152#define V AV_OPT_FLAG_VIDEO_PARAM
153#define F AV_OPT_FLAG_FILTERING_PARAM
154static const AVOption ebur128_options[] = {
155 { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
156 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
157 { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
158 { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
159 { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
160 { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
161 { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, A|V|F },
162 { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
163 { "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, "mode" },
164 { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
165 { "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
166 { NULL },
167};
168
169AVFILTER_DEFINE_CLASS(ebur128);
170
171static const uint8_t graph_colors[] = {
172 0xdd, 0x66, 0x66, // value above 0LU non reached
173 0x66, 0x66, 0xdd, // value below 0LU non reached
174 0x96, 0x33, 0x33, // value above 0LU reached
175 0x33, 0x33, 0x96, // value below 0LU reached
176 0xdd, 0x96, 0x96, // value above 0LU line non reached
177 0x96, 0x96, 0xdd, // value below 0LU line non reached
178 0xdd, 0x33, 0x33, // value above 0LU line reached
179 0x33, 0x33, 0xdd, // value below 0LU line reached
180};
181
182static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
183{
184 const int below0 = y > ebur128->y_zero_lu;
185 const int reached = y >= v;
186 const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
187 const int colorid = 4*line + 2*reached + below0;
188 return graph_colors + 3*colorid;
189}
190
191static inline int lu_to_y(const EBUR128Context *ebur128, double v)
192{
193 v += 2 * ebur128->meter; // make it in range [0;...]
194 v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
195 v = ebur128->scale_range - v; // invert value (y=0 is on top)
196 return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
197}
198
199#define FONT8 0
200#define FONT16 1
201
202static const uint8_t font_colors[] = {
203 0xdd, 0xdd, 0x00,
204 0x00, 0x96, 0x96,
205};
206
207static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
208{
209 int i;
210 char buf[128] = {0};
211 const uint8_t *font;
212 int font_height;
213 va_list vl;
214
215 if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
216 else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
217 else return;
218
219 va_start(vl, fmt);
220 vsnprintf(buf, sizeof(buf), fmt, vl);
221 va_end(vl);
222
223 for (i = 0; buf[i]; i++) {
224 int char_y, mask;
225 uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
226
227 for (char_y = 0; char_y < font_height; char_y++) {
228 for (mask = 0x80; mask; mask >>= 1) {
229 if (font[buf[i] * font_height + char_y] & mask)
230 memcpy(p, color, 3);
231 else
232 memcpy(p, "\x00\x00\x00", 3);
233 p += 3;
234 }
235 p += pic->linesize[0] - 8*3;
236 }
237 }
238}
239
240static void drawline(AVFrame *pic, int x, int y, int len, int step)
241{
242 int i;
243 uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
244
245 for (i = 0; i < len; i++) {
246 memcpy(p, "\x00\xff\x00", 3);
247 p += step;
248 }
249}
250
251static int config_video_output(AVFilterLink *outlink)
252{
253 int i, x, y;
254 uint8_t *p;
255 AVFilterContext *ctx = outlink->src;
256 EBUR128Context *ebur128 = ctx->priv;
257 AVFrame *outpicref;
258
259 /* check if there is enough space to represent everything decently */
260 if (ebur128->w < 640 || ebur128->h < 480) {
261 av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
262 "minimum size is 640x480\n", ebur128->w, ebur128->h);
263 return AVERROR(EINVAL);
264 }
265 outlink->w = ebur128->w;
266 outlink->h = ebur128->h;
267
268#define PAD 8
269
270 /* configure text area position and size */
271 ebur128->text.x = PAD;
272 ebur128->text.y = 40;
273 ebur128->text.w = 3 * 8; // 3 characters
274 ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
275
276 /* configure gauge position and size */
277 ebur128->gauge.w = 20;
278 ebur128->gauge.h = ebur128->text.h;
279 ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
280 ebur128->gauge.y = ebur128->text.y;
281
282 /* configure graph position and size */
283 ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
284 ebur128->graph.y = ebur128->gauge.y;
285 ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
286 ebur128->graph.h = ebur128->gauge.h;
287
288 /* graph and gauge share the LU-to-pixel code */
289 av_assert0(ebur128->graph.h == ebur128->gauge.h);
290
291 /* prepare the initial picref buffer */
292 av_frame_free(&ebur128->outpicref);
293 ebur128->outpicref = outpicref =
294 ff_get_video_buffer(outlink, outlink->w, outlink->h);
295 if (!outpicref)
296 return AVERROR(ENOMEM);
297 outlink->sample_aspect_ratio = (AVRational){1,1};
298
299 /* init y references values (to draw LU lines) */
300 ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
301 if (!ebur128->y_line_ref)
302 return AVERROR(ENOMEM);
303
304 /* black background */
305 memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
306
307 /* draw LU legends */
308 drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
309 for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
310 y = lu_to_y(ebur128, i);
311 x = PAD + (i < 10 && i > -10) * 8;
312 ebur128->y_line_ref[y] = i;
313 y -= 4; // -4 to center vertically
314 drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
315 "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
316 }
317
318 /* draw graph */
319 ebur128->y_zero_lu = lu_to_y(ebur128, 0);
320 p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
321 + ebur128->graph.x * 3;
322 for (y = 0; y < ebur128->graph.h; y++) {
323 const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
324
325 for (x = 0; x < ebur128->graph.w; x++)
326 memcpy(p + x*3, c, 3);
327 p += outpicref->linesize[0];
328 }
329
330 /* draw fancy rectangles around the graph and the gauge */
331#define DRAW_RECT(r) do { \
332 drawline(outpicref, r.x, r.y - 1, r.w, 3); \
333 drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
334 drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
335 drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
336} while (0)
337 DRAW_RECT(ebur128->graph);
338 DRAW_RECT(ebur128->gauge);
339
340 outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
341
342 return 0;
343}
344
345static int config_audio_input(AVFilterLink *inlink)
346{
347 AVFilterContext *ctx = inlink->dst;
348 EBUR128Context *ebur128 = ctx->priv;
349
350 /* Force 100ms framing in case of metadata injection: the frames must have
351 * a granularity of the window overlap to be accurately exploited.
352 * As for the true peaks mode, it just simplifies the resampling buffer
353 * allocation and the lookup in it (since sample buffers differ in size, it
354 * can be more complex to integrate in the one-sample loop of
355 * filter_frame()). */
356 if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
357 inlink->min_samples =
358 inlink->max_samples =
359 inlink->partial_buf_size = inlink->sample_rate / 10;
360 return 0;
361}
362
363static int config_audio_output(AVFilterLink *outlink)
364{
365 int i;
366 AVFilterContext *ctx = outlink->src;
367 EBUR128Context *ebur128 = ctx->priv;
368 const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
369
370#define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
371 AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
372 AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
373 AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
374
375 ebur128->nb_channels = nb_channels;
376 ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
377 if (!ebur128->ch_weighting)
378 return AVERROR(ENOMEM);
379
380 for (i = 0; i < nb_channels; i++) {
381 /* channel weighting */
382 const uint16_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
383 if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
384 ebur128->ch_weighting[i] = 0;
385 } else if (chl & BACK_MASK) {
386 ebur128->ch_weighting[i] = 1.41;
387 } else {
388 ebur128->ch_weighting[i] = 1.0;
389 }
390
391 if (!ebur128->ch_weighting[i])
392 continue;
393
394 /* bins buffer for the two integration window (400ms and 3s) */
395 ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0]));
396 ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
397 if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
398 return AVERROR(ENOMEM);
399 }
400
401 outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
402
403#if CONFIG_SWRESAMPLE
404 if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
405 int ret;
406
407 ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double));
408 ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
409 ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
410 ebur128->swr_ctx = swr_alloc();
411 if (!ebur128->swr_buf || !ebur128->true_peaks ||
412 !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
413 return AVERROR(ENOMEM);
414
415 av_opt_set_int(ebur128->swr_ctx, "in_channel_layout", outlink->channel_layout, 0);
416 av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0);
417 av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
418
419 av_opt_set_int(ebur128->swr_ctx, "out_channel_layout", outlink->channel_layout, 0);
420 av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0);
421 av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
422
423 ret = swr_init(ebur128->swr_ctx);
424 if (ret < 0)
425 return ret;
426 }
427#endif
428
429 if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
430 ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
431 if (!ebur128->sample_peaks)
432 return AVERROR(ENOMEM);
433 }
434
435 return 0;
436}
437
438#define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
439#define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
440#define DBFS(energy) (20 * log10(energy))
441
442static struct hist_entry *get_histogram(void)
443{
444 int i;
445 struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
446
447 if (!h)
448 return NULL;
449 for (i = 0; i < HIST_SIZE; i++) {
450 h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
451 h[i].energy = ENERGY(h[i].loudness);
452 }
453 return h;
454}
455
456static av_cold int init(AVFilterContext *ctx)
457{
458 EBUR128Context *ebur128 = ctx->priv;
459 AVFilterPad pad;
460
461 if (ebur128->loglevel != AV_LOG_INFO &&
462 ebur128->loglevel != AV_LOG_VERBOSE) {
463 if (ebur128->do_video || ebur128->metadata)
464 ebur128->loglevel = AV_LOG_VERBOSE;
465 else
466 ebur128->loglevel = AV_LOG_INFO;
467 }
468
469 if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
470 av_log(ctx, AV_LOG_ERROR,
471 "True-peak mode requires libswresample to be performed\n");
472 return AVERROR(EINVAL);
473 }
474
475 // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
476 // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
477 ebur128->scale_range = 3 * ebur128->meter;
478
479 ebur128->i400.histogram = get_histogram();
480 ebur128->i3000.histogram = get_histogram();
481 if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
482 return AVERROR(ENOMEM);
483
484 ebur128->integrated_loudness = ABS_THRES;
485 ebur128->loudness_range = 0;
486
487 /* insert output pads */
488 if (ebur128->do_video) {
489 pad = (AVFilterPad){
490 .name = av_strdup("out0"),
491 .type = AVMEDIA_TYPE_VIDEO,
492 .config_props = config_video_output,
493 };
494 if (!pad.name)
495 return AVERROR(ENOMEM);
496 ff_insert_outpad(ctx, 0, &pad);
497 }
498 pad = (AVFilterPad){
499 .name = av_asprintf("out%d", ebur128->do_video),
500 .type = AVMEDIA_TYPE_AUDIO,
501 .config_props = config_audio_output,
502 };
503 if (!pad.name)
504 return AVERROR(ENOMEM);
505 ff_insert_outpad(ctx, ebur128->do_video, &pad);
506
507 /* summary */
508 av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
509
510 return 0;
511}
512
513#define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
514
515/* loudness and power should be set such as loudness = -0.691 +
516 * 10*log10(power), we just avoid doing that calculus two times */
517static int gate_update(struct integrator *integ, double power,
518 double loudness, int gate_thres)
519{
520 int ipower;
521 double relative_threshold;
522 int gate_hist_pos;
523
524 /* update powers histograms by incrementing current power count */
525 ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
526 integ->histogram[ipower].count++;
527
528 /* compute relative threshold and get its position in the histogram */
529 integ->sum_kept_powers += power;
530 integ->nb_kept_powers++;
531 relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
532 if (!relative_threshold)
533 relative_threshold = 1e-12;
534 integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
535 gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
536
537 return gate_hist_pos;
538}
539
540static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
541{
542 int i, ch, idx_insample;
543 AVFilterContext *ctx = inlink->dst;
544 EBUR128Context *ebur128 = ctx->priv;
545 const int nb_channels = ebur128->nb_channels;
546 const int nb_samples = insamples->nb_samples;
547 const double *samples = (double *)insamples->data[0];
548 AVFrame *pic = ebur128->outpicref;
549
550#if CONFIG_SWRESAMPLE
551 if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
552 const double *swr_samples = ebur128->swr_buf;
553 int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
554 (const uint8_t **)insamples->data, nb_samples);
555 if (ret < 0)
556 return ret;
557 for (ch = 0; ch < nb_channels; ch++)
558 ebur128->true_peaks_per_frame[ch] = 0.0;
559 for (idx_insample = 0; idx_insample < ret; idx_insample++) {
560 for (ch = 0; ch < nb_channels; ch++) {
561 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], FFABS(*swr_samples));
562 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
563 FFABS(*swr_samples));
564 swr_samples++;
565 }
566 }
567 }
568#endif
569
570 for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
571 const int bin_id_400 = ebur128->i400.cache_pos;
572 const int bin_id_3000 = ebur128->i3000.cache_pos;
573
574#define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
575 ebur128->i##time.cache_pos++; \
576 if (ebur128->i##time.cache_pos == I##time##_BINS) { \
577 ebur128->i##time.filled = 1; \
578 ebur128->i##time.cache_pos = 0; \
579 } \
580} while (0)
581
582 MOVE_TO_NEXT_CACHED_ENTRY(400);
583 MOVE_TO_NEXT_CACHED_ENTRY(3000);
584
585 for (ch = 0; ch < nb_channels; ch++) {
586 double bin;
587
588 if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
589 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], FFABS(*samples));
590
591 ebur128->x[ch * 3] = *samples++; // set X[i]
592
593 if (!ebur128->ch_weighting[ch])
594 continue;
595
596 /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
597#define FILTER(Y, X, name) do { \
598 double *dst = ebur128->Y + ch*3; \
599 double *src = ebur128->X + ch*3; \
600 dst[2] = dst[1]; \
601 dst[1] = dst[0]; \
602 dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
603 - dst[1]*name##_A1 - dst[2]*name##_A2; \
604} while (0)
605
606 // TODO: merge both filters in one?
607 FILTER(y, x, PRE); // apply pre-filter
608 ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
609 ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
610 FILTER(z, y, RLB); // apply RLB-filter
611
612 bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
613
614 /* add the new value, and limit the sum to the cache size (400ms or 3s)
615 * by removing the oldest one */
616 ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
617 ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
618
619 /* override old cache entry with the new value */
620 ebur128->i400.cache [ch][bin_id_400 ] = bin;
621 ebur128->i3000.cache[ch][bin_id_3000] = bin;
622 }
623
624 /* For integrated loudness, gating blocks are 400ms long with 75%
625 * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
626 * (4800 samples at 48kHz). */
627 if (++ebur128->sample_count == 4800) {
628 double loudness_400, loudness_3000;
629 double power_400 = 1e-12, power_3000 = 1e-12;
630 AVFilterLink *outlink = ctx->outputs[0];
631 const int64_t pts = insamples->pts +
632 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
633 outlink->time_base);
634
635 ebur128->sample_count = 0;
636
637#define COMPUTE_LOUDNESS(m, time) do { \
638 if (ebur128->i##time.filled) { \
639 /* weighting sum of the last <time> ms */ \
640 for (ch = 0; ch < nb_channels; ch++) \
641 power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
642 power_##time /= I##time##_BINS; \
643 } \
644 loudness_##time = LOUDNESS(power_##time); \
645} while (0)
646
647 COMPUTE_LOUDNESS(M, 400);
648 COMPUTE_LOUDNESS(S, 3000);
649
650 /* Integrated loudness */
651#define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
652
653 if (loudness_400 >= ABS_THRES) {
654 double integrated_sum = 0;
655 int nb_integrated = 0;
656 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
657 loudness_400, I_GATE_THRES);
658
659 /* compute integrated loudness by summing the histogram values
660 * above the relative threshold */
661 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
662 const int nb_v = ebur128->i400.histogram[i].count;
663 nb_integrated += nb_v;
664 integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
665 }
666 if (nb_integrated)
667 ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
668 }
669
670 /* LRA */
671#define LRA_GATE_THRES -20
672#define LRA_LOWER_PRC 10
673#define LRA_HIGHER_PRC 95
674
675 /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
676 * specs is ">" */
677 if (loudness_3000 >= ABS_THRES) {
678 int nb_powers = 0;
679 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
680 loudness_3000, LRA_GATE_THRES);
681
682 for (i = gate_hist_pos; i < HIST_SIZE; i++)
683 nb_powers += ebur128->i3000.histogram[i].count;
684 if (nb_powers) {
685 int n, nb_pow;
686
687 /* get lower loudness to consider */
688 n = 0;
689 nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
690 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
691 n += ebur128->i3000.histogram[i].count;
692 if (n >= nb_pow) {
693 ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
694 break;
695 }
696 }
697
698 /* get higher loudness to consider */
699 n = nb_powers;
700 nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
701 for (i = HIST_SIZE - 1; i >= 0; i--) {
702 n -= ebur128->i3000.histogram[i].count;
703 if (n < nb_pow) {
704 ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
705 break;
706 }
707 }
708
709 // XXX: show low & high on the graph?
710 ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
711 }
712 }
713
714#define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
715
716 /* push one video frame */
717 if (ebur128->do_video) {
718 int x, y, ret;
719 uint8_t *p;
720
721 const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
722 const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23);
723
724 /* draw the graph using the short-term loudness */
725 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
726 for (y = 0; y < ebur128->graph.h; y++) {
727 const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
728
729 memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
730 memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
731 p += pic->linesize[0];
732 }
733
734 /* draw the gauge using the momentary loudness */
735 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
736 for (y = 0; y < ebur128->gauge.h; y++) {
737 const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
738
739 for (x = 0; x < ebur128->gauge.w; x++)
740 memcpy(p + x*3, c, 3);
741 p += pic->linesize[0];
742 }
743
744 /* draw textual info */
745 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
746 LOG_FMT " ", // padding to erase trailing characters
747 loudness_400, loudness_3000,
748 ebur128->integrated_loudness, ebur128->loudness_range);
749
750 /* set pts and push frame */
751 pic->pts = pts;
752 ret = ff_filter_frame(outlink, av_frame_clone(pic));
753 if (ret < 0)
754 return ret;
755 }
756
757 if (ebur128->metadata) { /* happens only once per filter_frame call */
758 char metabuf[128];
759#define META_PREFIX "lavfi.r128."
760
761#define SET_META(name, var) do { \
762 snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
763 av_dict_set(&insamples->metadata, name, metabuf, 0); \
764} while (0)
765
766#define SET_META_PEAK(name, ptype) do { \
767 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
768 char key[64]; \
769 for (ch = 0; ch < nb_channels; ch++) { \
770 snprintf(key, sizeof(key), \
771 META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
772 SET_META(key, ebur128->name##_peaks[ch]); \
773 } \
774 } \
775} while (0)
776
777 SET_META(META_PREFIX "M", loudness_400);
778 SET_META(META_PREFIX "S", loudness_3000);
779 SET_META(META_PREFIX "I", ebur128->integrated_loudness);
780 SET_META(META_PREFIX "LRA", ebur128->loudness_range);
781 SET_META(META_PREFIX "LRA.low", ebur128->lra_low);
782 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
783
784 SET_META_PEAK(sample, SAMPLES);
785 SET_META_PEAK(true, TRUE);
786 }
787
788 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
789 av_ts2timestr(pts, &outlink->time_base),
790 loudness_400, loudness_3000,
791 ebur128->integrated_loudness, ebur128->loudness_range);
792
793#define PRINT_PEAKS(str, sp, ptype) do { \
794 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
795 av_log(ctx, ebur128->loglevel, " " str ":"); \
796 for (ch = 0; ch < nb_channels; ch++) \
797 av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
798 av_log(ctx, ebur128->loglevel, " dBFS"); \
799 } \
800} while (0)
801
802 PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
803 PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
804 PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE);
805 av_log(ctx, ebur128->loglevel, "\n");
806 }
807 }
808
809 return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
810}
811
812static int query_formats(AVFilterContext *ctx)
813{
814 EBUR128Context *ebur128 = ctx->priv;
815 AVFilterFormats *formats;
816 AVFilterChannelLayouts *layouts;
817 AVFilterLink *inlink = ctx->inputs[0];
818 AVFilterLink *outlink = ctx->outputs[0];
819
820 static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
821 static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
822 static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
823
824 /* set optional output video format */
825 if (ebur128->do_video) {
826 formats = ff_make_format_list(pix_fmts);
827 if (!formats)
828 return AVERROR(ENOMEM);
829 ff_formats_ref(formats, &outlink->in_formats);
830 outlink = ctx->outputs[1];
831 }
832
833 /* set input and output audio formats
834 * Note: ff_set_common_* functions are not used because they affect all the
835 * links, and thus break the video format negotiation */
836 formats = ff_make_format_list(sample_fmts);
837 if (!formats)
838 return AVERROR(ENOMEM);
839 ff_formats_ref(formats, &inlink->out_formats);
840 ff_formats_ref(formats, &outlink->in_formats);
841
842 layouts = ff_all_channel_layouts();
843 if (!layouts)
844 return AVERROR(ENOMEM);
845 ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
846 ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
847
848 formats = ff_make_format_list(input_srate);
849 if (!formats)
850 return AVERROR(ENOMEM);
851 ff_formats_ref(formats, &inlink->out_samplerates);
852 ff_formats_ref(formats, &outlink->in_samplerates);
853
854 return 0;
855}
856
857static av_cold void uninit(AVFilterContext *ctx)
858{
859 int i;
860 EBUR128Context *ebur128 = ctx->priv;
861
862 av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
863 " Integrated loudness:\n"
864 " I: %5.1f LUFS\n"
865 " Threshold: %5.1f LUFS\n\n"
866 " Loudness range:\n"
867 " LRA: %5.1f LU\n"
868 " Threshold: %5.1f LUFS\n"
869 " LRA low: %5.1f LUFS\n"
870 " LRA high: %5.1f LUFS",
871 ebur128->integrated_loudness, ebur128->i400.rel_threshold,
872 ebur128->loudness_range, ebur128->i3000.rel_threshold,
873 ebur128->lra_low, ebur128->lra_high);
874
875#define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \
876 int ch; \
877 double maxpeak; \
878 maxpeak = 0.0; \
879 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
880 for (ch = 0; ch < ebur128->nb_channels; ch++) \
881 maxpeak = FFMAX(maxpeak, sp[ch]); \
882 av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
883 " Peak: %5.1f dBFS", \
884 DBFS(maxpeak)); \
885 } \
886} while (0)
887
888 PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
889 PRINT_PEAK_SUMMARY("True", ebur128->true_peaks, TRUE);
890 av_log(ctx, AV_LOG_INFO, "\n");
891
892 av_freep(&ebur128->y_line_ref);
893 av_freep(&ebur128->ch_weighting);
894 av_freep(&ebur128->true_peaks);
895 av_freep(&ebur128->sample_peaks);
896 av_freep(&ebur128->true_peaks_per_frame);
897 av_freep(&ebur128->i400.histogram);
898 av_freep(&ebur128->i3000.histogram);
899 for (i = 0; i < ebur128->nb_channels; i++) {
900 av_freep(&ebur128->i400.cache[i]);
901 av_freep(&ebur128->i3000.cache[i]);
902 }
903 for (i = 0; i < ctx->nb_outputs; i++)
904 av_freep(&ctx->output_pads[i].name);
905 av_frame_free(&ebur128->outpicref);
906#if CONFIG_SWRESAMPLE
907 av_freep(&ebur128->swr_buf);
908 swr_free(&ebur128->swr_ctx);
909#endif
910}
911
912static const AVFilterPad ebur128_inputs[] = {
913 {
914 .name = "default",
915 .type = AVMEDIA_TYPE_AUDIO,
916 .filter_frame = filter_frame,
917 .config_props = config_audio_input,
918 },
919 { NULL }
920};
921
922AVFilter ff_af_ebur128 = {
923 .name = "ebur128",
924 .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
925 .priv_size = sizeof(EBUR128Context),
926 .init = init,
927 .uninit = uninit,
928 .query_formats = query_formats,
929 .inputs = ebur128_inputs,
930 .outputs = NULL,
931 .priv_class = &ebur128_class,
932 .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
933};