Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavfilter / vf_removelogo.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2005 Robert Edele <yartrebo@earthlink.net>
3 * Copyright (c) 2012 Stefano Sabatini
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Advanced blur-based logo removing filter
25 *
26 * This filter loads an image mask file showing where a logo is and
27 * uses a blur transform to remove the logo.
28 *
29 * Based on the libmpcodecs remove-logo filter by Robert Edele.
30 */
31
32/**
33 * This code implements a filter to remove annoying TV logos and other annoying
34 * images placed onto a video stream. It works by filling in the pixels that
35 * comprise the logo with neighboring pixels. The transform is very loosely
36 * based on a gaussian blur, but it is different enough to merit its own
37 * paragraph later on. It is a major improvement on the old delogo filter as it
38 * both uses a better blurring algorithm and uses a bitmap to use an arbitrary
39 * and generally much tighter fitting shape than a rectangle.
40 *
41 * The logo removal algorithm has two key points. The first is that it
42 * distinguishes between pixels in the logo and those not in the logo by using
43 * the passed-in bitmap. Pixels not in the logo are copied over directly without
44 * being modified and they also serve as source pixels for the logo
45 * fill-in. Pixels inside the logo have the mask applied.
46 *
47 * At init-time the bitmap is reprocessed internally, and the distance to the
48 * nearest edge of the logo (Manhattan distance), along with a little extra to
49 * remove rough edges, is stored in each pixel. This is done using an in-place
50 * erosion algorithm, and incrementing each pixel that survives any given
51 * erosion. Once every pixel is eroded, the maximum value is recorded, and a
52 * set of masks from size 0 to this size are generaged. The masks are circular
53 * binary masks, where each pixel within a radius N (where N is the size of the
54 * mask) is a 1, and all other pixels are a 0. Although a gaussian mask would be
55 * more mathematically accurate, a binary mask works better in practice because
56 * we generally do not use the central pixels in the mask (because they are in
57 * the logo region), and thus a gaussian mask will cause too little blur and
58 * thus a very unstable image.
59 *
60 * The mask is applied in a special way. Namely, only pixels in the mask that
61 * line up to pixels outside the logo are used. The dynamic mask size means that
62 * the mask is just big enough so that the edges touch pixels outside the logo,
63 * so the blurring is kept to a minimum and at least the first boundary
64 * condition is met (that the image function itself is continuous), even if the
65 * second boundary condition (that the derivative of the image function is
66 * continuous) is not met. A masking algorithm that does preserve the second
67 * boundary coundition (perhaps something based on a highly-modified bi-cubic
68 * algorithm) should offer even better results on paper, but the noise in a
69 * typical TV signal should make anything based on derivatives hopelessly noisy.
70 */
71
72#include "libavutil/imgutils.h"
73#include "libavutil/opt.h"
74#include "avfilter.h"
75#include "formats.h"
76#include "internal.h"
77#include "video.h"
78#include "bbox.h"
79#include "lavfutils.h"
80#include "lswsutils.h"
81
82typedef struct {
83 const AVClass *class;
84 char *filename;
85 /* Stores our collection of masks. The first is for an array of
86 the second for the y axis, and the third for the x axis. */
87 int ***mask;
88 int max_mask_size;
89 int mask_w, mask_h;
90
91 uint8_t *full_mask_data;
92 FFBoundingBox full_mask_bbox;
93 uint8_t *half_mask_data;
94 FFBoundingBox half_mask_bbox;
95} RemovelogoContext;
96
97#define OFFSET(x) offsetof(RemovelogoContext, x)
98#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
99static const AVOption removelogo_options[] = {
100 { "filename", "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
101 { "f", "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
102 { NULL }
103};
104
105AVFILTER_DEFINE_CLASS(removelogo);
106
107/**
108 * Choose a slightly larger mask size to improve performance.
109 *
110 * This function maps the absolute minimum mask size needed to the
111 * mask size we'll actually use. f(x) = x (the smallest that will
112 * work) will produce the sharpest results, but will be quite
113 * jittery. f(x) = 1.25x (what I'm using) is a good tradeoff in my
114 * opinion. This will calculate only at init-time, so you can put a
115 * long expression here without effecting performance.
116 */
117#define apply_mask_fudge_factor(x) (((x) >> 2) + x)
118
119/**
120 * Pre-process an image to give distance information.
121 *
122 * This function takes a bitmap image and converts it in place into a
123 * distance image. A distance image is zero for pixels outside of the
124 * logo and is the Manhattan distance (|dx| + |dy|) from the logo edge
125 * for pixels inside of the logo. This will overestimate the distance,
126 * but that is safe, and is far easier to implement than a proper
127 * pythagorean distance since I'm using a modified erosion algorithm
128 * to compute the distances.
129 *
130 * @param mask image which will be converted from a greyscale image
131 * into a distance image.
132 */
133static void convert_mask_to_strength_mask(uint8_t *data, int linesize,
134 int w, int h, int min_val,
135 int *max_mask_size)
136{
137 int x, y;
138
139 /* How many times we've gone through the loop. Used in the
140 in-place erosion algorithm and to get us max_mask_size later on. */
141 int current_pass = 0;
142
143 /* set all non-zero values to 1 */
144 for (y = 0; y < h; y++)
145 for (x = 0; x < w; x++)
146 data[y*linesize + x] = data[y*linesize + x] > min_val;
147
148 /* For each pass, if a pixel is itself the same value as the
149 current pass, and its four neighbors are too, then it is
150 incremented. If no pixels are incremented by the end of the
151 pass, then we go again. Edge pixels are counted as always
152 excluded (this should be true anyway for any sane mask, but if
153 it isn't this will ensure that we eventually exit). */
154 while (1) {
155 /* If this doesn't get set by the end of this pass, then we're done. */
156 int has_anything_changed = 0;
157 uint8_t *current_pixel0 = data + 1 + linesize, *current_pixel;
158 current_pass++;
159
160 for (y = 1; y < h-1; y++) {
161 current_pixel = current_pixel0;
162 for (x = 1; x < w-1; x++) {
163 /* Apply the in-place erosion transform. It is based
164 on the following two premises:
165 1 - Any pixel that fails 1 erosion will fail all
166 future erosions.
167
168 2 - Only pixels having survived all erosions up to
169 the present will be >= to current_pass.
170 It doesn't matter if it survived the current pass,
171 failed it, or hasn't been tested yet. By using >=
172 instead of ==, we allow the algorithm to work in
173 place. */
174 if ( *current_pixel >= current_pass &&
175 *(current_pixel + 1) >= current_pass &&
176 *(current_pixel - 1) >= current_pass &&
177 *(current_pixel + linesize) >= current_pass &&
178 *(current_pixel - linesize) >= current_pass) {
179 /* Increment the value since it still has not been
180 * eroded, as evidenced by the if statement that
181 * just evaluated to true. */
182 (*current_pixel)++;
183 has_anything_changed = 1;
184 }
185 current_pixel++;
186 }
187 current_pixel0 += linesize;
188 }
189 if (!has_anything_changed)
190 break;
191 }
192
193 /* Apply the fudge factor, which will increase the size of the
194 * mask a little to reduce jitter at the cost of more blur. */
195 for (y = 1; y < h - 1; y++)
196 for (x = 1; x < w - 1; x++)
197 data[(y * linesize) + x] = apply_mask_fudge_factor(data[(y * linesize) + x]);
198
199 /* As a side-effect, we now know the maximum mask size, which
200 * we'll use to generate our masks. */
201 /* Apply the fudge factor to this number too, since we must ensure
202 * that enough masks are generated. */
203 *max_mask_size = apply_mask_fudge_factor(current_pass + 1);
204}
205
206static int query_formats(AVFilterContext *ctx)
207{
208 static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE };
209 ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
210 return 0;
211}
212
213static int load_mask(uint8_t **mask, int *w, int *h,
214 const char *filename, void *log_ctx)
215{
216 int ret;
217 enum AVPixelFormat pix_fmt;
218 uint8_t *src_data[4], *gray_data[4];
219 int src_linesize[4], gray_linesize[4];
220
221 /* load image from file */
222 if ((ret = ff_load_image(src_data, src_linesize, w, h, &pix_fmt, filename, log_ctx)) < 0)
223 return ret;
224
225 /* convert the image to GRAY8 */
226 if ((ret = ff_scale_image(gray_data, gray_linesize, *w, *h, AV_PIX_FMT_GRAY8,
227 src_data, src_linesize, *w, *h, pix_fmt,
228 log_ctx)) < 0)
229 goto end;
230
231 /* copy mask to a newly allocated array */
232 *mask = av_malloc(*w * *h);
233 if (!*mask)
234 ret = AVERROR(ENOMEM);
235 av_image_copy_plane(*mask, *w, gray_data[0], gray_linesize[0], *w, *h);
236
237end:
238 av_freep(&src_data[0]);
239 av_freep(&gray_data[0]);
240 return ret;
241}
242
243/**
244 * Generate a scaled down image with half width, height, and intensity.
245 *
246 * This function not only scales down an image, but halves the value
247 * in each pixel too. The purpose of this is to produce a chroma
248 * filter image out of a luma filter image. The pixel values store the
249 * distance to the edge of the logo and halving the dimensions halves
250 * the distance. This function rounds up, because a downwards rounding
251 * error could cause the filter to fail, but an upwards rounding error
252 * will only cause a minor amount of excess blur in the chroma planes.
253 */
254static void generate_half_size_image(const uint8_t *src_data, int src_linesize,
255 uint8_t *dst_data, int dst_linesize,
256 int src_w, int src_h,
257 int *max_mask_size)
258{
259 int x, y;
260
261 /* Copy over the image data, using the average of 4 pixels for to
262 * calculate each downsampled pixel. */
263 for (y = 0; y < src_h/2; y++) {
264 for (x = 0; x < src_w/2; x++) {
265 /* Set the pixel if there exists a non-zero value in the
266 * source pixels, else clear it. */
267 dst_data[(y * dst_linesize) + x] =
268 src_data[((y << 1) * src_linesize) + (x << 1)] ||
269 src_data[((y << 1) * src_linesize) + (x << 1) + 1] ||
270 src_data[(((y << 1) + 1) * src_linesize) + (x << 1)] ||
271 src_data[(((y << 1) + 1) * src_linesize) + (x << 1) + 1];
272 dst_data[(y * dst_linesize) + x] = FFMIN(1, dst_data[(y * dst_linesize) + x]);
273 }
274 }
275
276 convert_mask_to_strength_mask(dst_data, dst_linesize,
277 src_w/2, src_h/2, 0, max_mask_size);
278}
279
280static av_cold int init(AVFilterContext *ctx)
281{
282 RemovelogoContext *s = ctx->priv;
283 int ***mask;
284 int ret = 0;
285 int a, b, c, w, h;
286 int full_max_mask_size, half_max_mask_size;
287
288 if (!s->filename) {
289 av_log(ctx, AV_LOG_ERROR, "The bitmap file name is mandatory\n");
290 return AVERROR(EINVAL);
291 }
292
293 /* Load our mask image. */
294 if ((ret = load_mask(&s->full_mask_data, &w, &h, s->filename, ctx)) < 0)
295 return ret;
296 s->mask_w = w;
297 s->mask_h = h;
298
299 convert_mask_to_strength_mask(s->full_mask_data, w, w, h,
300 16, &full_max_mask_size);
301
302 /* Create the scaled down mask image for the chroma planes. */
303 if (!(s->half_mask_data = av_mallocz(w/2 * h/2)))
304 return AVERROR(ENOMEM);
305 generate_half_size_image(s->full_mask_data, w,
306 s->half_mask_data, w/2,
307 w, h, &half_max_mask_size);
308
309 s->max_mask_size = FFMAX(full_max_mask_size, half_max_mask_size);
310
311 /* Create a circular mask for each size up to max_mask_size. When
312 the filter is applied, the mask size is determined on a pixel
313 by pixel basis, with pixels nearer the edge of the logo getting
314 smaller mask sizes. */
315 mask = (int ***)av_malloc_array(s->max_mask_size + 1, sizeof(int **));
316 if (!mask)
317 return AVERROR(ENOMEM);
318
319 for (a = 0; a <= s->max_mask_size; a++) {
320 mask[a] = (int **)av_malloc_array((a * 2) + 1, sizeof(int *));
321 if (!mask[a]) {
322 av_free(mask);
323 return AVERROR(ENOMEM);
324 }
325 for (b = -a; b <= a; b++) {
326 mask[a][b + a] = (int *)av_malloc_array((a * 2) + 1, sizeof(int));
327 if (!mask[a][b + a]) {
328 av_free(mask);
329 return AVERROR(ENOMEM);
330 }
331 for (c = -a; c <= a; c++) {
332 if ((b * b) + (c * c) <= (a * a)) /* Circular 0/1 mask. */
333 mask[a][b + a][c + a] = 1;
334 else
335 mask[a][b + a][c + a] = 0;
336 }
337 }
338 }
339 s->mask = mask;
340
341 /* Calculate our bounding rectangles, which determine in what
342 * region the logo resides for faster processing. */
343 ff_calculate_bounding_box(&s->full_mask_bbox, s->full_mask_data, w, w, h, 0);
344 ff_calculate_bounding_box(&s->half_mask_bbox, s->half_mask_data, w/2, w/2, h/2, 0);
345
346#define SHOW_LOGO_INFO(mask_type) \
347 av_log(ctx, AV_LOG_VERBOSE, #mask_type " x1:%d x2:%d y1:%d y2:%d max_mask_size:%d\n", \
348 s->mask_type##_mask_bbox.x1, s->mask_type##_mask_bbox.x2, \
349 s->mask_type##_mask_bbox.y1, s->mask_type##_mask_bbox.y2, \
350 mask_type##_max_mask_size);
351 SHOW_LOGO_INFO(full);
352 SHOW_LOGO_INFO(half);
353
354 return 0;
355}
356
357static int config_props_input(AVFilterLink *inlink)
358{
359 AVFilterContext *ctx = inlink->dst;
360 RemovelogoContext *s = ctx->priv;
361
362 if (inlink->w != s->mask_w || inlink->h != s->mask_h) {
363 av_log(ctx, AV_LOG_INFO,
364 "Mask image size %dx%d does not match with the input video size %dx%d\n",
365 s->mask_w, s->mask_h, inlink->w, inlink->h);
366 return AVERROR(EINVAL);
367 }
368
369 return 0;
370}
371
372/**
373 * Blur image.
374 *
375 * It takes a pixel that is inside the mask and blurs it. It does so
376 * by finding the average of all the pixels within the mask and
377 * outside of the mask.
378 *
379 * @param mask_data the mask plane to use for averaging
380 * @param image_data the image plane to blur
381 * @param w width of the image
382 * @param h height of the image
383 * @param x x-coordinate of the pixel to blur
384 * @param y y-coordinate of the pixel to blur
385 */
386static unsigned int blur_pixel(int ***mask,
387 const uint8_t *mask_data, int mask_linesize,
388 uint8_t *image_data, int image_linesize,
389 int w, int h, int x, int y)
390{
391 /* Mask size tells how large a circle to use. The radius is about
392 * (slightly larger than) mask size. */
393 int mask_size;
394 int start_posx, start_posy, end_posx, end_posy;
395 int i, j;
396 unsigned int accumulator = 0, divisor = 0;
397 /* What pixel we are reading out of the circular blur mask. */
398 const uint8_t *image_read_position;
399 /* What pixel we are reading out of the filter image. */
400 const uint8_t *mask_read_position;
401
402 /* Prepare our bounding rectangle and clip it if need be. */
403 mask_size = mask_data[y * mask_linesize + x];
404 start_posx = FFMAX(0, x - mask_size);
405 start_posy = FFMAX(0, y - mask_size);
406 end_posx = FFMIN(w - 1, x + mask_size);
407 end_posy = FFMIN(h - 1, y + mask_size);
408
409 image_read_position = image_data + image_linesize * start_posy + start_posx;
410 mask_read_position = mask_data + mask_linesize * start_posy + start_posx;
411
412 for (j = start_posy; j <= end_posy; j++) {
413 for (i = start_posx; i <= end_posx; i++) {
414 /* Check if this pixel is in the mask or not. Only use the
415 * pixel if it is not. */
416 if (!(*mask_read_position) && mask[mask_size][i - start_posx][j - start_posy]) {
417 accumulator += *image_read_position;
418 divisor++;
419 }
420
421 image_read_position++;
422 mask_read_position++;
423 }
424
425 image_read_position += (image_linesize - ((end_posx + 1) - start_posx));
426 mask_read_position += (mask_linesize - ((end_posx + 1) - start_posx));
427 }
428
429 /* If divisor is 0, it means that not a single pixel is outside of
430 the logo, so we have no data. Else we need to normalise the
431 data using the divisor. */
432 return divisor == 0 ? 255:
433 (accumulator + (divisor / 2)) / divisor; /* divide, taking into account average rounding error */
434}
435
436/**
437 * Blur image plane using a mask.
438 *
439 * @param source The image to have it's logo removed.
440 * @param destination Where the output image will be stored.
441 * @param source_stride How far apart (in memory) two consecutive lines are.
442 * @param destination Same as source_stride, but for the destination image.
443 * @param width Width of the image. This is the same for source and destination.
444 * @param height Height of the image. This is the same for source and destination.
445 * @param is_image_direct If the image is direct, then source and destination are
446 * the same and we can save a lot of time by not copying pixels that
447 * haven't changed.
448 * @param filter The image that stores the distance to the edge of the logo for
449 * each pixel.
450 * @param logo_start_x smallest x-coordinate that contains at least 1 logo pixel.
451 * @param logo_start_y smallest y-coordinate that contains at least 1 logo pixel.
452 * @param logo_end_x largest x-coordinate that contains at least 1 logo pixel.
453 * @param logo_end_y largest y-coordinate that contains at least 1 logo pixel.
454 *
455 * This function processes an entire plane. Pixels outside of the logo are copied
456 * to the output without change, and pixels inside the logo have the de-blurring
457 * function applied.
458 */
459static void blur_image(int ***mask,
460 const uint8_t *src_data, int src_linesize,
461 uint8_t *dst_data, int dst_linesize,
462 const uint8_t *mask_data, int mask_linesize,
463 int w, int h, int direct,
464 FFBoundingBox *bbox)
465{
466 int x, y;
467 uint8_t *dst_line;
468 const uint8_t *src_line;
469
470 if (!direct)
471 av_image_copy_plane(dst_data, dst_linesize, src_data, src_linesize, w, h);
472
473 for (y = bbox->y1; y <= bbox->y2; y++) {
474 src_line = src_data + src_linesize * y;
475 dst_line = dst_data + dst_linesize * y;
476
477 for (x = bbox->x1; x <= bbox->x2; x++) {
478 if (mask_data[y * mask_linesize + x]) {
479 /* Only process if we are in the mask. */
480 dst_line[x] = blur_pixel(mask,
481 mask_data, mask_linesize,
482 dst_data, dst_linesize,
483 w, h, x, y);
484 } else {
485 /* Else just copy the data. */
486 if (!direct)
487 dst_line[x] = src_line[x];
488 }
489 }
490 }
491}
492
493static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
494{
495 RemovelogoContext *s = inlink->dst->priv;
496 AVFilterLink *outlink = inlink->dst->outputs[0];
497 AVFrame *outpicref;
498 int direct = 0;
499
500 if (av_frame_is_writable(inpicref)) {
501 direct = 1;
502 outpicref = inpicref;
503 } else {
504 outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
505 if (!outpicref) {
506 av_frame_free(&inpicref);
507 return AVERROR(ENOMEM);
508 }
509 av_frame_copy_props(outpicref, inpicref);
510 }
511
512 blur_image(s->mask,
513 inpicref ->data[0], inpicref ->linesize[0],
514 outpicref->data[0], outpicref->linesize[0],
515 s->full_mask_data, inlink->w,
516 inlink->w, inlink->h, direct, &s->full_mask_bbox);
517 blur_image(s->mask,
518 inpicref ->data[1], inpicref ->linesize[1],
519 outpicref->data[1], outpicref->linesize[1],
520 s->half_mask_data, inlink->w/2,
521 inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox);
522 blur_image(s->mask,
523 inpicref ->data[2], inpicref ->linesize[2],
524 outpicref->data[2], outpicref->linesize[2],
525 s->half_mask_data, inlink->w/2,
526 inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox);
527
528 if (!direct)
529 av_frame_free(&inpicref);
530
531 return ff_filter_frame(outlink, outpicref);
532}
533
534static av_cold void uninit(AVFilterContext *ctx)
535{
536 RemovelogoContext *s = ctx->priv;
537 int a, b;
538
539 av_freep(&s->full_mask_data);
540 av_freep(&s->half_mask_data);
541
542 if (s->mask) {
543 /* Loop through each mask. */
544 for (a = 0; a <= s->max_mask_size; a++) {
545 /* Loop through each scanline in a mask. */
546 for (b = -a; b <= a; b++) {
547 av_freep(&s->mask[a][b + a]); /* Free a scanline. */
548 }
549 av_freep(&s->mask[a]);
550 }
551 /* Free the array of pointers pointing to the masks. */
552 av_freep(&s->mask);
553 }
554}
555
556static const AVFilterPad removelogo_inputs[] = {
557 {
558 .name = "default",
559 .type = AVMEDIA_TYPE_VIDEO,
560 .config_props = config_props_input,
561 .filter_frame = filter_frame,
562 },
563 { NULL }
564};
565
566static const AVFilterPad removelogo_outputs[] = {
567 {
568 .name = "default",
569 .type = AVMEDIA_TYPE_VIDEO,
570 },
571 { NULL }
572};
573
574AVFilter ff_vf_removelogo = {
575 .name = "removelogo",
576 .description = NULL_IF_CONFIG_SMALL("Remove a TV logo based on a mask image."),
577 .priv_size = sizeof(RemovelogoContext),
578 .init = init,
579 .uninit = uninit,
580 .query_formats = query_formats,
581 .inputs = removelogo_inputs,
582 .outputs = removelogo_outputs,
583 .priv_class = &removelogo_class,
584 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
585};