Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavfilter / vsrc_life.c
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) Stefano Sabatini 2010
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * life video source, based on John Conways' Life Game
24 */
25
26/* #define DEBUG */
27
28#include "libavutil/file.h"
29#include "libavutil/intreadwrite.h"
30#include "libavutil/lfg.h"
31#include "libavutil/opt.h"
32#include "libavutil/parseutils.h"
33#include "libavutil/random_seed.h"
34#include "libavutil/avstring.h"
35#include "avfilter.h"
36#include "internal.h"
37#include "formats.h"
38#include "video.h"
39
40typedef struct {
41 const AVClass *class;
42 int w, h;
43 char *filename;
44 char *rule_str;
45 uint8_t *file_buf;
46 size_t file_bufsize;
47
48 /**
49 * The two grid state buffers.
50 *
51 * A 0xFF (ALIVE_CELL) value means the cell is alive (or new born), while
52 * the decreasing values from 0xFE to 0 means the cell is dead; the range
53 * of values is used for the slow death effect, or mold (0xFE means dead,
54 * 0xFD means very dead, 0xFC means very very dead... and 0x00 means
55 * definitely dead/mold).
56 */
57 uint8_t *buf[2];
58
59 uint8_t buf_idx;
60 uint16_t stay_rule; ///< encode the behavior for filled cells
61 uint16_t born_rule; ///< encode the behavior for empty cells
62 uint64_t pts;
63 AVRational frame_rate;
64 double random_fill_ratio;
65 uint32_t random_seed;
66 int stitch;
67 int mold;
68 uint8_t life_color[4];
69 uint8_t death_color[4];
70 uint8_t mold_color[4];
71 AVLFG lfg;
72 void (*draw)(AVFilterContext*, AVFrame*);
73} LifeContext;
74
75#define ALIVE_CELL 0xFF
76#define OFFSET(x) offsetof(LifeContext, x)
77#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
78
79static const AVOption life_options[] = {
80 { "filename", "set source file", OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
81 { "f", "set source file", OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
82 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS },
83 { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS },
84 { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, 0, FLAGS },
85 { "r", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, 0, FLAGS },
86 { "rule", "set rule", OFFSET(rule_str), AV_OPT_TYPE_STRING, {.str = "B3/S23"}, CHAR_MIN, CHAR_MAX, FLAGS },
87 { "random_fill_ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS },
88 { "ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS },
89 { "random_seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT, {.i64=-1}, -1, UINT32_MAX, FLAGS },
90 { "seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT, {.i64=-1}, -1, UINT32_MAX, FLAGS },
91 { "stitch", "stitch boundaries", OFFSET(stitch), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS },
92 { "mold", "set mold speed for dead cells", OFFSET(mold), AV_OPT_TYPE_INT, {.i64=0}, 0, 0xFF, FLAGS },
93 { "life_color", "set life color", OFFSET( life_color), AV_OPT_TYPE_COLOR, {.str="white"}, CHAR_MIN, CHAR_MAX, FLAGS },
94 { "death_color", "set death color", OFFSET(death_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS },
95 { "mold_color", "set mold color", OFFSET( mold_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS },
96 { NULL }
97};
98
99AVFILTER_DEFINE_CLASS(life);
100
101static int parse_rule(uint16_t *born_rule, uint16_t *stay_rule,
102 const char *rule_str, void *log_ctx)
103{
104 char *tail;
105 const char *p = rule_str;
106 *born_rule = 0;
107 *stay_rule = 0;
108
109 if (strchr("bBsS", *p)) {
110 /* parse rule as a Born / Stay Alive code, see
111 * http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life */
112 do {
113 uint16_t *rule = (*p == 'b' || *p == 'B') ? born_rule : stay_rule;
114 p++;
115 while (*p >= '0' && *p <= '8') {
116 *rule += 1<<(*p - '0');
117 p++;
118 }
119 if (*p != '/')
120 break;
121 p++;
122 } while (strchr("bBsS", *p));
123
124 if (*p)
125 goto error;
126 } else {
127 /* parse rule as a number, expressed in the form STAY|(BORN<<9),
128 * where STAY and BORN encode the corresponding 9-bits rule */
129 long int rule = strtol(rule_str, &tail, 10);
130 if (*tail)
131 goto error;
132 *born_rule = ((1<<9)-1) & rule;
133 *stay_rule = rule >> 9;
134 }
135
136 return 0;
137
138error:
139 av_log(log_ctx, AV_LOG_ERROR, "Invalid rule code '%s' provided\n", rule_str);
140 return AVERROR(EINVAL);
141}
142
143#ifdef DEBUG
144static void show_life_grid(AVFilterContext *ctx)
145{
146 LifeContext *life = ctx->priv;
147 int i, j;
148
149 char *line = av_malloc(life->w + 1);
150 if (!line)
151 return;
152 for (i = 0; i < life->h; i++) {
153 for (j = 0; j < life->w; j++)
154 line[j] = life->buf[life->buf_idx][i*life->w + j] == ALIVE_CELL ? '@' : ' ';
155 line[j] = 0;
156 av_log(ctx, AV_LOG_DEBUG, "%3d: %s\n", i, line);
157 }
158 av_free(line);
159}
160#endif
161
162static int init_pattern_from_file(AVFilterContext *ctx)
163{
164 LifeContext *life = ctx->priv;
165 char *p;
166 int ret, i, i0, j, h = 0, w, max_w = 0;
167
168 if ((ret = av_file_map(life->filename, &life->file_buf, &life->file_bufsize,
169 0, ctx)) < 0)
170 return ret;
171 av_freep(&life->filename);
172
173 /* prescan file to get the number of lines and the maximum width */
174 w = 0;
175 for (i = 0; i < life->file_bufsize; i++) {
176 if (life->file_buf[i] == '\n') {
177 h++; max_w = FFMAX(w, max_w); w = 0;
178 } else {
179 w++;
180 }
181 }
182 av_log(ctx, AV_LOG_DEBUG, "h:%d max_w:%d\n", h, max_w);
183
184 if (life->w) {
185 if (max_w > life->w || h > life->h) {
186 av_log(ctx, AV_LOG_ERROR,
187 "The specified size is %dx%d which cannot contain the provided file size of %dx%d\n",
188 life->w, life->h, max_w, h);
189 return AVERROR(EINVAL);
190 }
191 } else {
192 /* size was not specified, set it to size of the grid */
193 life->w = max_w;
194 life->h = h;
195 }
196
197 if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) ||
198 !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) {
199 av_free(life->buf[0]);
200 av_free(life->buf[1]);
201 return AVERROR(ENOMEM);
202 }
203
204 /* fill buf[0] */
205 p = life->file_buf;
206 for (i0 = 0, i = (life->h - h)/2; i0 < h; i0++, i++) {
207 for (j = (life->w - max_w)/2;; j++) {
208 av_log(ctx, AV_LOG_DEBUG, "%d:%d %c\n", i, j, *p == '\n' ? 'N' : *p);
209 if (*p == '\n') {
210 p++; break;
211 } else
212 life->buf[0][i*life->w + j] = av_isgraph(*(p++)) ? ALIVE_CELL : 0;
213 }
214 }
215 life->buf_idx = 0;
216
217 return 0;
218}
219
220static av_cold int init(AVFilterContext *ctx)
221{
222 LifeContext *life = ctx->priv;
223 int ret;
224
225 if (!life->w && !life->filename)
226 av_opt_set(life, "size", "320x240", 0);
227
228 if ((ret = parse_rule(&life->born_rule, &life->stay_rule, life->rule_str, ctx)) < 0)
229 return ret;
230
231 if (!life->mold && memcmp(life->mold_color, "\x00\x00\x00", 3))
232 av_log(ctx, AV_LOG_WARNING,
233 "Mold color is set while mold isn't, ignoring the color.\n");
234
235 if (!life->filename) {
236 /* fill the grid randomly */
237 int i;
238
239 if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) ||
240 !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) {
241 av_free(life->buf[0]);
242 av_free(life->buf[1]);
243 return AVERROR(ENOMEM);
244 }
245 if (life->random_seed == -1)
246 life->random_seed = av_get_random_seed();
247
248 av_lfg_init(&life->lfg, life->random_seed);
249
250 for (i = 0; i < life->w * life->h; i++) {
251 double r = (double)av_lfg_get(&life->lfg) / UINT32_MAX;
252 if (r <= life->random_fill_ratio)
253 life->buf[0][i] = ALIVE_CELL;
254 }
255 life->buf_idx = 0;
256 } else {
257 if ((ret = init_pattern_from_file(ctx)) < 0)
258 return ret;
259 }
260
261 av_log(ctx, AV_LOG_VERBOSE,
262 "s:%dx%d r:%d/%d rule:%s stay_rule:%d born_rule:%d stitch:%d seed:%u\n",
263 life->w, life->h, life->frame_rate.num, life->frame_rate.den,
264 life->rule_str, life->stay_rule, life->born_rule, life->stitch,
265 life->random_seed);
266 return 0;
267}
268
269static av_cold void uninit(AVFilterContext *ctx)
270{
271 LifeContext *life = ctx->priv;
272
273 av_file_unmap(life->file_buf, life->file_bufsize);
274 av_freep(&life->rule_str);
275 av_freep(&life->buf[0]);
276 av_freep(&life->buf[1]);
277}
278
279static int config_props(AVFilterLink *outlink)
280{
281 LifeContext *life = outlink->src->priv;
282
283 outlink->w = life->w;
284 outlink->h = life->h;
285 outlink->time_base = av_inv_q(life->frame_rate);
286
287 return 0;
288}
289
290static void evolve(AVFilterContext *ctx)
291{
292 LifeContext *life = ctx->priv;
293 int i, j;
294 uint8_t *oldbuf = life->buf[ life->buf_idx];
295 uint8_t *newbuf = life->buf[!life->buf_idx];
296
297 enum { NW, N, NE, W, E, SW, S, SE };
298
299 /* evolve the grid */
300 for (i = 0; i < life->h; i++) {
301 for (j = 0; j < life->w; j++) {
302 int pos[8][2], n, alive, cell;
303 if (life->stitch) {
304 pos[NW][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NW][1] = (j-1) < 0 ? life->w-1 : j-1;
305 pos[N ][0] = (i-1) < 0 ? life->h-1 : i-1; pos[N ][1] = j ;
306 pos[NE][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NE][1] = (j+1) == life->w ? 0 : j+1;
307 pos[W ][0] = i ; pos[W ][1] = (j-1) < 0 ? life->w-1 : j-1;
308 pos[E ][0] = i ; pos[E ][1] = (j+1) == life->w ? 0 : j+1;
309 pos[SW][0] = (i+1) == life->h ? 0 : i+1; pos[SW][1] = (j-1) < 0 ? life->w-1 : j-1;
310 pos[S ][0] = (i+1) == life->h ? 0 : i+1; pos[S ][1] = j ;
311 pos[SE][0] = (i+1) == life->h ? 0 : i+1; pos[SE][1] = (j+1) == life->w ? 0 : j+1;
312 } else {
313 pos[NW][0] = (i-1) < 0 ? -1 : i-1; pos[NW][1] = (j-1) < 0 ? -1 : j-1;
314 pos[N ][0] = (i-1) < 0 ? -1 : i-1; pos[N ][1] = j ;
315 pos[NE][0] = (i-1) < 0 ? -1 : i-1; pos[NE][1] = (j+1) == life->w ? -1 : j+1;
316 pos[W ][0] = i ; pos[W ][1] = (j-1) < 0 ? -1 : j-1;
317 pos[E ][0] = i ; pos[E ][1] = (j+1) == life->w ? -1 : j+1;
318 pos[SW][0] = (i+1) == life->h ? -1 : i+1; pos[SW][1] = (j-1) < 0 ? -1 : j-1;
319 pos[S ][0] = (i+1) == life->h ? -1 : i+1; pos[S ][1] = j ;
320 pos[SE][0] = (i+1) == life->h ? -1 : i+1; pos[SE][1] = (j+1) == life->w ? -1 : j+1;
321 }
322
323 /* compute the number of live neighbor cells */
324 n = (pos[NW][0] == -1 || pos[NW][1] == -1 ? 0 : oldbuf[pos[NW][0]*life->w + pos[NW][1]] == ALIVE_CELL) +
325 (pos[N ][0] == -1 || pos[N ][1] == -1 ? 0 : oldbuf[pos[N ][0]*life->w + pos[N ][1]] == ALIVE_CELL) +
326 (pos[NE][0] == -1 || pos[NE][1] == -1 ? 0 : oldbuf[pos[NE][0]*life->w + pos[NE][1]] == ALIVE_CELL) +
327 (pos[W ][0] == -1 || pos[W ][1] == -1 ? 0 : oldbuf[pos[W ][0]*life->w + pos[W ][1]] == ALIVE_CELL) +
328 (pos[E ][0] == -1 || pos[E ][1] == -1 ? 0 : oldbuf[pos[E ][0]*life->w + pos[E ][1]] == ALIVE_CELL) +
329 (pos[SW][0] == -1 || pos[SW][1] == -1 ? 0 : oldbuf[pos[SW][0]*life->w + pos[SW][1]] == ALIVE_CELL) +
330 (pos[S ][0] == -1 || pos[S ][1] == -1 ? 0 : oldbuf[pos[S ][0]*life->w + pos[S ][1]] == ALIVE_CELL) +
331 (pos[SE][0] == -1 || pos[SE][1] == -1 ? 0 : oldbuf[pos[SE][0]*life->w + pos[SE][1]] == ALIVE_CELL);
332 cell = oldbuf[i*life->w + j];
333 alive = 1<<n & (cell == ALIVE_CELL ? life->stay_rule : life->born_rule);
334 if (alive) *newbuf = ALIVE_CELL; // new cell is alive
335 else if (cell) *newbuf = cell - 1; // new cell is dead and in the process of mold
336 else *newbuf = 0; // new cell is definitely dead
337 av_dlog(ctx, "i:%d j:%d live_neighbors:%d cell:%d -> cell:%d\n", i, j, n, cell, *newbuf);
338 newbuf++;
339 }
340 }
341
342 life->buf_idx = !life->buf_idx;
343}
344
345static void fill_picture_monoblack(AVFilterContext *ctx, AVFrame *picref)
346{
347 LifeContext *life = ctx->priv;
348 uint8_t *buf = life->buf[life->buf_idx];
349 int i, j, k;
350
351 /* fill the output picture with the old grid buffer */
352 for (i = 0; i < life->h; i++) {
353 uint8_t byte = 0;
354 uint8_t *p = picref->data[0] + i * picref->linesize[0];
355 for (k = 0, j = 0; j < life->w; j++) {
356 byte |= (buf[i*life->w+j] == ALIVE_CELL)<<(7-k++);
357 if (k==8 || j == life->w-1) {
358 k = 0;
359 *p++ = byte;
360 byte = 0;
361 }
362 }
363 }
364}
365
366// divide by 255 and round to nearest
367// apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16
368#define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
369
370static void fill_picture_rgb(AVFilterContext *ctx, AVFrame *picref)
371{
372 LifeContext *life = ctx->priv;
373 uint8_t *buf = life->buf[life->buf_idx];
374 int i, j;
375
376 /* fill the output picture with the old grid buffer */
377 for (i = 0; i < life->h; i++) {
378 uint8_t *p = picref->data[0] + i * picref->linesize[0];
379 for (j = 0; j < life->w; j++) {
380 uint8_t v = buf[i*life->w + j];
381 if (life->mold && v != ALIVE_CELL) {
382 const uint8_t *c1 = life-> mold_color;
383 const uint8_t *c2 = life->death_color;
384 int death_age = FFMIN((0xff - v) * life->mold, 0xff);
385 *p++ = FAST_DIV255((c2[0] << 8) + ((int)c1[0] - (int)c2[0]) * death_age);
386 *p++ = FAST_DIV255((c2[1] << 8) + ((int)c1[1] - (int)c2[1]) * death_age);
387 *p++ = FAST_DIV255((c2[2] << 8) + ((int)c1[2] - (int)c2[2]) * death_age);
388 } else {
389 const uint8_t *c = v == ALIVE_CELL ? life->life_color : life->death_color;
390 AV_WB24(p, c[0]<<16 | c[1]<<8 | c[2]);
391 p += 3;
392 }
393 }
394 }
395}
396
397static int request_frame(AVFilterLink *outlink)
398{
399 LifeContext *life = outlink->src->priv;
400 AVFrame *picref = ff_get_video_buffer(outlink, life->w, life->h);
401 if (!picref)
402 return AVERROR(ENOMEM);
403 picref->sample_aspect_ratio = (AVRational) {1, 1};
404 picref->pts = life->pts++;
405
406 life->draw(outlink->src, picref);
407 evolve(outlink->src);
408#ifdef DEBUG
409 show_life_grid(outlink->src);
410#endif
411 return ff_filter_frame(outlink, picref);
412}
413
414static int query_formats(AVFilterContext *ctx)
415{
416 LifeContext *life = ctx->priv;
417 enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_NONE, AV_PIX_FMT_NONE };
418 if (life->mold || memcmp(life-> life_color, "\xff\xff\xff", 3)
419 || memcmp(life->death_color, "\x00\x00\x00", 3)) {
420 pix_fmts[0] = AV_PIX_FMT_RGB24;
421 life->draw = fill_picture_rgb;
422 } else {
423 pix_fmts[0] = AV_PIX_FMT_MONOBLACK;
424 life->draw = fill_picture_monoblack;
425 }
426 ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
427 return 0;
428}
429
430static const AVFilterPad life_outputs[] = {
431 {
432 .name = "default",
433 .type = AVMEDIA_TYPE_VIDEO,
434 .request_frame = request_frame,
435 .config_props = config_props,
436 },
437 { NULL}
438};
439
440AVFilter ff_vsrc_life = {
441 .name = "life",
442 .description = NULL_IF_CONFIG_SMALL("Create life."),
443 .priv_size = sizeof(LifeContext),
444 .priv_class = &life_class,
445 .init = init,
446 .uninit = uninit,
447 .query_formats = query_formats,
448 .inputs = NULL,
449 .outputs = life_outputs,
450};