Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libavresample / avresample.h
CommitLineData
2ba45a60
DM
1/*
2 * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#ifndef AVRESAMPLE_AVRESAMPLE_H
22#define AVRESAMPLE_AVRESAMPLE_H
23
24/**
25 * @file
26 * @ingroup lavr
27 * external API header
28 */
29
30/**
31 * @defgroup lavr Libavresample
32 * @{
33 *
34 * Libavresample (lavr) is a library that handles audio resampling, sample
35 * format conversion and mixing.
36 *
37 * Interaction with lavr is done through AVAudioResampleContext, which is
38 * allocated with avresample_alloc_context(). It is opaque, so all parameters
39 * must be set with the @ref avoptions API.
40 *
41 * For example the following code will setup conversion from planar float sample
42 * format to interleaved signed 16-bit integer, downsampling from 48kHz to
43 * 44.1kHz and downmixing from 5.1 channels to stereo (using the default mixing
44 * matrix):
45 * @code
46 * AVAudioResampleContext *avr = avresample_alloc_context();
47 * av_opt_set_int(avr, "in_channel_layout", AV_CH_LAYOUT_5POINT1, 0);
48 * av_opt_set_int(avr, "out_channel_layout", AV_CH_LAYOUT_STEREO, 0);
49 * av_opt_set_int(avr, "in_sample_rate", 48000, 0);
50 * av_opt_set_int(avr, "out_sample_rate", 44100, 0);
51 * av_opt_set_int(avr, "in_sample_fmt", AV_SAMPLE_FMT_FLTP, 0);
52 * av_opt_set_int(avr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
53 * @endcode
54 *
55 * Once the context is initialized, it must be opened with avresample_open(). If
56 * you need to change the conversion parameters, you must close the context with
57 * avresample_close(), change the parameters as described above, then reopen it
58 * again.
59 *
60 * The conversion itself is done by repeatedly calling avresample_convert().
61 * Note that the samples may get buffered in two places in lavr. The first one
62 * is the output FIFO, where the samples end up if the output buffer is not
63 * large enough. The data stored in there may be retrieved at any time with
64 * avresample_read(). The second place is the resampling delay buffer,
65 * applicable only when resampling is done. The samples in it require more input
66 * before they can be processed. Their current amount is returned by
67 * avresample_get_delay(). At the end of conversion the resampling buffer can be
68 * flushed by calling avresample_convert() with NULL input.
69 *
70 * The following code demonstrates the conversion loop assuming the parameters
71 * from above and caller-defined functions get_input() and handle_output():
72 * @code
73 * uint8_t **input;
74 * int in_linesize, in_samples;
75 *
76 * while (get_input(&input, &in_linesize, &in_samples)) {
77 * uint8_t *output
78 * int out_linesize;
79 * int out_samples = avresample_get_out_samples(avr, in_samples);
80 *
81 * av_samples_alloc(&output, &out_linesize, 2, out_samples,
82 * AV_SAMPLE_FMT_S16, 0);
83 * out_samples = avresample_convert(avr, &output, out_linesize, out_samples,
84 * input, in_linesize, in_samples);
85 * handle_output(output, out_linesize, out_samples);
86 * av_freep(&output);
87 * }
88 * @endcode
89 *
90 * When the conversion is finished and the FIFOs are flushed if required, the
91 * conversion context and everything associated with it must be freed with
92 * avresample_free().
93 */
94
95#include "libavutil/avutil.h"
96#include "libavutil/channel_layout.h"
97#include "libavutil/dict.h"
98#include "libavutil/frame.h"
99#include "libavutil/log.h"
100#include "libavutil/mathematics.h"
101
102#include "libavresample/version.h"
103
104#define AVRESAMPLE_MAX_CHANNELS 32
105
106typedef struct AVAudioResampleContext AVAudioResampleContext;
107
108/** Mixing Coefficient Types */
109enum AVMixCoeffType {
110 AV_MIX_COEFF_TYPE_Q8, /** 16-bit 8.8 fixed-point */
111 AV_MIX_COEFF_TYPE_Q15, /** 32-bit 17.15 fixed-point */
112 AV_MIX_COEFF_TYPE_FLT, /** floating-point */
113 AV_MIX_COEFF_TYPE_NB, /** Number of coeff types. Not part of ABI */
114};
115
116/** Resampling Filter Types */
117enum AVResampleFilterType {
118 AV_RESAMPLE_FILTER_TYPE_CUBIC, /**< Cubic */
119 AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL, /**< Blackman Nuttall Windowed Sinc */
120 AV_RESAMPLE_FILTER_TYPE_KAISER, /**< Kaiser Windowed Sinc */
121};
122
123enum AVResampleDitherMethod {
124 AV_RESAMPLE_DITHER_NONE, /**< Do not use dithering */
125 AV_RESAMPLE_DITHER_RECTANGULAR, /**< Rectangular Dither */
126 AV_RESAMPLE_DITHER_TRIANGULAR, /**< Triangular Dither*/
127 AV_RESAMPLE_DITHER_TRIANGULAR_HP, /**< Triangular Dither with High Pass */
128 AV_RESAMPLE_DITHER_TRIANGULAR_NS, /**< Triangular Dither with Noise Shaping */
129 AV_RESAMPLE_DITHER_NB, /**< Number of dither types. Not part of ABI. */
130};
131
132/**
133 * Return the LIBAVRESAMPLE_VERSION_INT constant.
134 */
135unsigned avresample_version(void);
136
137/**
138 * Return the libavresample build-time configuration.
139 * @return configure string
140 */
141const char *avresample_configuration(void);
142
143/**
144 * Return the libavresample license.
145 */
146const char *avresample_license(void);
147
148/**
149 * Get the AVClass for AVAudioResampleContext.
150 *
151 * Can be used in combination with AV_OPT_SEARCH_FAKE_OBJ for examining options
152 * without allocating a context.
153 *
154 * @see av_opt_find().
155 *
156 * @return AVClass for AVAudioResampleContext
157 */
158const AVClass *avresample_get_class(void);
159
160/**
161 * Allocate AVAudioResampleContext and set options.
162 *
163 * @return allocated audio resample context, or NULL on failure
164 */
165AVAudioResampleContext *avresample_alloc_context(void);
166
167/**
168 * Initialize AVAudioResampleContext.
169 * @note The context must be configured using the AVOption API.
170 *
171 * @see av_opt_set_int()
172 * @see av_opt_set_dict()
173 *
174 * @param avr audio resample context
175 * @return 0 on success, negative AVERROR code on failure
176 */
177int avresample_open(AVAudioResampleContext *avr);
178
179/**
180 * Check whether an AVAudioResampleContext is open or closed.
181 *
182 * @param avr AVAudioResampleContext to check
183 * @return 1 if avr is open, 0 if avr is closed.
184 */
185int avresample_is_open(AVAudioResampleContext *avr);
186
187/**
188 * Close AVAudioResampleContext.
189 *
190 * This closes the context, but it does not change the parameters. The context
191 * can be reopened with avresample_open(). It does, however, clear the output
192 * FIFO and any remaining leftover samples in the resampling delay buffer. If
193 * there was a custom matrix being used, that is also cleared.
194 *
195 * @see avresample_convert()
196 * @see avresample_set_matrix()
197 *
198 * @param avr audio resample context
199 */
200void avresample_close(AVAudioResampleContext *avr);
201
202/**
203 * Free AVAudioResampleContext and associated AVOption values.
204 *
205 * This also calls avresample_close() before freeing.
206 *
207 * @param avr audio resample context
208 */
209void avresample_free(AVAudioResampleContext **avr);
210
211/**
212 * Generate a channel mixing matrix.
213 *
214 * This function is the one used internally by libavresample for building the
215 * default mixing matrix. It is made public just as a utility function for
216 * building custom matrices.
217 *
218 * @param in_layout input channel layout
219 * @param out_layout output channel layout
220 * @param center_mix_level mix level for the center channel
221 * @param surround_mix_level mix level for the surround channel(s)
222 * @param lfe_mix_level mix level for the low-frequency effects channel
223 * @param normalize if 1, coefficients will be normalized to prevent
224 * overflow. if 0, coefficients will not be
225 * normalized.
226 * @param[out] matrix mixing coefficients; matrix[i + stride * o] is
227 * the weight of input channel i in output channel o.
228 * @param stride distance between adjacent input channels in the
229 * matrix array
230 * @param matrix_encoding matrixed stereo downmix mode (e.g. dplii)
231 * @return 0 on success, negative AVERROR code on failure
232 */
233int avresample_build_matrix(uint64_t in_layout, uint64_t out_layout,
234 double center_mix_level, double surround_mix_level,
235 double lfe_mix_level, int normalize, double *matrix,
236 int stride, enum AVMatrixEncoding matrix_encoding);
237
238/**
239 * Get the current channel mixing matrix.
240 *
241 * If no custom matrix has been previously set or the AVAudioResampleContext is
242 * not open, an error is returned.
243 *
244 * @param avr audio resample context
245 * @param matrix mixing coefficients; matrix[i + stride * o] is the weight of
246 * input channel i in output channel o.
247 * @param stride distance between adjacent input channels in the matrix array
248 * @return 0 on success, negative AVERROR code on failure
249 */
250int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix,
251 int stride);
252
253/**
254 * Set channel mixing matrix.
255 *
256 * Allows for setting a custom mixing matrix, overriding the default matrix
257 * generated internally during avresample_open(). This function can be called
258 * anytime on an allocated context, either before or after calling
259 * avresample_open(), as long as the channel layouts have been set.
260 * avresample_convert() always uses the current matrix.
261 * Calling avresample_close() on the context will clear the current matrix.
262 *
263 * @see avresample_close()
264 *
265 * @param avr audio resample context
266 * @param matrix mixing coefficients; matrix[i + stride * o] is the weight of
267 * input channel i in output channel o.
268 * @param stride distance between adjacent input channels in the matrix array
269 * @return 0 on success, negative AVERROR code on failure
270 */
271int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix,
272 int stride);
273
274/**
275 * Set a customized input channel mapping.
276 *
277 * This function can only be called when the allocated context is not open.
278 * Also, the input channel layout must have already been set.
279 *
280 * Calling avresample_close() on the context will clear the channel mapping.
281 *
282 * The map for each input channel specifies the channel index in the source to
283 * use for that particular channel, or -1 to mute the channel. Source channels
284 * can be duplicated by using the same index for multiple input channels.
285 *
286 * Examples:
287 *
288 * Reordering 5.1 AAC order (C,L,R,Ls,Rs,LFE) to FFmpeg order (L,R,C,LFE,Ls,Rs):
289 * { 1, 2, 0, 5, 3, 4 }
290 *
291 * Muting the 3rd channel in 4-channel input:
292 * { 0, 1, -1, 3 }
293 *
294 * Duplicating the left channel of stereo input:
295 * { 0, 0 }
296 *
297 * @param avr audio resample context
298 * @param channel_map customized input channel mapping
299 * @return 0 on success, negative AVERROR code on failure
300 */
301int avresample_set_channel_mapping(AVAudioResampleContext *avr,
302 const int *channel_map);
303
304/**
305 * Set compensation for resampling.
306 *
307 * This can be called anytime after avresample_open(). If resampling is not
308 * automatically enabled because of a sample rate conversion, the
309 * "force_resampling" option must have been set to 1 when opening the context
310 * in order to use resampling compensation.
311 *
312 * @param avr audio resample context
313 * @param sample_delta compensation delta, in samples
314 * @param compensation_distance compensation distance, in samples
315 * @return 0 on success, negative AVERROR code on failure
316 */
317int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
318 int compensation_distance);
319
320/**
321 * Provide the upper bound on the number of samples the configured
322 * conversion would output.
323 *
324 * @param avr audio resample context
325 * @param in_nb_samples number of input samples
326 *
327 * @return number of samples or AVERROR(EINVAL) if the value
328 * would exceed INT_MAX
329 */
330
331int avresample_get_out_samples(AVAudioResampleContext *avr, int in_nb_samples);
332
333/**
334 * Convert input samples and write them to the output FIFO.
335 *
336 * The upper bound on the number of output samples can be obtained through
337 * avresample_get_out_samples().
338 *
339 * The output data can be NULL or have fewer allocated samples than required.
340 * In this case, any remaining samples not written to the output will be added
341 * to an internal FIFO buffer, to be returned at the next call to this function
342 * or to avresample_read().
343 *
344 * If converting sample rate, there may be data remaining in the internal
345 * resampling delay buffer. avresample_get_delay() tells the number of remaining
346 * samples. To get this data as output, call avresample_convert() with NULL
347 * input.
348 *
349 * At the end of the conversion process, there may be data remaining in the
350 * internal FIFO buffer. avresample_available() tells the number of remaining
351 * samples. To get this data as output, either call avresample_convert() with
352 * NULL input or call avresample_read().
353 *
354 * @see avresample_get_out_samples()
355 * @see avresample_read()
356 * @see avresample_get_delay()
357 *
358 * @param avr audio resample context
359 * @param output output data pointers
360 * @param out_plane_size output plane size, in bytes.
361 * This can be 0 if unknown, but that will lead to
362 * optimized functions not being used directly on the
363 * output, which could slow down some conversions.
364 * @param out_samples maximum number of samples that the output buffer can hold
365 * @param input input data pointers
366 * @param in_plane_size input plane size, in bytes
367 * This can be 0 if unknown, but that will lead to
368 * optimized functions not being used directly on the
369 * input, which could slow down some conversions.
370 * @param in_samples number of input samples to convert
371 * @return number of samples written to the output buffer,
372 * not including converted samples added to the internal
373 * output FIFO
374 */
375int avresample_convert(AVAudioResampleContext *avr, uint8_t **output,
376 int out_plane_size, int out_samples, uint8_t **input,
377 int in_plane_size, int in_samples);
378
379/**
380 * Return the number of samples currently in the resampling delay buffer.
381 *
382 * When resampling, there may be a delay between the input and output. Any
383 * unconverted samples in each call are stored internally in a delay buffer.
384 * This function allows the user to determine the current number of samples in
385 * the delay buffer, which can be useful for synchronization.
386 *
387 * @see avresample_convert()
388 *
389 * @param avr audio resample context
390 * @return number of samples currently in the resampling delay buffer
391 */
392int avresample_get_delay(AVAudioResampleContext *avr);
393
394/**
395 * Return the number of available samples in the output FIFO.
396 *
397 * During conversion, if the user does not specify an output buffer or
398 * specifies an output buffer that is smaller than what is needed, remaining
399 * samples that are not written to the output are stored to an internal FIFO
400 * buffer. The samples in the FIFO can be read with avresample_read() or
401 * avresample_convert().
402 *
403 * @see avresample_read()
404 * @see avresample_convert()
405 *
406 * @param avr audio resample context
407 * @return number of samples available for reading
408 */
409int avresample_available(AVAudioResampleContext *avr);
410
411/**
412 * Read samples from the output FIFO.
413 *
414 * During conversion, if the user does not specify an output buffer or
415 * specifies an output buffer that is smaller than what is needed, remaining
416 * samples that are not written to the output are stored to an internal FIFO
417 * buffer. This function can be used to read samples from that internal FIFO.
418 *
419 * @see avresample_available()
420 * @see avresample_convert()
421 *
422 * @param avr audio resample context
423 * @param output output data pointers. May be NULL, in which case
424 * nb_samples of data is discarded from output FIFO.
425 * @param nb_samples number of samples to read from the FIFO
426 * @return the number of samples written to output
427 */
428int avresample_read(AVAudioResampleContext *avr, uint8_t **output, int nb_samples);
429
430/**
431 * Convert the samples in the input AVFrame and write them to the output AVFrame.
432 *
433 * Input and output AVFrames must have channel_layout, sample_rate and format set.
434 *
435 * The upper bound on the number of output samples is obtained through
436 * avresample_get_out_samples().
437 *
438 * If the output AVFrame does not have the data pointers allocated the nb_samples
439 * field will be set using avresample_get_out_samples() and av_frame_get_buffer()
440 * is called to allocate the frame.
441 *
442 * The output AVFrame can be NULL or have fewer allocated samples than required.
443 * In this case, any remaining samples not written to the output will be added
444 * to an internal FIFO buffer, to be returned at the next call to this function
445 * or to avresample_convert() or to avresample_read().
446 *
447 * If converting sample rate, there may be data remaining in the internal
448 * resampling delay buffer. avresample_get_delay() tells the number of
449 * remaining samples. To get this data as output, call this function or
450 * avresample_convert() with NULL input.
451 *
452 * At the end of the conversion process, there may be data remaining in the
453 * internal FIFO buffer. avresample_available() tells the number of remaining
454 * samples. To get this data as output, either call this function or
455 * avresample_convert() with NULL input or call avresample_read().
456 *
457 * If the AVAudioResampleContext configuration does not match the output and
458 * input AVFrame settings the conversion does not take place and depending on
459 * which AVFrame is not matching AVERROR_OUTPUT_CHANGED, AVERROR_INPUT_CHANGED
460 * or AVERROR_OUTPUT_CHANGED|AVERROR_INPUT_CHANGED is returned.
461 *
462 * @see avresample_get_out_samples()
463 * @see avresample_available()
464 * @see avresample_convert()
465 * @see avresample_read()
466 * @see avresample_get_delay()
467 *
468 * @param avr audio resample context
469 * @param output output AVFrame
470 * @param input input AVFrame
471 * @return 0 on success, AVERROR on failure or nonmatching
472 * configuration.
473 */
474int avresample_convert_frame(AVAudioResampleContext *avr,
475 AVFrame *output, AVFrame *input);
476
477/**
478 * Configure or reconfigure the AVAudioResampleContext using the information
479 * provided by the AVFrames.
480 *
481 * The original resampling context is reset even on failure.
482 * The function calls avresample_close() internally if the context is open.
483 *
484 * @see avresample_open();
485 * @see avresample_close();
486 *
487 * @param avr audio resample context
488 * @param output output AVFrame
489 * @param input input AVFrame
490 * @return 0 on success, AVERROR on failure.
491 */
492int avresample_config(AVAudioResampleContext *avr, AVFrame *out, AVFrame *in);
493
494/**
495 * @}
496 */
497
498#endif /* AVRESAMPLE_AVRESAMPLE_H */