Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / doc / snow.txt
1 =============================================
2 Snow Video Codec Specification Draft 20080110
3 =============================================
4
5 Introduction:
6 =============
7 This specification describes the Snow bitstream syntax and semantics as
8 well as the formal Snow decoding process.
9
10 The decoding process is described precisely and any compliant decoder
11 MUST produce the exact same output for a spec-conformant Snow stream.
12 For encoding, though, any process which generates a stream compliant to
13 the syntactical and semantic requirements and which is decodable by
14 the process described in this spec shall be considered a conformant
15 Snow encoder.
16
17 Definitions:
18 ============
19
20 MUST the specific part must be done to conform to this standard
21 SHOULD it is recommended to be done that way, but not strictly required
22
23 ilog2(x) is the rounded down logarithm of x with basis 2
24 ilog2(0) = 0
25
26 Type definitions:
27 =================
28
29 b 1-bit range coded
30 u unsigned scalar value range coded
31 s signed scalar value range coded
32
33
34 Bitstream syntax:
35 =================
36
37 frame:
38 header
39 prediction
40 residual
41
42 header:
43 keyframe b MID_STATE
44 if(keyframe || always_reset)
45 reset_contexts
46 if(keyframe){
47 version u header_state
48 always_reset b header_state
49 temporal_decomposition_type u header_state
50 temporal_decomposition_count u header_state
51 spatial_decomposition_count u header_state
52 colorspace_type u header_state
53 if (nb_planes > 2) {
54 chroma_h_shift u header_state
55 chroma_v_shift u header_state
56 }
57 spatial_scalability b header_state
58 max_ref_frames-1 u header_state
59 qlogs
60 }
61 if(!keyframe){
62 update_mc b header_state
63 if(update_mc){
64 for(plane=0; plane<nb_plane_types; plane++){
65 diag_mc b header_state
66 htaps/2-1 u header_state
67 for(i= p->htaps/2; i; i--)
68 |hcoeff[i]| u header_state
69 }
70 }
71 update_qlogs b header_state
72 if(update_qlogs){
73 spatial_decomposition_count u header_state
74 qlogs
75 }
76 }
77
78 spatial_decomposition_type s header_state
79 qlog s header_state
80 mv_scale s header_state
81 qbias s header_state
82 block_max_depth s header_state
83
84 qlogs:
85 for(plane=0; plane<nb_plane_types; plane++){
86 quant_table[plane][0][0] s header_state
87 for(level=0; level < spatial_decomposition_count; level++){
88 quant_table[plane][level][1]s header_state
89 quant_table[plane][level][3]s header_state
90 }
91 }
92
93 reset_contexts
94 *_state[*]= MID_STATE
95
96 prediction:
97 for(y=0; y<block_count_vertical; y++)
98 for(x=0; x<block_count_horizontal; x++)
99 block(0)
100
101 block(level):
102 mvx_diff=mvy_diff=y_diff=cb_diff=cr_diff=0
103 if(keyframe){
104 intra=1
105 }else{
106 if(level!=max_block_depth){
107 s_context= 2*left->level + 2*top->level + topleft->level + topright->level
108 leaf b block_state[4 + s_context]
109 }
110 if(level==max_block_depth || leaf){
111 intra b block_state[1 + left->intra + top->intra]
112 if(intra){
113 y_diff s block_state[32]
114 cb_diff s block_state[64]
115 cr_diff s block_state[96]
116 }else{
117 ref_context= ilog2(2*left->ref) + ilog2(2*top->ref)
118 if(ref_frames > 1)
119 ref u block_state[128 + 1024 + 32*ref_context]
120 mx_context= ilog2(2*abs(left->mx - top->mx))
121 my_context= ilog2(2*abs(left->my - top->my))
122 mvx_diff s block_state[128 + 32*(mx_context + 16*!!ref)]
123 mvy_diff s block_state[128 + 32*(my_context + 16*!!ref)]
124 }
125 }else{
126 block(level+1)
127 block(level+1)
128 block(level+1)
129 block(level+1)
130 }
131 }
132
133
134 residual:
135 residual2(luma)
136 if (nb_planes > 2) {
137 residual2(chroma_cr)
138 residual2(chroma_cb)
139 }
140
141 residual2:
142 for(level=0; level<spatial_decomposition_count; level++){
143 if(level==0)
144 subband(LL, 0)
145 subband(HL, level)
146 subband(LH, level)
147 subband(HH, level)
148 }
149
150 subband:
151 FIXME
152
153 nb_plane_types = gray ? 1 : 2;
154
155 Tag description:
156 ----------------
157
158 version
159 0
160 this MUST NOT change within a bitstream
161
162 always_reset
163 if 1 then the range coder contexts will be reset after each frame
164
165 temporal_decomposition_type
166 0
167
168 temporal_decomposition_count
169 0
170
171 spatial_decomposition_count
172 FIXME
173
174 colorspace_type
175 0 unspecified YcbCr
176 1 Gray
177 2 Gray + Alpha
178 3 GBR
179 4 GBRA
180 this MUST NOT change within a bitstream
181
182 chroma_h_shift
183 log2(luma.width / chroma.width)
184 this MUST NOT change within a bitstream
185
186 chroma_v_shift
187 log2(luma.height / chroma.height)
188 this MUST NOT change within a bitstream
189
190 spatial_scalability
191 0
192
193 max_ref_frames
194 maximum number of reference frames
195 this MUST NOT change within a bitstream
196
197 update_mc
198 indicates that motion compensation filter parameters are stored in the
199 header
200
201 diag_mc
202 flag to enable faster diagonal interpolation
203 this SHOULD be 1 unless it turns out to be covered by a valid patent
204
205 htaps
206 number of half pel interpolation filter taps, MUST be even, >0 and <10
207
208 hcoeff
209 half pel interpolation filter coefficients, hcoeff[0] are the 2 middle
210 coefficients [1] are the next outer ones and so on, resulting in a filter
211 like: ...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ...
212 the sign of the coefficients is not explicitly stored but alternates
213 after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,...
214 hcoeff[0] is not explicitly stored but found by subtracting the sum
215 of all stored coefficients with signs from 32
216 hcoeff[0]= 32 - hcoeff[1] - hcoeff[2] - ...
217 a good choice for hcoeff and htaps is
218 htaps= 6
219 hcoeff={40,-10,2}
220 an alternative which requires more computations at both encoder and
221 decoder side and may or may not be better is
222 htaps= 8
223 hcoeff={42,-14,6,-2}
224
225
226 ref_frames
227 minimum of the number of available reference frames and max_ref_frames
228 for example the first frame after a key frame always has ref_frames=1
229
230 spatial_decomposition_type
231 wavelet type
232 0 is a 9/7 symmetric compact integer wavelet
233 1 is a 5/3 symmetric compact integer wavelet
234 others are reserved
235 stored as delta from last, last is reset to 0 if always_reset || keyframe
236
237 qlog
238 quality (logarthmic quantizer scale)
239 stored as delta from last, last is reset to 0 if always_reset || keyframe
240
241 mv_scale
242 stored as delta from last, last is reset to 0 if always_reset || keyframe
243 FIXME check that everything works fine if this changes between frames
244
245 qbias
246 dequantization bias
247 stored as delta from last, last is reset to 0 if always_reset || keyframe
248
249 block_max_depth
250 maximum depth of the block tree
251 stored as delta from last, last is reset to 0 if always_reset || keyframe
252
253 quant_table
254 quantiztation table
255
256
257 Highlevel bitstream structure:
258 =============================
259 --------------------------------------------
260 | Header |
261 --------------------------------------------
262 | ------------------------------------ |
263 | | Block0 | |
264 | | split? | |
265 | | yes no | |
266 | | ......... intra? | |
267 | | : Block01 : yes no | |
268 | | : Block02 : ....... .......... | |
269 | | : Block03 : : y DC : : ref index: | |
270 | | : Block04 : : cb DC : : motion x : | |
271 | | ......... : cr DC : : motion y : | |
272 | | ....... .......... | |
273 | ------------------------------------ |
274 | ------------------------------------ |
275 | | Block1 | |
276 | ... |
277 --------------------------------------------
278 | ------------ ------------ ------------ |
279 || Y subbands | | Cb subbands| | Cr subbands||
280 || --- --- | | --- --- | | --- --- ||
281 || |LL0||HL0| | | |LL0||HL0| | | |LL0||HL0| ||
282 || --- --- | | --- --- | | --- --- ||
283 || --- --- | | --- --- | | --- --- ||
284 || |LH0||HH0| | | |LH0||HH0| | | |LH0||HH0| ||
285 || --- --- | | --- --- | | --- --- ||
286 || --- --- | | --- --- | | --- --- ||
287 || |HL1||LH1| | | |HL1||LH1| | | |HL1||LH1| ||
288 || --- --- | | --- --- | | --- --- ||
289 || --- --- | | --- --- | | --- --- ||
290 || |HH1||HL2| | | |HH1||HL2| | | |HH1||HL2| ||
291 || ... | | ... | | ... ||
292 | ------------ ------------ ------------ |
293 --------------------------------------------
294
295 Decoding process:
296 =================
297
298 ------------
299 | |
300 | Subbands |
301 ------------ | |
302 | | ------------
303 | Intra DC | |
304 | | LL0 subband prediction
305 ------------ |
306 \ Dequantizaton
307 ------------------- \ |
308 | Reference frames | \ IDWT
309 | ------- ------- | Motion \ |
310 ||Frame 0| |Frame 1|| Compensation . OBMC v -------
311 | ------- ------- | --------------. \------> + --->|Frame n|-->output
312 | ------- ------- | -------
313 ||Frame 2| |Frame 3||<----------------------------------/
314 | ... |
315 -------------------
316
317
318 Range Coder:
319 ============
320
321 Binary Range Coder:
322 -------------------
323 The implemented range coder is an adapted version based upon "Range encoding:
324 an algorithm for removing redundancy from a digitised message." by G. N. N.
325 Martin.
326 The symbols encoded by the Snow range coder are bits (0|1). The
327 associated probabilities are not fix but change depending on the symbol mix
328 seen so far.
329
330
331 bit seen | new state
332 ---------+-----------------------------------------------
333 0 | 256 - state_transition_table[256 - old_state];
334 1 | state_transition_table[ old_state];
335
336 state_transition_table = {
337 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27,
338 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,
339 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,
340 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
341 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
342 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
343 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118,
344 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133,
345 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
346 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
347 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179,
348 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194,
349 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209,
350 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225,
351 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240,
352 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};
353
354 FIXME
355
356
357 Range Coding of integers:
358 -------------------------
359 FIXME
360
361
362 Neighboring Blocks:
363 ===================
364 left and top are set to the respective blocks unless they are outside of
365 the image in which case they are set to the Null block
366
367 top-left is set to the top left block unless it is outside of the image in
368 which case it is set to the left block
369
370 if this block has no larger parent block or it is at the left side of its
371 parent block and the top right block is not outside of the image then the
372 top right block is used for top-right else the top-left block is used
373
374 Null block
375 y,cb,cr are 128
376 level, ref, mx and my are 0
377
378
379 Motion Vector Prediction:
380 =========================
381 1. the motion vectors of all the neighboring blocks are scaled to
382 compensate for the difference of reference frames
383
384 scaled_mv= (mv * (256 * (current_reference+1) / (mv.reference+1)) + 128)>>8
385
386 2. the median of the scaled left, top and top-right vectors is used as
387 motion vector prediction
388
389 3. the used motion vector is the sum of the predictor and
390 (mvx_diff, mvy_diff)*mv_scale
391
392
393 Intra DC Predicton:
394 ======================
395 the luma and chroma values of the left block are used as predictors
396
397 the used luma and chroma is the sum of the predictor and y_diff, cb_diff, cr_diff
398 to reverse this in the decoder apply the following:
399 block[y][x].dc[0] = block[y][x-1].dc[0] + y_diff;
400 block[y][x].dc[1] = block[y][x-1].dc[1] + cb_diff;
401 block[y][x].dc[2] = block[y][x-1].dc[2] + cr_diff;
402 block[*][-1].dc[*]= 128;
403
404
405 Motion Compensation:
406 ====================
407
408 Halfpel interpolation:
409 ----------------------
410 halfpel interpolation is done by convolution with the halfpel filter stored
411 in the header:
412
413 horizontal halfpel samples are found by
414 H1[y][x] = hcoeff[0]*(F[y][x ] + F[y][x+1])
415 + hcoeff[1]*(F[y][x-1] + F[y][x+2])
416 + hcoeff[2]*(F[y][x-2] + F[y][x+3])
417 + ...
418 h1[y][x] = (H1[y][x] + 32)>>6;
419
420 vertical halfpel samples are found by
421 H2[y][x] = hcoeff[0]*(F[y ][x] + F[y+1][x])
422 + hcoeff[1]*(F[y-1][x] + F[y+2][x])
423 + ...
424 h2[y][x] = (H2[y][x] + 32)>>6;
425
426 vertical+horizontal halfpel samples are found by
427 H3[y][x] = hcoeff[0]*(H2[y][x ] + H2[y][x+1])
428 + hcoeff[1]*(H2[y][x-1] + H2[y][x+2])
429 + ...
430 H3[y][x] = hcoeff[0]*(H1[y ][x] + H1[y+1][x])
431 + hcoeff[1]*(H1[y+1][x] + H1[y+2][x])
432 + ...
433 h3[y][x] = (H3[y][x] + 2048)>>12;
434
435
436 F H1 F
437 | | |
438 | | |
439 | | |
440 F H1 F
441 | | |
442 | | |
443 | | |
444 F-------F-------F-> H1<-F-------F-------F
445 v v v
446 H2 H3 H2
447 ^ ^ ^
448 F-------F-------F-> H1<-F-------F-------F
449 | | |
450 | | |
451 | | |
452 F H1 F
453 | | |
454 | | |
455 | | |
456 F H1 F
457
458
459 unavailable fullpel samples (outside the picture for example) shall be equal
460 to the closest available fullpel sample
461
462
463 Smaller pel interpolation:
464 --------------------------
465 if diag_mc is set then points which lie on a line between 2 vertically,
466 horiziontally or diagonally adjacent halfpel points shall be interpolated
467 linearls with rounding to nearest and halfway values rounded up.
468 points which lie on 2 diagonals at the same time should only use the one
469 diagonal not containing the fullpel point
470
471
472
473 F-->O---q---O<--h1->O---q---O<--F
474 v \ / v \ / v
475 O O O O O O O
476 | / | \ |
477 q q q q q
478 | / | \ |
479 O O O O O O O
480 ^ / \ ^ / \ ^
481 h2-->O---q---O<--h3->O---q---O<--h2
482 v \ / v \ / v
483 O O O O O O O
484 | \ | / |
485 q q q q q
486 | \ | / |
487 O O O O O O O
488 ^ / \ ^ / \ ^
489 F-->O---q---O<--h1->O---q---O<--F
490
491
492
493 the remaining points shall be bilinearly interpolated from the
494 up to 4 surrounding halfpel and fullpel points, again rounding should be to
495 nearest and halfway values rounded up
496
497 compliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chroma
498 interpolation at least
499
500
501 Overlapped block motion compensation:
502 -------------------------------------
503 FIXME
504
505 LL band prediction:
506 ===================
507 Each sample in the LL0 subband is predicted by the median of the left, top and
508 left+top-topleft samples, samples outside the subband shall be considered to
509 be 0. To reverse this prediction in the decoder apply the following.
510 for(y=0; y<height; y++){
511 for(x=0; x<width; x++){
512 sample[y][x] += median(sample[y-1][x],
513 sample[y][x-1],
514 sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);
515 }
516 }
517 sample[-1][*]=sample[*][-1]= 0;
518 width,height here are the width and height of the LL0 subband not of the final
519 video
520
521
522 Dequantizaton:
523 ==============
524 FIXME
525
526 Wavelet Transform:
527 ==================
528
529 Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integer
530 transform and a integer approximation of the symmetric biorthogonal 9/7
531 daubechies wavelet.
532
533 2D IDWT (inverse discrete wavelet transform)
534 --------------------------------------------
535 The 2D IDWT applies a 2D filter recursively, each time combining the
536 4 lowest frequency subbands into a single subband until only 1 subband
537 remains.
538 The 2D filter is done by first applying a 1D filter in the vertical direction
539 and then applying it in the horizontal one.
540 --------------- --------------- --------------- ---------------
541 |LL0|HL0| | | | | | | | | | | |
542 |---+---| HL1 | | L0|H0 | HL1 | | LL1 | HL1 | | | |
543 |LH0|HH0| | | | | | | | | | | |
544 |-------+-------|->|-------+-------|->|-------+-------|->| L1 | H1 |->...
545 | | | | | | | | | | | |
546 | LH1 | HH1 | | LH1 | HH1 | | LH1 | HH1 | | | |
547 | | | | | | | | | | | |
548 --------------- --------------- --------------- ---------------
549
550
551 1D Filter:
552 ----------
553 1. interleave the samples of the low and high frequency subbands like
554 s={L0, H0, L1, H1, L2, H2, L3, H3, ... }
555 note, this can end with a L or a H, the number of elements shall be w
556 s[-1] shall be considered equivalent to s[1 ]
557 s[w ] shall be considered equivalent to s[w-2]
558
559 2. perform the lifting steps in order as described below
560
561 5/3 Integer filter:
562 1. s[i] -= (s[i-1] + s[i+1] + 2)>>2; for all even i < w
563 2. s[i] += (s[i-1] + s[i+1] )>>1; for all odd i < w
564
565 \ | /|\ | /|\ | /|\ | /|\
566 \|/ | \|/ | \|/ | \|/ |
567 + | + | + | + | -1/4
568 /|\ | /|\ | /|\ | /|\ |
569 / | \|/ | \|/ | \|/ | \|/
570 | + | + | + | + +1/2
571
572
573 Snow's 9/7 Integer filter:
574 1. s[i] -= (3*(s[i-1] + s[i+1]) + 4)>>3; for all even i < w
575 2. s[i] -= s[i-1] + s[i+1] ; for all odd i < w
576 3. s[i] += ( s[i-1] + s[i+1] + 4*s[i] + 8)>>4; for all even i < w
577 4. s[i] += (3*(s[i-1] + s[i+1]) )>>1; for all odd i < w
578
579 \ | /|\ | /|\ | /|\ | /|\
580 \|/ | \|/ | \|/ | \|/ |
581 + | + | + | + | -3/8
582 /|\ | /|\ | /|\ | /|\ |
583 / | \|/ | \|/ | \|/ | \|/
584 (| + (| + (| + (| + -1
585 \ + /|\ + /|\ + /|\ + /|\ +1/4
586 \|/ | \|/ | \|/ | \|/ |
587 + | + | + | + | +1/16
588 /|\ | /|\ | /|\ | /|\ |
589 / | \|/ | \|/ | \|/ | \|/
590 | + | + | + | + +3/2
591
592 optimization tips:
593 following are exactly identical
594 (3a)>>1 == a + (a>>1)
595 (a + 4b + 8)>>4 == ((a>>2) + b + 2)>>2
596
597 16bit implementation note:
598 The IDWT can be implemented with 16bits, but this requires some care to
599 prevent overflows, the following list, lists the minimum number of bits needed
600 for some terms
601 1. lifting step
602 A= s[i-1] + s[i+1] 16bit
603 3*A + 4 18bit
604 A + (A>>1) + 2 17bit
605
606 3. lifting step
607 s[i-1] + s[i+1] 17bit
608
609 4. lifiting step
610 3*(s[i-1] + s[i+1]) 17bit
611
612
613 TODO:
614 =====
615 Important:
616 finetune initial contexts
617 flip wavelet?
618 try to use the wavelet transformed predicted image (motion compensated image) as context for coding the residual coefficients
619 try the MV length as context for coding the residual coefficients
620 use extradata for stuff which is in the keyframes now?
621 implement per picture halfpel interpolation
622 try different range coder state transition tables for different contexts
623
624 Not Important:
625 compare the 6 tap and 8 tap hpel filters (psnr/bitrate and subjective quality)
626 spatial_scalability b vs u (!= 0 breaks syntax anyway so we can add a u later)
627
628
629 Credits:
630 ========
631 Michael Niedermayer
632 Loren Merritt
633
634
635 Copyright:
636 ==========
637 GPL + GFDL + whatever is needed to make this a RFC