Imported Debian version 2.4.3~trusty1
[deb_ffmpeg.git] / ffmpeg / libswscale / x86 / input.asm
1 ;******************************************************************************
2 ;* x86-optimized input routines; does shuffling of packed
3 ;* YUV formats into individual planes, and converts RGB
4 ;* into YUV planes also.
5 ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
6 ;*
7 ;* This file is part of FFmpeg.
8 ;*
9 ;* FFmpeg is free software; you can redistribute it and/or
10 ;* modify it under the terms of the GNU Lesser General Public
11 ;* License as published by the Free Software Foundation; either
12 ;* version 2.1 of the License, or (at your option) any later version.
13 ;*
14 ;* FFmpeg is distributed in the hope that it will be useful,
15 ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
16 ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 ;* Lesser General Public License for more details.
18 ;*
19 ;* You should have received a copy of the GNU Lesser General Public
20 ;* License along with FFmpeg; if not, write to the Free Software
21 ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 ;******************************************************************************
23
24 %include "libavutil/x86/x86util.asm"
25
26 SECTION_RODATA
27
28 %define RY 0x20DE
29 %define GY 0x4087
30 %define BY 0x0C88
31 %define RU 0xECFF
32 %define GU 0xDAC8
33 %define BU 0x3838
34 %define RV 0x3838
35 %define GV 0xD0E3
36 %define BV 0xF6E4
37
38 rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15
39 rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15
40 %define bgr_Ycoeff_12x4 16*4 + 16* 0 + tableq
41 %define bgr_Ycoeff_3x56 16*4 + 16* 1 + tableq
42 %define rgb_Ycoeff_12x4 16*4 + 16* 2 + tableq
43 %define rgb_Ycoeff_3x56 16*4 + 16* 3 + tableq
44 %define bgr_Ucoeff_12x4 16*4 + 16* 4 + tableq
45 %define bgr_Ucoeff_3x56 16*4 + 16* 5 + tableq
46 %define rgb_Ucoeff_12x4 16*4 + 16* 6 + tableq
47 %define rgb_Ucoeff_3x56 16*4 + 16* 7 + tableq
48 %define bgr_Vcoeff_12x4 16*4 + 16* 8 + tableq
49 %define bgr_Vcoeff_3x56 16*4 + 16* 9 + tableq
50 %define rgb_Vcoeff_12x4 16*4 + 16*10 + tableq
51 %define rgb_Vcoeff_3x56 16*4 + 16*11 + tableq
52
53 %define rgba_Ycoeff_rb 16*4 + 16*12 + tableq
54 %define rgba_Ycoeff_br 16*4 + 16*13 + tableq
55 %define rgba_Ycoeff_ga 16*4 + 16*14 + tableq
56 %define rgba_Ycoeff_ag 16*4 + 16*15 + tableq
57 %define rgba_Ucoeff_rb 16*4 + 16*16 + tableq
58 %define rgba_Ucoeff_br 16*4 + 16*17 + tableq
59 %define rgba_Ucoeff_ga 16*4 + 16*18 + tableq
60 %define rgba_Ucoeff_ag 16*4 + 16*19 + tableq
61 %define rgba_Vcoeff_rb 16*4 + 16*20 + tableq
62 %define rgba_Vcoeff_br 16*4 + 16*21 + tableq
63 %define rgba_Vcoeff_ga 16*4 + 16*22 + tableq
64 %define rgba_Vcoeff_ag 16*4 + 16*23 + tableq
65
66 ; bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
67 ; bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
68 ; rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
69 ; rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
70 ; bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
71 ; bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
72 ; rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
73 ; rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
74 ; bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
75 ; bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
76 ; rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
77 ; rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
78
79 ; rgba_Ycoeff_rb: times 4 dw RY, BY
80 ; rgba_Ycoeff_br: times 4 dw BY, RY
81 ; rgba_Ycoeff_ga: times 4 dw GY, 0
82 ; rgba_Ycoeff_ag: times 4 dw 0, GY
83 ; rgba_Ucoeff_rb: times 4 dw RU, BU
84 ; rgba_Ucoeff_br: times 4 dw BU, RU
85 ; rgba_Ucoeff_ga: times 4 dw GU, 0
86 ; rgba_Ucoeff_ag: times 4 dw 0, GU
87 ; rgba_Vcoeff_rb: times 4 dw RV, BV
88 ; rgba_Vcoeff_br: times 4 dw BV, RV
89 ; rgba_Vcoeff_ga: times 4 dw GV, 0
90 ; rgba_Vcoeff_ag: times 4 dw 0, GV
91
92 shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
93 6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
94 shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
95 8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
96
97 SECTION .text
98
99 ;-----------------------------------------------------------------------------
100 ; RGB to Y/UV.
101 ;
102 ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
103 ; and
104 ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
105 ; const uint8_t *unused, int w);
106 ;-----------------------------------------------------------------------------
107
108 ; %1 = nr. of XMM registers
109 ; %2 = rgb or bgr
110 %macro RGB24_TO_Y_FN 2-3
111 cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, table
112 %if mmsize == 8
113 mova m5, [%2_Ycoeff_12x4]
114 mova m6, [%2_Ycoeff_3x56]
115 %define coeff1 m5
116 %define coeff2 m6
117 %elif ARCH_X86_64
118 mova m8, [%2_Ycoeff_12x4]
119 mova m9, [%2_Ycoeff_3x56]
120 %define coeff1 m8
121 %define coeff2 m9
122 %else ; x86-32 && mmsize == 16
123 %define coeff1 [%2_Ycoeff_12x4]
124 %define coeff2 [%2_Ycoeff_3x56]
125 %endif ; x86-32/64 && mmsize == 8/16
126 %if (ARCH_X86_64 || mmsize == 8) && %0 == 3
127 jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
128 %else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
129 .body:
130 %if cpuflag(ssse3)
131 mova m7, [shuf_rgb_12x4]
132 %define shuf_rgb1 m7
133 %if ARCH_X86_64
134 mova m10, [shuf_rgb_3x56]
135 %define shuf_rgb2 m10
136 %else ; x86-32
137 %define shuf_rgb2 [shuf_rgb_3x56]
138 %endif ; x86-32/64
139 %endif ; cpuflag(ssse3)
140 %if ARCH_X86_64
141 movsxd wq, wd
142 %endif
143 add wq, wq
144 add dstq, wq
145 neg wq
146 %if notcpuflag(ssse3)
147 pxor m7, m7
148 %endif ; !cpuflag(ssse3)
149 mova m4, [rgb_Yrnd]
150 .loop:
151 %if cpuflag(ssse3)
152 movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
153 movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
154 pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
155 pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
156 pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
157 pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
158 %else ; !cpuflag(ssse3)
159 movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
160 movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
161 movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
162 movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
163 %if mmsize == 16 ; i.e. sse2
164 punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
165 punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
166 movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
167 movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
168 movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
169 movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
170 punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
171 punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
172 %endif ; mmsize == 16
173 punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
174 punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
175 punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
176 punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
177 %endif ; cpuflag(ssse3)
178 add srcq, 3 * mmsize / 2
179 pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
180 pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
181 pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
182 pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
183 paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
184 paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
185 paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
186 paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
187 psrad m0, 9
188 psrad m2, 9
189 packssdw m0, m2 ; (word) { Y[0-7] }
190 mova [dstq+wq], m0
191 add wq, mmsize
192 jl .loop
193 REP_RET
194 %endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
195 %endmacro
196
197 ; %1 = nr. of XMM registers
198 ; %2 = rgb or bgr
199 %macro RGB24_TO_UV_FN 2-3
200 cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table
201 %if ARCH_X86_64
202 mova m8, [%2_Ucoeff_12x4]
203 mova m9, [%2_Ucoeff_3x56]
204 mova m10, [%2_Vcoeff_12x4]
205 mova m11, [%2_Vcoeff_3x56]
206 %define coeffU1 m8
207 %define coeffU2 m9
208 %define coeffV1 m10
209 %define coeffV2 m11
210 %else ; x86-32
211 %define coeffU1 [%2_Ucoeff_12x4]
212 %define coeffU2 [%2_Ucoeff_3x56]
213 %define coeffV1 [%2_Vcoeff_12x4]
214 %define coeffV2 [%2_Vcoeff_3x56]
215 %endif ; x86-32/64
216 %if ARCH_X86_64 && %0 == 3
217 jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
218 %else ; ARCH_X86_64 && %0 == 3
219 .body:
220 %if cpuflag(ssse3)
221 mova m7, [shuf_rgb_12x4]
222 %define shuf_rgb1 m7
223 %if ARCH_X86_64
224 mova m12, [shuf_rgb_3x56]
225 %define shuf_rgb2 m12
226 %else ; x86-32
227 %define shuf_rgb2 [shuf_rgb_3x56]
228 %endif ; x86-32/64
229 %endif ; cpuflag(ssse3)
230 %if ARCH_X86_64
231 movsxd wq, dword r5m
232 %else ; x86-32
233 mov wq, r5m
234 %endif
235 add wq, wq
236 add dstUq, wq
237 add dstVq, wq
238 neg wq
239 mova m6, [rgb_UVrnd]
240 %if notcpuflag(ssse3)
241 pxor m7, m7
242 %endif
243 .loop:
244 %if cpuflag(ssse3)
245 movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
246 movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
247 pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
248 pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
249 %else ; !cpuflag(ssse3)
250 movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
251 movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
252 movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
253 movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
254 %if mmsize == 16
255 punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
256 punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
257 movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
258 movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
259 %endif ; mmsize == 16
260 punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
261 punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
262 %endif ; cpuflag(ssse3)
263 pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
264 pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
265 pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
266 pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
267 paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
268 paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
269 %if cpuflag(ssse3)
270 pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
271 pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
272 %else ; !cpuflag(ssse3)
273 %if mmsize == 16
274 movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
275 movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
276 punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
277 punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
278 %endif ; mmsize == 16 && !cpuflag(ssse3)
279 punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
280 punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
281 %endif ; cpuflag(ssse3)
282 add srcq, 3 * mmsize / 2
283 pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
284 pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
285 pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
286 pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
287 paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
288 paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
289 paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
290 paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
291 paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
292 paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
293 psrad m0, 9
294 psrad m2, 9
295 psrad m1, 9
296 psrad m4, 9
297 packssdw m0, m1 ; (word) { U[0-7] }
298 packssdw m2, m4 ; (word) { V[0-7] }
299 %if mmsize == 8
300 mova [dstUq+wq], m0
301 mova [dstVq+wq], m2
302 %else ; mmsize == 16
303 mova [dstUq+wq], m0
304 mova [dstVq+wq], m2
305 %endif ; mmsize == 8/16
306 add wq, mmsize
307 jl .loop
308 REP_RET
309 %endif ; ARCH_X86_64 && %0 == 3
310 %endmacro
311
312 ; %1 = nr. of XMM registers for rgb-to-Y func
313 ; %2 = nr. of XMM registers for rgb-to-UV func
314 %macro RGB24_FUNCS 2
315 RGB24_TO_Y_FN %1, rgb
316 RGB24_TO_Y_FN %1, bgr, rgb
317 RGB24_TO_UV_FN %2, rgb
318 RGB24_TO_UV_FN %2, bgr, rgb
319 %endmacro
320
321 %if ARCH_X86_32
322 INIT_MMX mmx
323 RGB24_FUNCS 0, 0
324 %endif
325
326 INIT_XMM sse2
327 RGB24_FUNCS 10, 12
328
329 INIT_XMM ssse3
330 RGB24_FUNCS 11, 13
331
332 %if HAVE_AVX_EXTERNAL
333 INIT_XMM avx
334 RGB24_FUNCS 11, 13
335 %endif
336
337 ; %1 = nr. of XMM registers
338 ; %2-5 = rgba, bgra, argb or abgr (in individual characters)
339 %macro RGB32_TO_Y_FN 5-6
340 cglobal %2%3%4%5 %+ ToY, 6, 6, %1, dst, src, u1, u2, w, table
341 mova m5, [rgba_Ycoeff_%2%4]
342 mova m6, [rgba_Ycoeff_%3%5]
343 %if %0 == 6
344 jmp mangle(private_prefix %+ _ %+ %6 %+ ToY %+ SUFFIX).body
345 %else ; %0 == 6
346 .body:
347 %if ARCH_X86_64
348 movsxd wq, wd
349 %endif
350 add wq, wq
351 sub wq, mmsize - 1
352 lea srcq, [srcq+wq*2]
353 add dstq, wq
354 neg wq
355 mova m4, [rgb_Yrnd]
356 pcmpeqb m7, m7
357 psrlw m7, 8 ; (word) { 0x00ff } x4
358 .loop:
359 ; FIXME check alignment and use mova
360 movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
361 movu m2, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
362 DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
363 pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
364 pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
365 pmaddwd m3, m5 ; (dword) { Bx*BY + Rx*RY }[4-7]
366 pmaddwd m2, m6 ; (dword) { Gx*GY }[4-7]
367 paddd m0, m4 ; += rgb_Yrnd
368 paddd m2, m4 ; += rgb_Yrnd
369 paddd m0, m1 ; (dword) { Y[0-3] }
370 paddd m2, m3 ; (dword) { Y[4-7] }
371 psrad m0, 9
372 psrad m2, 9
373 packssdw m0, m2 ; (word) { Y[0-7] }
374 mova [dstq+wq], m0
375 add wq, mmsize
376 jl .loop
377 sub wq, mmsize - 1
378 jz .end
379 add srcq, 2*mmsize - 2
380 add dstq, mmsize - 1
381 .loop2:
382 movd m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
383 DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
384 pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
385 pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
386 paddd m0, m4 ; += rgb_Yrnd
387 paddd m0, m1 ; (dword) { Y[0-3] }
388 psrad m0, 9
389 packssdw m0, m0 ; (word) { Y[0-7] }
390 movd [dstq+wq], m0
391 add wq, 2
392 jl .loop2
393 .end:
394 REP_RET
395 %endif ; %0 == 3
396 %endmacro
397
398 ; %1 = nr. of XMM registers
399 ; %2-5 = rgba, bgra, argb or abgr (in individual characters)
400 %macro RGB32_TO_UV_FN 5-6
401 cglobal %2%3%4%5 %+ ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table
402 %if ARCH_X86_64
403 mova m8, [rgba_Ucoeff_%2%4]
404 mova m9, [rgba_Ucoeff_%3%5]
405 mova m10, [rgba_Vcoeff_%2%4]
406 mova m11, [rgba_Vcoeff_%3%5]
407 %define coeffU1 m8
408 %define coeffU2 m9
409 %define coeffV1 m10
410 %define coeffV2 m11
411 %else ; x86-32
412 %define coeffU1 [rgba_Ucoeff_%2%4]
413 %define coeffU2 [rgba_Ucoeff_%3%5]
414 %define coeffV1 [rgba_Vcoeff_%2%4]
415 %define coeffV2 [rgba_Vcoeff_%3%5]
416 %endif ; x86-64/32
417 %if ARCH_X86_64 && %0 == 6
418 jmp mangle(private_prefix %+ _ %+ %6 %+ ToUV %+ SUFFIX).body
419 %else ; ARCH_X86_64 && %0 == 6
420 .body:
421 %if ARCH_X86_64
422 movsxd wq, dword r5m
423 %else ; x86-32
424 mov wq, r5m
425 %endif
426 add wq, wq
427 sub wq, mmsize - 1
428 add dstUq, wq
429 add dstVq, wq
430 lea srcq, [srcq+wq*2]
431 neg wq
432 pcmpeqb m7, m7
433 psrlw m7, 8 ; (word) { 0x00ff } x4
434 mova m6, [rgb_UVrnd]
435 .loop:
436 ; FIXME check alignment and use mova
437 movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
438 movu m4, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
439 DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
440 pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
441 pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
442 pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
443 pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
444 paddd m3, m6 ; += rgb_UVrnd
445 paddd m1, m6 ; += rgb_UVrnd
446 paddd m2, m3 ; (dword) { V[0-3] }
447 paddd m0, m1 ; (dword) { U[0-3] }
448 pmaddwd m3, m5, coeffV1 ; (dword) { Bx*BV + Rx*RV }[4-7]
449 pmaddwd m1, m4, coeffV2 ; (dword) { Gx*GV }[4-7]
450 pmaddwd m5, coeffU1 ; (dword) { Bx*BU + Rx*RU }[4-7]
451 pmaddwd m4, coeffU2 ; (dword) { Gx*GU }[4-7]
452 paddd m3, m6 ; += rgb_UVrnd
453 paddd m5, m6 ; += rgb_UVrnd
454 psrad m0, 9
455 paddd m1, m3 ; (dword) { V[4-7] }
456 paddd m4, m5 ; (dword) { U[4-7] }
457 psrad m2, 9
458 psrad m4, 9
459 psrad m1, 9
460 packssdw m0, m4 ; (word) { U[0-7] }
461 packssdw m2, m1 ; (word) { V[0-7] }
462 %if mmsize == 8
463 mova [dstUq+wq], m0
464 mova [dstVq+wq], m2
465 %else ; mmsize == 16
466 mova [dstUq+wq], m0
467 mova [dstVq+wq], m2
468 %endif ; mmsize == 8/16
469 add wq, mmsize
470 jl .loop
471 sub wq, mmsize - 1
472 jz .end
473 add srcq , 2*mmsize - 2
474 add dstUq, mmsize - 1
475 add dstVq, mmsize - 1
476 .loop2:
477 movd m0, [srcq+wq*2] ; (byte) { Bx, Gx, Rx, xx }[0-3]
478 DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
479 pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
480 pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
481 pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
482 pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
483 paddd m3, m6 ; += rgb_UVrnd
484 paddd m1, m6 ; += rgb_UVrnd
485 paddd m2, m3 ; (dword) { V[0-3] }
486 paddd m0, m1 ; (dword) { U[0-3] }
487 psrad m0, 9
488 psrad m2, 9
489 packssdw m0, m0 ; (word) { U[0-7] }
490 packssdw m2, m2 ; (word) { V[0-7] }
491 movd [dstUq+wq], m0
492 movd [dstVq+wq], m2
493 add wq, 2
494 jl .loop2
495 .end:
496 REP_RET
497 %endif ; ARCH_X86_64 && %0 == 3
498 %endmacro
499
500 ; %1 = nr. of XMM registers for rgb-to-Y func
501 ; %2 = nr. of XMM registers for rgb-to-UV func
502 %macro RGB32_FUNCS 2
503 RGB32_TO_Y_FN %1, r, g, b, a
504 RGB32_TO_Y_FN %1, b, g, r, a, rgba
505 RGB32_TO_Y_FN %1, a, r, g, b, rgba
506 RGB32_TO_Y_FN %1, a, b, g, r, rgba
507
508 RGB32_TO_UV_FN %2, r, g, b, a
509 RGB32_TO_UV_FN %2, b, g, r, a, rgba
510 RGB32_TO_UV_FN %2, a, r, g, b, rgba
511 RGB32_TO_UV_FN %2, a, b, g, r, rgba
512 %endmacro
513
514 %if ARCH_X86_32
515 INIT_MMX mmx
516 RGB32_FUNCS 0, 0
517 %endif
518
519 INIT_XMM sse2
520 RGB32_FUNCS 8, 12
521
522 %if HAVE_AVX_EXTERNAL
523 INIT_XMM avx
524 RGB32_FUNCS 8, 12
525 %endif
526
527 ;-----------------------------------------------------------------------------
528 ; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
529 ;
530 ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
531 ; and
532 ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
533 ; const uint8_t *unused, int w);
534 ;-----------------------------------------------------------------------------
535
536 ; %1 = a (aligned) or u (unaligned)
537 ; %2 = yuyv or uyvy
538 %macro LOOP_YUYV_TO_Y 2
539 .loop_%1:
540 mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
541 mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
542 %ifidn %2, yuyv
543 pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
544 pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
545 %else ; uyvy
546 psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
547 psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
548 %endif ; yuyv/uyvy
549 packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
550 mova [dstq+wq], m0
551 add wq, mmsize
552 jl .loop_%1
553 REP_RET
554 %endmacro
555
556 ; %1 = nr. of XMM registers
557 ; %2 = yuyv or uyvy
558 ; %3 = if specified, it means that unaligned and aligned code in loop
559 ; will be the same (i.e. YUYV+AVX), and thus we don't need to
560 ; split the loop in an aligned and unaligned case
561 %macro YUYV_TO_Y_FN 2-3
562 cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
563 %if ARCH_X86_64
564 movsxd wq, wd
565 %endif
566 add dstq, wq
567 %if mmsize == 16
568 test srcq, 15
569 %endif
570 lea srcq, [srcq+wq*2]
571 %ifidn %2, yuyv
572 pcmpeqb m2, m2 ; (byte) { 0xff } x 16
573 psrlw m2, 8 ; (word) { 0x00ff } x 8
574 %endif ; yuyv
575 %if mmsize == 16
576 jnz .loop_u_start
577 neg wq
578 LOOP_YUYV_TO_Y a, %2
579 .loop_u_start:
580 neg wq
581 LOOP_YUYV_TO_Y u, %2
582 %else ; mmsize == 8
583 neg wq
584 LOOP_YUYV_TO_Y a, %2
585 %endif ; mmsize == 8/16
586 %endmacro
587
588 ; %1 = a (aligned) or u (unaligned)
589 ; %2 = yuyv or uyvy
590 %macro LOOP_YUYV_TO_UV 2
591 .loop_%1:
592 %ifidn %2, yuyv
593 mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
594 mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
595 psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
596 psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
597 %else ; uyvy
598 %if cpuflag(avx)
599 vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
600 vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
601 %else
602 mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
603 mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
604 pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
605 pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
606 %endif
607 %endif ; yuyv/uyvy
608 packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
609 pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
610 psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
611 %if mmsize == 16
612 packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
613 movh [dstUq+wq], m1
614 movhps [dstVq+wq], m1
615 %else ; mmsize == 8
616 packuswb m1, m1 ; (byte) { U0, ... U3 }
617 packuswb m0, m0 ; (byte) { V0, ... V3 }
618 movh [dstUq+wq], m1
619 movh [dstVq+wq], m0
620 %endif ; mmsize == 8/16
621 add wq, mmsize / 2
622 jl .loop_%1
623 REP_RET
624 %endmacro
625
626 ; %1 = nr. of XMM registers
627 ; %2 = yuyv or uyvy
628 ; %3 = if specified, it means that unaligned and aligned code in loop
629 ; will be the same (i.e. UYVY+AVX), and thus we don't need to
630 ; split the loop in an aligned and unaligned case
631 %macro YUYV_TO_UV_FN 2-3
632 cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
633 %if ARCH_X86_64
634 movsxd wq, dword r5m
635 %else ; x86-32
636 mov wq, r5m
637 %endif
638 add dstUq, wq
639 add dstVq, wq
640 %if mmsize == 16 && %0 == 2
641 test srcq, 15
642 %endif
643 lea srcq, [srcq+wq*4]
644 pcmpeqb m2, m2 ; (byte) { 0xff } x 16
645 psrlw m2, 8 ; (word) { 0x00ff } x 8
646 ; NOTE: if uyvy+avx, u/a are identical
647 %if mmsize == 16 && %0 == 2
648 jnz .loop_u_start
649 neg wq
650 LOOP_YUYV_TO_UV a, %2
651 .loop_u_start:
652 neg wq
653 LOOP_YUYV_TO_UV u, %2
654 %else ; mmsize == 8
655 neg wq
656 LOOP_YUYV_TO_UV a, %2
657 %endif ; mmsize == 8/16
658 %endmacro
659
660 ; %1 = a (aligned) or u (unaligned)
661 ; %2 = nv12 or nv21
662 %macro LOOP_NVXX_TO_UV 2
663 .loop_%1:
664 mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
665 mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
666 pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
667 pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
668 psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
669 psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
670 packuswb m2, m3 ; (byte) { U0, ..., U15 }
671 packuswb m0, m1 ; (byte) { V0, ..., V15 }
672 %ifidn %2, nv12
673 mova [dstUq+wq], m2
674 mova [dstVq+wq], m0
675 %else ; nv21
676 mova [dstVq+wq], m2
677 mova [dstUq+wq], m0
678 %endif ; nv12/21
679 add wq, mmsize
680 jl .loop_%1
681 REP_RET
682 %endmacro
683
684 ; %1 = nr. of XMM registers
685 ; %2 = nv12 or nv21
686 %macro NVXX_TO_UV_FN 2
687 cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
688 %if ARCH_X86_64
689 movsxd wq, dword r5m
690 %else ; x86-32
691 mov wq, r5m
692 %endif
693 add dstUq, wq
694 add dstVq, wq
695 %if mmsize == 16
696 test srcq, 15
697 %endif
698 lea srcq, [srcq+wq*2]
699 pcmpeqb m5, m5 ; (byte) { 0xff } x 16
700 psrlw m5, 8 ; (word) { 0x00ff } x 8
701 %if mmsize == 16
702 jnz .loop_u_start
703 neg wq
704 LOOP_NVXX_TO_UV a, %2
705 .loop_u_start:
706 neg wq
707 LOOP_NVXX_TO_UV u, %2
708 %else ; mmsize == 8
709 neg wq
710 LOOP_NVXX_TO_UV a, %2
711 %endif ; mmsize == 8/16
712 %endmacro
713
714 %if ARCH_X86_32
715 INIT_MMX mmx
716 YUYV_TO_Y_FN 0, yuyv
717 YUYV_TO_Y_FN 0, uyvy
718 YUYV_TO_UV_FN 0, yuyv
719 YUYV_TO_UV_FN 0, uyvy
720 NVXX_TO_UV_FN 0, nv12
721 NVXX_TO_UV_FN 0, nv21
722 %endif
723
724 INIT_XMM sse2
725 YUYV_TO_Y_FN 3, yuyv
726 YUYV_TO_Y_FN 2, uyvy
727 YUYV_TO_UV_FN 3, yuyv
728 YUYV_TO_UV_FN 3, uyvy
729 NVXX_TO_UV_FN 5, nv12
730 NVXX_TO_UV_FN 5, nv21
731
732 %if HAVE_AVX_EXTERNAL
733 INIT_XMM avx
734 ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
735 ; that's not faster in practice
736 YUYV_TO_UV_FN 3, yuyv
737 YUYV_TO_UV_FN 3, uyvy, 1
738 NVXX_TO_UV_FN 5, nv12
739 NVXX_TO_UV_FN 5, nv21
740 %endif